
Good a�ernoon.
I’m David Candland, User Interface design lead at Bungie.

I’ve been at Bungie for over 15 years. �is means that I was instrumental
in creating and designing the UI For Halo, Halo 2, Halo 3, Halo 3 ODST,
Reach, and now Destiny.

Right now, you’re probably wondering why I have a slide showing a
piece of spaghetti on a wall.

Well, let me tell you.

Years ago, I was boiling some spaghetti and forgot to set a timer. I asked
my wife, “how do I know when it’s done?”
“Did you set a timer ?”
(Sheepishly) “No.”
“Alright, take a piece out and throw it at the wall.”

I did as she said, and it hit the wall and it bounced right onto the count-
er. She told me to try it again in a minute. (NOT THE SAME PIECE) When
it sticks to the wall, it’s done.

�is is a lot like the design process. You research, you calculate, you
plan, you document and then you take your best shot and throw your
design into the game and see if it sticks. Sometimes it does, sometimes
you use the last iteration as a learning opportunity. �e key is to keep
trying. To be tenacious until the design has sticking power.

Today, I’m going to discuss 4 of these “noodles”, if you will;

As I go over each of these aspects of our game, hopefully I’ll give you a
few takeaways on our design process, some technical notes, and some
of the things we learned in creating the destiny UI.

�ese features are:
• �e free cursor
• Creating Gear icons
• Localization Practices and Release Valves
• �e Director

Let’s start with the free cursor...

(Video)
�is is one of my characters. Let's invoke UI to get a better look at all the
armor I have equipped.

Selection is controlled with this cursor that moves freely about the UI.
Most console games use D-pad or sticks to navigate, so a cursor on a
console game is pretty much unheard of.

�e background counter-scrolls in the opposite direction. �e le� stick
controls the cursor, leaving your right thumb for button presses or
rotating your character preview around for a better look.

Your inventory can fill with things like guns, armor, materials...You can
have a lot in your inventory.

Trying to accomplish simple functions like equipping a helmet and then
going all the way down to equip your ghost would’ve taken much longer,
and many, many clicks of the d-pad just to pull this o�.

So, Why a free cursor?

I just covered this first point: saving you all those clicks saves you time
and tedious e�ort.

Free scrolling screens with animating interactive elements are sexy
Pro tip: Best way to make someone think your UI is easy to use: make it
sexy. Right? It becomes a little easier to overlook some of the small
things that may get on your nerves that way.

Free cursor screens work in both Standard Def and Wide screen aspect
ratios without layout changes or large dead areas on HDTVs.

(Video)
In this example, you can see that the cursor gives us freedom in 4:3
aspect ratio without altering our primary layout due to the background
counter-scrolling the content around.

If you move the cursor from one end of the screen to the other, you will
always have access to all content on the screen.

A free cursor enables interactive elements of a screen to not be grid
aligned.

DPAD navigation requires predictable, linear alignment of interactive
elements which limits visual grouping and graphic design.

�is is a shot of one of our maps in the game.
If you wanted to navigate a selection from Skywatch to Mothyards using
a d-pad, it would be guesswork… is it mostly right or mostly down?

Navigating a map with a d-pad would get frustrating, you’d guess wrong
50% of the time.

We’d previously prototyped using a cursor, and because of all these
things I just explained, we came to the conclusion that we needed to
move forward with this decision. Jason Jones (Creative Chief) agreed,
but gave me the following goals to work from:

It’s important to work from goals. When you tell designers what to do,
you stifle exploration.

�ese were the goals:

• Make it feel right. “Autoaim time” Hearkens back to Halo 1. We had
moved from a PC platform to a console. Using your thumbs on a stubby
stick to aim without any assistance is really hard. Our sandbox design
team spent weeks and weeks of time to figure out target magnetism,
bullet spread, aim assist, and all the values associated with those.

• Embrace it completely; no scroll bars, d-padding, required zooming or
other modifier buttons. Point and click only. Use it everywhere, not just
when it’s necessary.

• Counter-scrolling is required. Early prototypes showed that felt best.
Static elements when you move the cursor feel wrong.

(Video)
When counter-scrolling, the content moves from one end of the screen
to the other. �e content of your screen essentially becomes a big
scrollbar that operates on 2 di�erent axis.

As you can see, that even though the cursors are moving at the same
speed, the one on the bottom feels faster because the counter-scrolling
has to move at a faster rate to be able to shi� that much content around.

Big question 1 – do you vary the speed of the cursor or vary the speed of
the background?

Question 2 – how do you handle screens that are disproportionately
long? Fast on one axis, then slow on the other?

We prototyped several explorations in a�er E�ects, and then in engine to
try and help us find solutions to these.

�e best solution, we realized, was to make both a non-issue; measure
the most screen real estate we will need, and make all screens roughly
that size.

Smaller screens like this would have an extra large bu�er, a margin of
space on all ends to ensure they counter-scrolled at about the same
speed as larger screens. But what about all the extra space? Pushing
your cursor all the way to one side would scroll all your content o� the
screen. A�er getting it into the game, we realized this wasn’t a big deal.
Nobody chooses to move their cursor all the way to the side because
there’s nothing to see there.

Selecting items:
Players’ thumbs are not too dexterous, especially on stubbly little
controller sticks. Players need assistance to help you land the cursor on
an object. We looked into two main options:
• Gravity well (cursor snaps to the button)
• Friction (cursor slows over the button)

We researched all the variables we could think of… what if there’s less
gravity if you pegged your sticks? How much friction? What if friction is
only applied on the way in? Etc. We eventually prototyped each.

A�er seeing it in action, we immediately ruled out the gravity well
approach. A screen dense with icons means erratic cursor movement
and lack of control if your cursor is constantly snapping to each button.

Friction felt good. We got global settings from engineering to tweak the
values. If there was too much friction, people would circumvent all the
icons. Too little, and you cant hit targets without frustration.

We eventually found the sweet spot , though there was concern about
the varied experiences with the extreme cases of screens; those with
densely packed icons and open screens with only a few hot spots.

We asked our engineers for screen overrides to tweak down friction on
dense screens, so even though cursor speed and friction varied, the
experience felt consistent.

�e thing about design, is even though on paper and mathematically
things may be correct, they may not feel that way, and sometimes you
need to fudge things di�erently to make them feel consistent.

It’s human nature to take the path of least resistance. As humans, we’re
always cutting corners to get from one place to another,

�is created a problem with our menus. When players took the path of
least resistance, they would find themselves leaving the menu and
crossing over an adjacent button with the intent to get to the setting they
want, only to have the menu disengage as soon as they le� it.

�e only way around this was to move the cursor at a 90 degree angles
–which feels unnatural. We needed some way to gauge player intent so
when they moved the cursor o� the menu in a trajectory to select an
item at the top of the menu, we didn’t pull the rug out from under them.

We had to calculate player intent.

If the player is pegging the stick quickly in one direction, we can assume
their intent is not to stop on the button directly above or below their
current position.

Calculating velocity is easy, you get that analog data from the sticks.
Trajectory was a bit trickier.

We basically did this by computing a rectangle around the Submenu
Container bounds. �e top and bottom of the rect calculated the 2 side
points of a triangle, with the cursor location making the third point. Any
trajectory within that triangle gave us a positive result.

Our engineers set up debug geometry for us to test our settings with.

(Video)
�is is what it looked like.

When the triangle is red, that means the cursor is moving at too low of a
velocity to trigger our solution.

Green meant that we hit the speed threshold to ignore the cursor pass-
ing over other buttons in the menu.

(Video)
�e free cursor was a lot of work, we spent weeks and weeks on this
feature.

In the end, we were very happy with result, though we’re always looking
at ways we can improve the feature.

Next, I’ll talk about the gear icons

Gear icons are an intrinsic part of the UI.

�ese were our goals for this feature.

Early on we started to explore...

Are there any UI designers in here? If so, raise your hands.

So, everyone else, here’s something you should know. When a game is in
early development and we have no real content to put in our mock-ups,
we make stu� up and slap in placeholder images that we find online.

So with that caveat, please try not to read too much into these. If you’re
watching this later online, and picking things out from freeze-frames,
like a sonic screwdriver in my inventory, or a mission on Jupiter, it’s likely
you’re just seeing something of an artist’s musings in Photoshop.

With that said – here’s an early exploration of the player inventory. We
wanted to keep the icons isolated in a panel on the side, so we could
bring it up while the game was running.

�is way we could see both our inventory and the vendor inventory
simultaneously - which is pretty traditional in RPGs.

While this was better in some respects, it covered up our ability to do
any vendor performances as you interacted with them. It also filled the
screen with icons – the screens became visually dense and hard to read
at a glance. We also couldn’t display very many icons at a time without
making them fairly small.

To increase the item count, we tried going with overlapping icons...

...but that just made things harder to read and parse.

Seeing all your gear at once Was something we were hoping to do, but
we started to realize this wasn’t probably going to work without really
cluttering the screen.

We started looking at ways to nest the content. Representing each slot
with your equipped item seemed to be a good conservation of space.

As we were exploring inventory layout, we were also exploring icon
appearance.

We looked at using unique tritone palettes for each of the item types.
While it looked more cohesive and organized, it wasn’t very representa-
tive of the items

At one point we tried icons with no background at all, putting progress
on the tooltip, but it felt weird for items that had to get cropped, like a
long sniper rifle. It also had the e�ect of making these feel less like
tangible, collectible objects.

We experimented with icons that were longer for weapons so we could
show the entire silhouette.
�is caused too many layout as well as technical problems

By this point, we found that we could quickly indicate the contents of
each bucket with some graphical representation to the side of the icon
rather than adding even more numbers to this screen.

Progress towards leveling the items up was indicated by the blue meter
in the background. We abandoned this a�er a while because it was
di�cult to see progress when the icons took up much of the back-
ground, like the rocket launcher.

By 2013, we had things moving in the right direction. Right before E3,
our investment team introduced the concept of rarity, hence the back-
ground colors to symbolize them

During our time of exploration, we tried to figure out how we were going
to author all of these icons.

In an attempt to reduce artist workload, the plan was to create represen-
tative icons for each archetype, add a tint and swap out the background
to give things variety.

We set them up by hand, masked them by hand, painted the change
colors by hand, just to get a few iterations out of one small piece of art.
Not only was this time consuming, but it was not 100% accurate.

We quickly realized we were making passingly acceptable work and
putting a lot of time into it

So we costed an automated system.

�is is lightbox, our internal asset viewer. It has many uses, but in UI we
use it for shooting icons.

�e 3D surface team authors the content. �e investment team then
assigns and names the content, adding them to a registry.

An artist selects the items by name, usually grouped by release and adds
them to the render queue.

�e assets are then loaded into a lighting test environment. �e artist
has full control over the lighting.

We have preset lighting models based o� of the locations and times of
day in the game. Each has a very distinct palette.

�is is Venus at night, which is the most neutral, di�use lighting preset.
It’s also perfect for icon shots.

�e models can be loaded in on their own, or equipped to a biped. Here
it is equipped to a biped that has been render toggled o�, so all you see
are the pieces of arm gear

�en various rendering processes are turned o�; the environment,
anti-aliasing, bloom, reflection maps, self-shadowing, etc.
Each class and armor type has a predefined camera and pose.
�e snapshots are taken in quick succession.

�e files are reviewed by and artist and then brought into Photoshop
where the photos are post-processed with automation scripts.

�e artist then reviews the shots.

Sometimes if the geometry is unusual, like there are big protrusions or
bad tangents, the artist will retake the shot , or re-crop it in Photoshop.

Now we have much more accurate coloring – we aren’t using changecol-
ors anymore. �e representation of uncommon to exotic items is much
clearer.

Notice there are 2 of each. One for the PS3 and 360, the larger ones for
the current generation.

Source files are maintained just in case we end up having to reprocess
them in the future to support something like large shots on our web site,
or 4k resolutions.

I love how well these are working. I Like the nice clean alignments of a
uniform height and width, and unlike many RPGs that have tinted
approximations, we have actual representations.

�ere’s probably even someone in this audience that could rattle o�
each of these items by name.

Let’s talk Loc

Destiny is translated into EFIGS (English, French, Italian, German,
Spanish) as well as Portuguese and Japanese.

We have been refining the loc process over the years at Bungie. Here are
some things we are doing to streamline the process. Some of these
concepts may be familiar to you, but there’s probably a few practices
unique to our studio.

40% bu�er

Just a common practice. Leave about 40% extra space for your text
strings.

Reason being, di�erent languages tend to fluctuate in length.

�ere are some languages that tend to do this more o�en than others,
but I’m not going to name any names.

O�en times writers ask for character counts.
Unless your font is monospace, you need to give an avg expected count,
give or take.

Each button has the exact same number of characters (21, in case you
were counting), but if you tell the writers they can use up to 21 charac-
ters, they could potentially go over their allotted space depending how
many capital Ms and Ws and how few spaces, Is, and ls there are.

It’s best to give your translators a ballpark figure, leaning on the smaller
side – roughly somewhere between 18 and 23 characters here.

Having debug commands that allow both writers, translators, testers,
and UI artists to see how the interface looks in other languages has been
extremely beneficial.

Earlier on, our toolset required us to set the new language and reboot.
Now we can do it on the fly, which has made the process much more
painless.

String concatenation isn’t inherently wrong, but when done in the
content setup by a UI artist, you can run into problems.

When you replace variables, you are having a fixed sentence structure.

�ese are tooltips for gun. Rarity and type: “legendary shotgun”
If you concatenate 2 separate strings together, they are permanently
fixed in that order.

Are there any Spanish speakers in here? I’m guessing this probably
sounds wrong to you - like a certain pointy-eared muppet did the
translation for us.

When we worked on Halo, we’d ship o� the text strings for translation,
wed get them back and plug them into the game. �is greatly increased
translation times and was more error prone since they didn’t have a
build to look at while they were doing the work – there was no context
for them.

Dev language – next page.

Dev language is a language sku just like Spanish, Portuguese, and
Italian. �is language, however, that does not ship.

Why do we have a Dev Language?

When UI artists are building pages, they need to plop in placeholder
strings so the page structure is filled out. Sometimes these strings are so
straightforward, that they don’t change by the time we release the final
game, and, as I explained earlier, some things we make up on the fly.

Sometimes they are an inside joke, like changing “Inverted” to “pervert-
ed.” But even when the information is totally accurate but we want to
have our writers vet them for grammar, terminology, and fictional
consistency. So we avoid shipping placeholder strings.

Dev strings get the idea across, and if there is anything we want to add,
we can add notes about our intent, so the English writers understand the
purpose of that string, and if there is any formatting that needs
preserved. Our email alias is also available in case they have questions.

Many fonts are missing international characters. �is can make localiza-
tion di�cult without selecting a di�erent font for other languages.
�is may be inevitable for Asian fonts.

What we did was find the font we wanted, then at runtime the string
parser checks font for characters. If it can’t find it, it then searches our
custom font for the missing characters.

Also notice the button glyphs. Our fonts are rendered on the fly as
TrueType, and any glyphs in the font are vector based true type glyphs.

We used to render all fonts into bitmaps, so each character and button
icon needed maintained any time we added a new font, added a new
size, etc. Using TrueType gives us infinitely more flexibility since the font
and glyphs are rendered at runtime.

Unfortunately, there’s no way to specify more than one color in any
single text character. To get around this, we came up with a clever
solution...

For our own unique dingbats and buttons, writers specify unique string
hashes. �ose refer to a tag where we use markup language and
Unicode references to define the character and its coloring. For multicol-
ored buttons, a single hash references a string that contains two charac-
ters and each one is assigned a color.

Of course, normally this would produce two characters side-by-side.

However, when we author the font, the character that provides the
secondary color is intentionally misaligned and has a width of 0 so it
lines up directly behind the character preceding it.

So – this tech allows us to specify font sizes, custom glyphs, and interna-
tional characters at runtime without touching the original font.

All things considered, no system is perfect. Sometimes writers go over
the recommended space, sometimes the layout doesn’t allow for much
flexibility. �ese are some ways we add flexibility into the localization
process.

We set up a text field and give it plenty of space, however, if more is
required, we give it flexibility.

�e vertical height is calculated on the fly, and if the content doesn’t fit,
we can push the field out taller. �e height of that field is calculated,
then that value is factored into the rest of the screen, so all the other
elements can adjust accordingly.

Another way we use ‘scale to fit’ is the font itself. �is is one of the great
things about using trueType faces that render at runtime.

�ese are two shots of some buttons from our settings menu. As you can
see on the bottom one, one phrase ended up being written longer than
we anticipated. �e translation into French didn’t quite fit, so the text
field is flagged to scale the font down until it does.

�is is our internal tool, Bonobo. �e middle panel is the preview area,
and the upper right is the list of elements. A text field is selected here.
Below that list in the bottom right is the attributes of the text field we
have selected.

When a single line of text has ‘scale to fit’ specified, we are able to set a
minimum text size here, to insure it never scales too far down. However,
if that isn’t going to work, we are able to take even more drastic mea-
sures.

�e truncation setting cuts strings o� prematurely if they don’t fit, and
adds an ellipsis at end.

We are not currently using this setting anywhere, but it works like this:
It fills up as much of the field as it can, leaving space for an ellipsis. �is
works well when the same information can be accessed elsewhere,
rather than having the player lose that data.

Lastly, there’s Scrolling text – if all else fails, and the text simply won’t fit
and you absolutely must see it all.

�ere are a few cases of this in the game where we implemented a new
feature late in the development process, and the there was no time
remaining to safely rewrite and translate the strings that went in these
brand new locations.

(Video)
Look at this field, it’s really tight. Now if I change language to Portu-
guese, the text increases in length and begins to scroll.

It’s not the most elegant thing we’ve done, but sometimes, when all else
fails, you need to use a little brute force.

Our last topic of the day is the Director.

�e Director is the first piece of UI we prototyped for Destiny back in
2010.

Jason gave us the following goals to work from:

(Video)
Keep in mind this was a very early mockup, before we had any locations
or story figured out. �e design was based on the solar system and
exploration.
However, this version had issues:
• �ere was too much digging in and out
• Everything equal, what should I do next?

We were expecting a lot of our Halo players to try playing our game,
many of them just want to shoot other dudes, where is that?

�ough we “make the games that we want to play” we had to be mind-
ful of those of us in the studio that just like to play deathmatch. Eventu-
ally, we just started calling those types of players, “Todd, the drunken
frat boy.” How does he get to play what he wants?

We started iterating.
We tried lots of ideas.

Trying to design the UI while the rest of the game was being designed
concurrently, plans would changed daily. Anyone in game development
knows that’s just how it goes. Sometimes we’d create problems for
ourselves by trying to solve for things like two destinations on one
planet, or the gas giants, that didn’t even make it into the sipping game.

So trying to not get hung up on the details was a challenge.
Some designs didn’t make it past b/w motion comps, some made it all
the way into the engine.

We had about 8-9 major revisions, each one solving the issues the last
one had.

We finally landed here. We had streamlined the UX, solved lots of issues,
made it easy to do what you want and do so e�ciently.

...BUT we had totally sucked the cool out of the most important piece of
UI in the game. Looking back, the solar system was so neat, it provided a
sense of exploration, wonder, and dozens of other intangibles.

�is was an Important lesson we learned – when iterating and improv-
ing, you need to look at ALL past revisions and not the most recent one.

Jason was the first to recognize this and call it to our attention. And
while we’d accomplished his first set of goals, he gave us a few more to
really clarify the important things in this design.

It was the 11th hour, we had a few months to ship, so we went for it, and
changed the director one more time.

We knew it was right, but we were very cautious. �is was our last
chance, and we had to do it right.

We went through several visual iterations...

...and built a working prototype as rapidly as possible.

We pilfered a guy from the web team to build a rapid prototype using
HTML, CSS & Java script.

We were completely out of time. �e specs were mostly finished and
most details figured out, so we started executing. It’s not optimal, but we
had to move.

In the end, I’m very happy with result, love the design, and the solutions
we arrived at.

�e visuals referenced ancient cartography in a sci-fi setting.

So I’ve talked about our UI and shown you stills and bits and pieces. I’d
like to wrap things up by showing you a brief video tour that showcases
the various elements of our UI in action so you can see how the things
that I’ve talked about today all come together.

�is is what ended up sticking to the wall.

(Video)

I hope this insight into our design process has helped. Maybe there’s
something specific you can take away in regards to the free cursor, Our
Localization Practices, Creating Gear icons, and Designing �e Director.

Our processes are constantly changing. We’re always looking for ways to
improve the UI in Destiny. To make it simpler and better for users to find
the fun.

Feel free to follow me on twitter or Xbox Live

At this point I’ll take questions.

fin.

