ARTIFICIAL
INTELLIGENCE

—= S MEMN) —

Al

Nuts and Bolts: Modular Al from
the Ground Up

Kevin Dill
Christopher Dragert
Troy Humphreys

)\ Abstract

What is Modular Al?

o It's away to structure your Al Architecture
« Applies to state machines, behavior trees, HTNs, etc.

« Emphasises small, easily reused modules

o Gan be transformative to your development process
o Fast prototyping, rapid iteration, increased stability

A | Abstract

The Nuts and Bolts

1. Academic Underpinnings (Chris Dragert)

2. Implementation Details with Code Samples (Kevin
Dill)

3. Shipped Example and Architecture Discussion (Troy
Humphreys)

ARTIFICIAL
INTELLIGENCE

—= S MEMN) —

q

Al

Nuts and Bolts: Modular Al from
the Ground Up

Christopher Dragert, Ph.D.
Ubisoft Toronto

Gm GAME DEVELOPERS CONFERENCE' March 14-18, 2016 - Expo: March 16-18, 2016 #GDC16

A S Introduction

Modular Al

o Software engineering has a lot to say
about modular reuse

« Apply these principles to EB%
modular Al

A S Introduction

Our Goals

o Learn techniques to develop a suitable
modularization for your project

« Understand how to manage and reduce
modular complexity

Al

Classifying Complexity

o Essential complexity

- Complexity of the problem itself
« Accidental complexity

- Problems created by us

[Fred Brooks, “No Silver Bullet”, 19861

Al

What drives Modular Complexity?

1. The Module itself
2. Complexity of the Interface
3. The Integration process

AlS5# Module Complexity

Module Complexity

 (Good modules do not try to do too much!

« Smaller modules improve comprehension by having
singular purpose

Al

Limiting Scope

o Separate cross-cutting concerns

o Lxample-Melee combat module selects a target, ranged
module selects a target, flee module selects a target...

o Solution-Remove target selection from existing modules,
create a target selection module

AlS5# Module Complexity

Control the Size

o [raditional abstraction techniques should be applied
« Hierarchical Approaches
o Subsumption and Layering
o Parallelism

AlS5# Module Complexity

Well-Defined Semantics

o Your Al logic must operate in a understandable,
well-defined fashion

« Necessary for portability between games

Al*E# Module Complexity
Semantics Example

Combat Flee

« What transition does your implementation take?
o The new context must make the same choice!

Al Interface Complexity

Modular Interface

« GCommunicates the required context for the module

« Raises the level of abstraction, reducing accidental
complexity

Al Interface Complexity

Defining the Context

o State machines (event-based formalisms)
« What input events in do you need to handle?
« What output events do you generate?

Al

Enemy Position Tracker

=
———
- o
w

Al Interface Complexity

Enemy Position Tracker

Description: Tracks the position of an enemy
Game: ‘Game X' by Ubisoft

Parameters: <T>The type of the enemy entity
language: C++

Al Interface Complexity

Enemy Position Tracker

Description: Tracks the position of an enemy
Game: ‘Game X' by Ubisoft

Parameters: <T>The type of the enemy entity
language: C++

Input Events

- ev_EnemySpotted(<T> enemy)
- ev_EnemyLost(<T> enemy)

Al*E Interface Complexity

Enemy Position Tracker

Description: Tracks the position of an enemy
Game: ‘Game X' by Ubisoft

FParameters: <T> The type of the enemy entity
language: C++

Input Events Output Events

- ev_EnemySpotted(<T> enemy) -ev_EnemyPositionChanged
- ev_EnemyLost(<T> enemy) (<T> enemy)

Al Interface Complexity

Behavior Tree Contexts

o Primarily data-driven

« What blackboard entries are read (input) and written
(output)?

o Not the full story!

Al Interface Complexity

Behavior Tree Contexts

o New behavior trees where nodes can return {success,
failure, running}

o What interrupts a running node?
o [ree structure itself

AL~ Interface Complexity

Behavior Tree Interfaces

o0 Check |
Conditional Reusel!

Al

Integration Overview

o The essential problem is connecting inputs and
outputs between modules

o Everything else is accidental complexity!

Al

Integration Complexity

o Module connections must be derivable solely from the
interface

o This preserves modular encapsulation!

« Aconsistent integration approach can be supported
with tools

Al |ntegration Complexity

Module Coupling

o Loosely-Coupled: A missing module impairs only that
behavior

o Loosely coupled modules support fast prototyping and
rapid iteration

Al |ntegration Complexity

Module Coupling

o Tightly-Goupled: Missing modules cause failures,
prevent compilation, etc
« Often caused by broken encapsulation
o Could also be an error in abstracting modular concerns

=
o
- o
w

Al |ntegration Complexity

Special Cases

o Special case exceptions break reuse
o Sensor: Reports every ev_newenemyspotted event
« Reaction: ev_newEnemyspotted causes a new enemy reaction

« Event system adds hysteresis, caps generation of
ev_newEnemySpotted at one per minute

o Thisis a broken module encapsulation error

2\

The Payoff

o Fast Prototyping

o Quickly modify functionality by adding and removing modules
o Fine Tuning

« Parameterized module instances allow for customization
« Better Development Process

« Reuse existing behavior, spend time innovating new behaviors

GOC * GAME DEVELOPERS CONFERENCE' March 14-18, 2016 - Expo: March 16-18, 2016 #GDC16 \ I I

2\

A good modular approach:
o Uses small modules that separate concerns
o Operates with well-defined semantics
o Has a clear interface
« Preserves modular encapsulation
o Uses a loose-coupling approach

GDC * GAME DEVELOPERS CONFERENCE' March 14-18, 2016 * Expo: March 16-18, 2016 #GDC16

