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Combinations and Permutations

Many design problems can be 
modeled as combinations 

and permutations.



Combinations and Permutations

These can often be solved by 
pre-computing data about 

the problem.



Combinations and Permutations

A perfect hash function 
allows an efficient hash 

table.



Combinations and Permutations

Perfect hash functions for 
combinations and 

permutations



Structure
● Combinations and Permutations 
● Example Problems 
● How to Count 
● Ranking 
● Unranking 
● Application



Combinations
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Combination: Selecting Puzzles

● Puzzle game with pieces on the board 
● Want to select interesting puzzles







Combination: Selecting Puzzles

● Puzzle game with pieces on the board 
● Want to select interesting puzzles 
● Solvable puzzles 
● Puzzles with one solution 
● Puzzles where every move leads to a solution
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Combination: Counting

20·19·18·17
4·3·2·1

20!
16! 4!
✓
20

4

◆



Definition
● Ranking: A function that takes a 

combination and returns an integer 
between 0…N-1 (where there are N 
possible combinations).



Combination: Ranking



Combination: Ranking

Location 0



Combination: Ranking

Location 0

Location 19



Combination: Ranking

Rank: 0



Combination: Ranking

Rank: 4844
✓
20

4

◆
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Combination: Ranking

Rank: 0



Combination: Ranking

Rank: 1



Combination: Ranking

Rank: 2



Combination: Ranking

Rank: 3
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Rank: 3



Combination: Ranking

Rank: 16
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Rank: ?
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Rank: ?
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How many 
possible boards 

with a piece 
here?
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How many 
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here?
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Rank: 970
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Combination: Ranking

Rank: 969+136
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Combination: Ranking

How many 
possible boards 

with a piece 
here?

17!
15! 2!

= 136

Rank: 1105



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.
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that were 
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between pieces.



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}
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Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
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Ranking Combinations (Recursive)

Running time: Linear in # of pieces
Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Definition
● Unranking: A function that takes an 

integer between 0…N-1 and returns the 
associated combination.



Combination: Ranking

Rank: 0



Combination: Ranking
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Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 
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Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
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Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);
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Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
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} 
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For i = 0…# states-1 

b = unrank(i) 
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Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
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for (int each move m on board b) 
{ 
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Multi-Sets
(combinations allowing duplicates)



Multi-Set Example
● Build an AI for a card game (duplicate) 
● Pre-compute value of a set of cards 
● At runtime, compute and lookup the index of 

our current cards.



Permutations
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Counting Permutations

20 1 3
4 3 2 1



Counting Permutations

20 1 3
4 3 2 1 4! = 24



Ranking/Unranking Permutations
● Ranking involves mixed-radix numbers 
● Every digit is a different base 
● Time: 7241260 (7 hours; 12 min) 
● Currency: 15∞39100 ($15.39)
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Conversion to Mixed Radix
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Conversion to Mixed Radix

04 3 2 20 0 1



Conversion to Mixed Radix

04 3 2 10 0 0
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Full Ranking Process

24 13 12 02
2·3! + 1·2!
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Full Ranking Process

24 13 12 02
2·3! + 1·2! + 1·1!



Full Ranking Process

24 13 12 01
2·3! + 1·2! + 1·1! = 15



Pseudo-code
uint64_t rank(int *pieces, int count) 
{ 
 uint64_t hashVal = 0; 
 int numEntriesLeft = count; 
  
 for (unsigned int x = 0; x < count; x++) 
 { 
  hashVal += pieces[x]*Factorial(numEntriesLeft-1); 
  numEntriesLeft--; 
   
  // decrement locations of remaining items 
  for (unsigned y = x; y < count; y++) 
  { 
   if (pieces[y] > pieces[x]) 
    pieces[y]--; 
  } 
 } 
 return hashVal; 
}
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Unranking to Mixed Radix

?4 13 12 02
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24 13 23 03
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Unranking to Mixed Radix

24 14 34 04



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 
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  { 
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void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Detour: Randomize Deck



Detour: Randomize Deck



Detour: Randomize Deck



Detour: Randomize Deck



Myrvold & Ruskey

Rank: 4



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1
Next rank: 4/3 = 1



Myrvold & Ruskey

Rank: 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1
Next rank: 1/2 = 0



Myrvold & Ruskey

Rank: 0 Next card: 0%1 = 0



Myrvold & Ruskey

Rank: 0 Next card: 0%1 = 0



void unrank(uint64_t rank, int *pieces, int count) 
{ 
 size_t last = 0; 
  
 for (int i = count; i > 0; i--) 
 { 
  swap(pieces[rank%i], pieces[i-1]); 
  rank = rank/i; 
 } 
}

Pseudo-code



void unrank(uint64_t rank, int *pieces, int count) 
{ 
 size_t last = 0; 
  
 for (int i = count; i > 0; i--) 
 { 
  swap(pieces[rank%i], pieces[i-1]); 
  rank = rank/i; 
 } 
}

Pseudo-code



Sliding Tile Puzzle (k-permutation) 



Sliding Tile Puzzle (k-permutation) 



Sliding Tile Puzzle (k-permutation) 



Software
● http://www.movingai.com/GDC16/ 
● Find software to compute: 
● Permutations, k-permutations 

●Both lexicographical and MR 
● Combinations 
● Rankings & Unrankings for all approaches

http://www.movingai.com/GDC16/


For more information
● Combinatorics A Guided Tour                                                      

v                           David Mazur 

● http://www.movingai.com/GDC16/

http://www.movingai.com/GDC16/

