
Nuts and Bolts: Modular AI from
the Ground Up

Kevin Dill

Chris Hecker
GDC 2008

http://chrishecker.com/Structure_vs_Style

Motivation

http://chrishecker.com/Structure_vs_Style

Chris Hecker
GDC 2008

http://chrishecker.com/Structure_vs_Style

Motivation

http://chrishecker.com/Structure_vs_Style

• Lockheed Martin's modular architecture
• Used across 6 very different projects

o character AI / sniper AI / strategic simulation / flight simulator
• Integrated into multiple engines

o Gamebryo / Real World
o VBS2
o Havok
o Unity
o JSAF (Joint Semi-Automated Forces) simulator
o (in progress) TES (Tactical Environment Simulaton) simulator
o (in progress) Web Server-based integration

The Game AI Architecture (GAIA)

• What is Modular AI?
• Common Conceptual Abstractions
• Sniper Example
• Implementation
• Parting Thoughts

Agenda

• Level of granularity
o "Bite-sized pieces"
o Single human concept

• For example:
o How far away is he?
o How long have I been doing this?
o Do I have any grenades?
o I want to move over there
o I want to shoot at that guy

The Big Idea

• Conceptual Abstractions
o Consideration
o Action

• Modular Components

o Distance Consideration
o Move Action

• Implementation vs. Configuration

Bite-Sized Pieces

• What is Modular AI?
• Common Conceptual Abstractions
• Sniper Example
• Implementation
• Parting Thoughts

Agenda

• The thing that makes decisions
o Utility-Based
o Rule-Based

o Sequence
o ...

Reasoners

class AIReasonerBase : public AIBase
{
public:
 virtual bool Init(const AICreationData& creationData);

 // Run any reasoner-specific sensors.
 void Sense(AIContext* pContext);

 // Think() is the meat of the reasoner. It is typically called every
 // frame. It handles selecting an option for execution, deselecting
 // the previous option when the selected option changes, and then
 // updating the selected option so that its actions can execute
 virtual void Think(AIContext* pContext);
};

• Evaluate a single aspect of the current situation
o Distance
o Execution History

o Picker
o ...

Considerations

class AIConsiderationBase
{
public:
 virtual void Init(AICreationData& creationData) = 0;

 // Evaluate the situation and determine how “good” this option is.
 // Store the results in m_Weights. Access them with GetResults().
 virtual void Calculate() = 0;
 const AIWeightValues& GetResults() { return m_Weights; }

 // Some functions need to know when the associated option is
 // selected/deselected (for example, to store timing information).
 virtual void Select(AIContext* /*pContext*/) {}
 virtual void Deselect(AIContext* /*pContext*/) {}

protected:
 AIWeightValues m_Weights;
};

• What to do when a particular option is selected
o Move
o Fire Weapon

o Subreasoner
o ...

Actions

class AIActionBase
{
public:
 virtual void Init(AICreationData& creationData) = 0;

 // Called when the action starts/stops execution.
 virtual void Select() {}
 virtual void Deselect() {}

 // Called every frame while we're selected.
 virtual void Update() {}

 // Check whether this action is finished executing. Some actions (such
 // as a looping animation) are always considered to be done, but others
 // (such as moving to a position) can be completed.
 virtual bool IsDone() { return true; }
};

• Represents a position and (optionally) an entity
o Fixed Position
o Named Entity

class AITargetBase
{
public:
 virtual bool Init(const AICreationData& cd);

 // Get the target's position
 virtual const AIVectorBase& GetPosition() const = 0;

 // Get the entity associated with this target (if any)
 virtual AIEntity* GetEntity() const { return NULL; }
 virtual bool HasEntity() const { return false; }
};

o Controlled Entity
o ...

Targets

• Convert from an input (e.g. Float, Boolean, etc.) to weight values
o Boolean
o Float Sequence

class AIWeightFunctionBase
{
public:
 virtual bool Init(const AICreationData& cd) = 0;

 // Weight functions can deliver a result based on the input of
 // a bool, int, or float. By default bool and float both throw
 // an assert, and int calls float.
 virtual const AIWeightValues& CalculateBool(bool b);
 virtual const AIWeightValues& CalculateInt(int i);
 virtual const AIWeightValues& CalculateFloat(float f);

 // Some functions need to know when the associated option is
 // selected/deselected (for example, to readjust random values).
 virtual void Select() {}
 virtual void Deselect() {}
};

o Simple Curve
o ...

Weight Functions

• Represents a region of space with an inside and an outside
o Circle
o Rectangle

class AIRegionBase
{
public:
 virtual bool Init(const AICreationData& cd);

 // Test if the passed in location is within the geometry.
 virtual bool InRegion(const AIVectorBase& position) const = 0;

 // Get a random position within the geometry
 // NOTE: IT IS POSSIBLE FOR THIS TO FAIL!! It returns success.
 virtual bool GetRandomPosition2d(AIVectorBase& outVal) const =
0;
};

o Polygon
o ...

Regions

• What is Modular AI?
• Common Conceptual Abstractions
• Sniper Example
• Implementation
• Parting Thoughts

Agenda

• Periodically (every minute or two) takes a shot at the enemy
o Not if there is no line of retreat
o Decrease priority with each additional shot

Sniper

<Option Type="ConsiderationAndAction" Comment="Take A Shot">
 <Considerations>
 <Consideration Type="ExecutionHistory">
 <StoppedWeightFunction Type="FloatSequence">
 <Entries>
 <Entry Min="60" Max="120" Veto="true"/>
 </Entries>
 <Default Veto="false"/>
 </StoppedWeightFunction>
 </Consideration>
 <Consideration Type="Global" Name="PickTarget"/>
 <Consideration Type="Global" Name="CheckRetreat"/>
 <Consideration Type="IntegerVariable" Variable="NumShots">
 <WeightFunction Type="BasicCurve"> ... </WeightFunction>
 </Consideration>
 </Considerations>
 <Actions>
 <Action Type="UpdateIntegerVariable" Variable="NumShots"
 UpdateType="Increment"/>
 <Action Type="Global" Name="FireAtTarget">
 </Actions>
</Option>

Take A Shot
Considerations
• Execution History

(Timer)
• Picker

(Select Target)
• Picker

(Line of Retreat)
• Integer Variable

(Number of Shots)
Actions
• Write Blackboard

(# Shots Fired)
• Fire at Target

Sniper – The “Take A Shot” Option

• Appropriate level of abstraction
o Enter ~6 values vs. a couple hundred lines of code
o Those values are the relevant ones

• Broad reuse of both components (code) and behavior (XML)
o Implement once
o Fewer bugs
o More mature code (better tested, more feature-rich)

• The Bottom Line: Developer Flow

What Does This Buy Me?
<Consideration Type="ExecutionHistory">
 <StoppedWeightFunction Type="FloatSequence">
 <Entries>
 <Entry Min="60" Max="120" Veto="true"/>
 </Entries>
 <Default Veto="false"/>
 </StoppedWeightFunction>
</Consideration>

• What is Modular AI?
• Common Conceptual Abstractions
• Sniper Example
• Implementation
• Parting Thoughts

Agenda

• Defines the interface
• Decouples interface from implementation

class AIConsiderationBase
{
public:
 virtual void Init(AICreationData& creationData) = 0;

 // Evaluate the situation and determine how “good” this option is.
 // Store the results in m_Weights. Access them with GetResults().
 virtual void Calculate() = 0;
 const AIWeightValues& GetResults() { return m_Weights; }

 // Some functions need to know when the associated option is
 // selected/deselected (for example, to store timing information).
 virtual void Select(AIContext* /*pContext*/) {}
 virtual void Deselect(AIContext* /*pContext*/) {}

protected:
 AIWeightValues m_Weights;
};

Polymorphism

• Input: AICreationData
o An XML node
o Context data (the blackboard, the parent entity, the parent option, etc.)

• Output: an object of the appropriate subtype
• E.G. AIConsiderationFactory

template<class T>
class AIFactoryBase
{
public:
 T* Create(AICreationData& creationData);

 // Add a custom constructor. Takes ownership of the constructor.
 void AddConstructor(AIConstructorBase<T>* pConstructor);
};

Factories

• Constructors
o Constructor objects can be added to the factory
o Each constructor knows how to instantiate some types

• Why?

o Allow external libraries to inject custom types without dependencies
template<class T>
class AIFactoryBase
{
public:
 T* Create(AICreationData& creationData);

 // Add a custom constructor. Takes ownership of the constructor.
 void AddConstructor(AIConstructorBase<T>* pConstructor);
};

Factories – Bells & Whistles

• Templates & Macros
o Consistent naming => automated factory specification

• Why:

o Every factory works exactly the same way
o Adding a new *type* of object is dead simple

Factories – Bells & Whistles

#define DECLARE_GAIA_FACTORY(_TypeName) \
 class AI##_TypeName##Base; \
 \
 class AI##_TypeName##Constructor_Default : public AIConstructorBase<AI##_TypeName##Base> \
 { \
 public: \
 virtual AI##_TypeName##Base* Create(const AICreationData& creationData); \
 }; \
 \
 class AI##_TypeName##Factory : public AIFactoryBase<AI##_TypeName##Base> \
 { \
 public: \
 AI##_TypeName##Factory() \
 { AddConstructor(new AI##_TypeName##Constructor_Default); } \
 };
#undef DECLARE_GAIA_FACTORY

Macro Magic: Declaring Factories

• AIGH! Not enough time!
o Kevin Dill (2016): a simple Boolean approach

• “Quick and Dirty: 2 Lightweight AI Architectures”
o Mike Lewis & Dave Mark (2015): a utility-based approach

• “Building a Better Centaur: AI at Massive Scale”
o Kevin Dill & Dave Mark (2012): a dual-utility approach

• “Embracing the Dark Art of Mathematical Modeling in AI”

• I strongly recommend the third – it’s:
o Straightforward to implement
o Extremely flexible – capable of great power (hardcore utility-based AI) or great simplicity (each

consideration is a “yes” or “no”)
o Avoids combinatoric problems of Mike & Dave’s approach

• You can customize this in the Consideration Set!

Combining Considerations

• What is Modular AI?
• Common Conceptual Abstractions
• Sniper Example
• Implementation
• Parting Thoughts

Agenda

• Appropriate level of abstraction
o Enter 6 values vs. several hundred lines of code
o Those values are the relevant ones

• Broad reuse of both components (code) and behavior (XML)
o Implement once
o Fewer bugs
o More mature code (better tested, more feature-rich)

• The Bottom Line: Developer Flow

What Does This Buy Me?
<Consideration Type="ExecutionHistory">
 <StoppedWeightFunction Type="FloatSequence">
 <Entries>
 <Entry Min="60" Max="90" Veto="true"/>
 </Entries>
 <Default Veto="false"/>
 </StoppedWeightFunction>
</Consideration>

• You don’t have to build a new architecture from scratch
o If you do, it doesn’t have to be as complex as mine

• Look for opportunities to build in a modular way

o Weapon selection
o Target selection
o Red Dead example (missed opportunity)

• Start with considerations

Where To Start?

• Simple open-source implementation
o Apache 2 license
o GitHub: https://github.com/virtual-world-

framework/mars-game
• or Google “GitHub Mars Game”

The Mars Game

https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game
https://github.com/virtual-world-framework/mars-game

Nuts and Bolts: Modular AI from
the Ground Up

Kevin Dill
Christopher Dragert
Troy Humphreys

• Constructors
o Constructor objects can be added to the factory
o Each constructor knows how to instantiate some types

• Why?

o Allow external libraries to inject custom types without dependencies

template<class T>
class AIFactoryBase
{
public:
 T* Create(AICreationData& creationData);

 // Add a custom constructor. Takes ownership of the constructor.
 void AddConstructor(AIConstructorBase<T>* pConstructor);
};

Factories – Bells & Whistles

Reasoner

Option
Considerations

• Consideration #1
• Consideration #2
• ...

Actions
• Action #1
• Action #2
• ...

Option
Considerations

• Consideration #1
• Consideration #2
• ...

Actions
• Action #1
• Action #2
• ...

Option
Considerations

• Consideration #1
• Consideration #2
• ...

Actions
• Action #1
• Action #2
• ...

Option
Considerations

• Consideration #1
• Consideration #2
• ...

Actions
• Action #1
• Action #2
• ...

Major Components

• Periodically (every minute or two) takes a shot at the enemy.
o Not if there is no line of retreat.
o Not if under fire.

• Withdraws after firing a few shots
• Withdraws if the enemy opens fire

o If he can’t withdraw, returns fire instead

Sniper

Rule-Based
Reasoner

Withdraw
Considerations

• Blackboard
(# Shots Fired)

• Event
(Under Fire)

• Picker
(Line of Retreat)

• Execution History
(Commit)

Actions
• Withdraw

Fight
Considerations

• Event
(Under Fire)

• Picker
(Select Target)

• Execution History
(Commit)

Actions
• Fire at Target

Take A Shot
Considerations

• Execution History
(Timer)

• Picker
(Select Target)

• Picker
(Line of Retreat)

Actions
• Fire at Target
• Write Blackboard

(# Shots Fired)

Hide
Considerations

Actions
• Pose (Low Prone)

• Periodically (every minute or two) takes a shot at
the enemy.
o Doesn’t fire if there is no line of retreat.
o Doesn’t fire if under fire.

• Withdraws after firing a few shots
• Withdraws if the enemy opens fire

o If he can’t withdraw, returns fire instead

Sniper

Rule-Based
Reasoner

Withdraw Fight Take a Shot Hide

Scripted
Reasoner

Aim
Actions

• Delay

Fire
Actions

• Fire Weapon
(Target)

Raise Up
Actions

• Pose
(High Prone)

Dual Utility
Reasoner

• Periodically (every minute or two) takes a shot at the
enemy.
o Doesn’t fire if there is no line of retreat.
o Doesn’t fire if under fire.

• Withdraws after firing a few shots
• Withdraws if the enemy opens fire

o If he can’t withdraw, returns fire instead

Hierarchy

<Option Type="ConsiderationAndAction" Comment="Hide">
 <Considerations>
 </Considerations>
 <Actions>
 <Action Type="Pose" Pose="LowProne"
 </Actions>
</Option>

Hide
Considerations

Actions
• Pose (Low Prone)

Sniper – The “Hide” Option

 Xml C++

AIActionSet

AIOptionFactory

AIReasonerFactory

AIActionBase
AIConsiderationBase

AIOptionBase

AIReasonerBase

Configuration
<Name>

Reasoners

Reasoner
<Type X>

Options

Option
<Type X>

Considerations

Consideration
<Type X>

Actions

Action
<Type X>

AIConfiguration (loaded by AIBrain)

AIReasonerSet

AIOptionSet

1..
*

1..
*

1..
*

1..
1

0..1
0..1

AIConsiderationFactory

AIReasoner_X Correspond
s

1..
*

1..
*

Instantiates

Uses

Instantiates

AIOption_X

AIConsiderationSet

AIAction_X

AIConsideration_X

AIActionFactory

…

…

Tools

