
Iterating and Indexing 
Design Space Permutations  
 
Nathan Sturtevant 
University of Denver 
@nathansttt



Combinations and Permutations

Many design problems can be 
modeled as combinations 

and permutations.



Combinations and Permutations

These can often be solved by 
pre-computing data about 

the problem.



Combinations and Permutations

A perfect hash function 
allows an efficient hash 

table.



Combinations and Permutations

Perfect hash functions for 
combinations and 

permutations



Structure
● Combinations and Permutations 
● Example Problems 
● How to Count 
● Ranking 
● Unranking 
● Application



Combinations



Combination: Selecting hands



Combination: Selecting hands



Combination: Selecting hands



Combination: Selecting Puzzles

● Puzzle game with pieces on the board 
● Want to select interesting puzzles







Combination: Selecting Puzzles

● Puzzle game with pieces on the board 
● Want to select interesting puzzles 
● Solvable puzzles 
● Puzzles with one solution 
● Puzzles where every move leads to a solution



Combination: Placing Pieces



Combination: Placing Pieces



Combination: Placing Pieces



Combination: Counting



Combination: Counting



Combination: Counting

20



Combination: Counting

20



Combination: Counting

20·19



Combination: Counting

20·19



Combination: Counting

20·19·18



Combination: Counting

20·19·18



Combination: Counting

20·19·18·17



Combination: Counting

20·19·18·17



Combination: Counting

20·19·18·17



Combination: Counting

20·19·18·17
4



Combination: Counting

20·19·18·17
4·3



Combination: Counting

20·19·18·17
4·3·2



Combination: Counting

20·19·18·17
4·3·2·1



Combination: Counting

20·19·18·17
4·3·2·1

20!



Combination: Counting

20·19·18·17
4·3·2·1

20!



Combination: Counting

20·19·18·17
4·3·2·1

20!
16!



Combination: Counting

20·19·18·17
4·3·2·1

20!
16! 4!



Combination: Counting

20·19·18·17
4·3·2·1

20!
16! 4!
✓
20

4

◆



Definition
● Ranking: A function that takes a 

combination and returns an integer 
between 0…N-1 (where there are N 
possible combinations).



Combination: Ranking



Combination: Ranking

Location 0



Combination: Ranking

Location 0

Location 19



Combination: Ranking

Rank: 0



Combination: Ranking

Rank: 4844
✓
20

4

◆
� 1



Combination: Ranking

Rank: 0



Combination: Ranking

Rank: 1



Combination: Ranking

Rank: 2



Combination: Ranking

Rank: 3



Combination: Ranking

Rank: 3



Combination: Ranking

Rank: 16



Combination: Ranking

Rank: ?



Combination: Ranking

Rank: ?



Combination: Ranking

Rank: ?



Combination: Ranking

Rank: ?



Combination: Ranking

Rank: ?

✓
19

3

◆



Combination: Ranking

Rank: ?



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?

19!



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?

19!



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?

19!
16!



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?

19!
16! 3!



Combination: Ranking

Rank: ?

How many 
possible boards 

with a piece 
here?

19!
16! 3!

= 969



Combination: Ranking

Rank: 969

How many 
possible boards 

with a piece 
here?

19!
16! 3!

= 969



Combination: Ranking

Rank: 969

How many 
possible boards 

with a piece 
here?

19!
16! 3!

= 969



Combination: Ranking

How many 
possible boards 

with a piece 
here?

19!
16! 3!

= 969

Rank: 970



Combination: Ranking

How many 
possible boards 

with a piece 
here?

19!
16! 3!

= 969

Rank: 970



Combination: Ranking

Rank: 969+?



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?

17!



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?

17!



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?

17!
15!



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?

17!
15! 2!



Combination: Ranking

Rank: 969+?

How many 
possible boards 

with a piece 
here?

17!
15! 2!

= 136



Combination: Ranking

Rank: 969+136

How many 
possible boards 

with a piece 
here?

17!
15! 2!

= 136



Combination: Ranking

How many 
possible boards 

with a piece 
here?

17!
15! 2!

= 136

Rank: 1105



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.



Combination: General Approach

Sum the 
number of ranks 

that were 
skipped for each 

of the spaces 
between pieces.



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Ranking Combinations (Recursive)

Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Ranking Combinations (Recursive)

Running time: Linear in # of pieces
Running time: Linear in board size

uint64_t rank(int *pieces, int count, int spaces, int offset) 
{ 
 if (count == 0) 

return 0; 
 if (pieces[0]-offset == 0) // piece in first possible loc? 

return rank(&pieces[1], count-1, spaces-1, offset+1); 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 return skipped+rank(pieces, count, spaces-1, offset+1); 
}



Definition
● Unranking: A function that takes an 

integer between 0…N-1 and returns the 
associated combination.



Combination: Ranking

Rank: 0



Combination: Ranking

Rank: 969



Combination: Unrank 803

Rank: 803



Combination: Unrank 803

Rank: 803

Ranks start at 0



Combination: Unrank 803

Rank: 803

Ranks start at 0
Ranks 
start at 

969✓
19

3

◆



Combination: Unrank 803

Rank: 803

Ranks start at 0
Ranks 
start at 

969✓
19

3

◆



Combination: Unrank 803

Rank: 803

Ranks start at 0
Ranks 
start at 

153✓
18

2

◆



Combination: Unrank 803

Rank: 803

Ranks start at 0
Ranks 
start at 

153✓
18

2

◆-153



Combination: Unrank 803

Rank: 650

Ranks start at 0
Ranks 
start at 

153



Combination: Unrank 803

Rank: 650

Ranks start at 0
Ranks 
start at 

136



Combination: Unrank 803

Rank: 514

Ranks start at 0
Ranks 
start at 

136



Combination: Unrank 803

Rank: 514

Ranks start at 0
Ranks 
start at 

120



Combination: Unrank 803

Rank: 394

Ranks start at 0
Ranks 
start at 

120



Combination: Unrank 803

Rank: 394

Ranks start at 0
Ranks 
start at 

105



Combination: Unrank 803

Rank: 289

Ranks start at 0
Ranks 
start at 

105



Combination: Unrank 803

Rank: 289

Ranks start at 0
Ranks 
start at 

91



Combination: Unrank 803

Rank: 198

Ranks start at 0
Ranks 
start at 

91



Combination: Unrank 803

Rank: 198

Ranks start at 0
Ranks 
start at 

78



Combination: Unrank 803

Rank: 120

Ranks start at 0
Ranks 
start at 

78



Combination: Unrank 803

Rank: 120

Ranks start at 0
Ranks 
start at 

66



Combination: Unrank 803

Rank: 54

Ranks start at 0
Ranks 
start at 

66



Combination: Unrank 803

Rank: 54

Ranks start at 0
Ranks 
start at 

55



Combination: Unrank 803

Rank: 54

Ranks start at 0
Ranks 
start at 

55



Combination: Unrank 803

Rank: 54

Ranks start at 0
Ranks 
start at 

10



Combination: Unrank 803

Rank: 44

Ranks start at 0
Ranks 
start at 

10



Combination: Unrank 803

Rank: 44

Ranks start at 0
Ranks 
start at 

9



Combination: Unrank 803

Rank: 35

Ranks start at 0
Ranks 
start at 

9



Combination: Unrank 803

Rank: 35

Ranks start at 0

Ranks 
start at 

8



Combination: Unrank 803

Rank: 27

Ranks start at 0

Ranks 
start at 

8



Combination: Unrank 803

Rank: 27

Ranks start at 0

Ranks 
start at 

7



Combination: Unrank 803

Rank: 20

Ranks start at 0

Ranks 
start at 

7



Combination: Unrank 803

Rank: 20

Ranks start at 0

Ranks 
start at 

6



Combination: Unrank 803

Rank: 14

Ranks start at 0

Ranks 
start at 

6



Combination: Unrank 803

Rank: 14

Ranks start at 0

Ranks 
start at 

5



Combination: Unrank 803

Rank: 9

Ranks start at 0

Ranks 
start at 

5



Combination: Unrank 803

Rank: 9

Ranks start at 0

Ranks 
start at 

4



Combination: Unrank 803

Rank: 5

Ranks start at 0

Ranks 
start at 

4



Combination: Unrank 803

Rank: 5

Ranks start at 0

Ranks 
start at 

3



Combination: Unrank 803

Rank: 2

Ranks start at 0

Ranks 
start at 

3



Combination: Unrank 803

Rank: 2

Ranks start at 0

Ranks 
start at 

2



Combination: Unrank 803

Rank: 0

Ranks start at 0

Ranks 
start at 

2



Combination: Unrank 803

Rank: 0

Ranks start at 0

Ranks 
start at 

1



Combination: Unrank 803

Rank: 0

Ranks start at 0

Ranks 
start at 

1



Combination: Unrank 803

Rank: 0

Ranks start at 0

Ranks 
start at 

1



Combination: Unrank 803

Rank: 803



Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 



Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 



Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 



Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 



Unranking function
void unrank(uint64_t rank, int *pieces, int count, int spaces, int total) 
{ 
 if (count == 0) 

return; 
 uint64_t skipped = nchoosek(spaces-1, count-1); 
 if (rank >= skipped) 

unrank(rank-skipped, pieces, count, spaces-1, total); 
 else { 

pieces[0] = total-spaces; 
unrank(rank, &pieces[1], count-1, spaces-1, total); 

 } 
} 







Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (solvable)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = false; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) == kSolvable) 

solvable = true; 
b.UndoMove(m); 
if (solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = true; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) != kSolvable) 

solvable = false; 
b.UndoMove(m); 
if (!solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = true; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) != kSolvable) 

solvable = false; 
b.UndoMove(m); 
if (!solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = true; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) != kSolvable) 

solvable = false; 
b.UndoMove(m); 
if (!solvable) break; 

} 
Store(i, solvable);



Retrograde Analysis (all moves)
For i = 0…# states-1 

b = unrank(i) 
bool solvable = true; 
for (int each move m on board b) 
{ 

b.ApplyMove(m); 
if (Lookup(rank(b)) != kSolvable) 

solvable = false; 
b.UndoMove(m); 
if (!solvable) break; 

} 
Store(i, solvable);



Multi-Sets
(combinations allowing duplicates)



Multi-Set Example
● Build an AI for a card game (duplicate) 
● Pre-compute value of a set of cards 
● At runtime, compute and lookup the index of 

our current cards.



Permutations



Permutations: What decks?



Permutations: What decks?



Permutations



Permutations



Cogs (2009)



Cogs (2009)



Counting Permutations

20 1 3



Counting Permutations

20 1 3
4



Counting Permutations

20 1 3
4 3



Counting Permutations

20 1 3
4 3 2



Counting Permutations

20 1 3
4 3 2 1



Counting Permutations

20 1 3
4 3 2 1 4! = 24



Ranking/Unranking Permutations
● Ranking involves mixed-radix numbers 
● Every digit is a different base 
● Time: 7241260 (7 hours; 12 min) 
● Currency: 15∞39100 ($15.39)



Conversion to Mixed Radix

20 1 34 4 4 4



Conversion to Mixed Radix

20 1 34 4 4 4



Conversion to Mixed Radix

20 1 34 3 3 3



Conversion to Mixed Radix

04 3 3 310 2



Conversion to Mixed Radix

04 3 3 310 2



Conversion to Mixed Radix

04 3 3 310 2



Conversion to Mixed Radix

04 3 2 210 2



Conversion to Mixed Radix

04 3 2 20 0 1



Conversion to Mixed Radix

04 3 2 10 0 0



Full Ranking Process

24 14 34 04



Full Ranking Process

24 14 34 04
3!



Full Ranking Process

24 14 34 04
2·3!



Full Ranking Process

24 13 23 03
2·3!



Full Ranking Process

24 13 23 03
2!

2·3!



Full Ranking Process

24 13 23 03
2·3! + 1·2!



Full Ranking Process

24 13 12 02
2·3! + 1·2!



Full Ranking Process

24 13 12 02
2·3! + 1·2!

1!



Full Ranking Process

24 13 12 02
2·3! + 1·2! + 1·1!



Full Ranking Process

24 13 12 01
2·3! + 1·2! + 1·1! = 15



Pseudo-code
uint64_t rank(int *pieces, int count) 
{ 
 uint64_t hashVal = 0; 
 int numEntriesLeft = count; 
  
 for (unsigned int x = 0; x < count; x++) 
 { 
  hashVal += pieces[x]*Factorial(numEntriesLeft-1); 
  numEntriesLeft--; 
   
  // decrement locations of remaining items 
  for (unsigned y = x; y < count; y++) 
  { 
   if (pieces[y] > pieces[x]) 
    pieces[y]--; 
  } 
 } 
 return hashVal; 
}



Pseudo-code
uint64_t rank(int *pieces, int count) 
{ 
 uint64_t hashVal = 0; 
 int numEntriesLeft = count; 
  
 for (unsigned int x = 0; x < count; x++) 
 { 
  hashVal += pieces[x]*Factorial(numEntriesLeft-1); 
  numEntriesLeft--; 
   
  // decrement locations of remaining items 
  for (unsigned y = x; y < count; y++) 
  { 
   if (pieces[y] > pieces[x]) 
    pieces[y]--; 
  } 
 } 
 return hashVal; 
}



Pseudo-code
uint64_t rank(int *pieces, int count) 
{ 
 uint64_t hashVal = 0; 
 int numEntriesLeft = count; 
  
 for (unsigned int x = 0; x < count; x++) 
 { 
  hashVal += pieces[x]*Factorial(numEntriesLeft-1); 
  numEntriesLeft--; 
   
  // decrement locations of remaining items 
  for (unsigned y = x; y < count; y++) 
  { 
   if (pieces[y] > pieces[x]) 
    pieces[y]--; 
  } 
 } 
 return hashVal; 
}



Pseudo-code
uint64_t rank(int *pieces, int count) 
{ 
 uint64_t hashVal = 0; 
 int numEntriesLeft = count; 
  
 for (unsigned int x = 0; x < count; x++) 
 { 
  hashVal += pieces[x]*Factorial(numEntriesLeft-1); 
  numEntriesLeft--; 
   
  // decrement locations of remaining items 
  for (unsigned y = x; y < count; y++) 
  { 
   if (pieces[y] > pieces[x]) 
    pieces[y]--; 
  } 
 } 
 return hashVal; 
}



Unranking to Mixed Radix

?4 ?3 ?2 ?1
Rank = 15



Unranking to Mixed Radix

?4 ?3 ?2 ?1
Rank = 15



Unranking to Mixed Radix

?4 ?3 ?2 ?1
Rank = 15

15%1 = 0



Unranking to Mixed Radix

?4 ?3 ?2 01
Rank = 15

15%1 = 0



Unranking to Mixed Radix

?4 ?3 ?2 01
Rank = 15

15%1 = 0
Next Rank: 15/1 = 15



Unranking to Mixed Radix

?4 ?3 ?2 01
Rank = 15



Unranking to Mixed Radix

?4 ?3 ?2 01
Rank = 15

15%2 = 1



Unranking to Mixed Radix

?4 ?3 12 01
Rank = 15

15%2 = 1



Unranking to Mixed Radix

?4 ?3 12 01
Rank = 15

15%2 = 1
Next Rank: 15/2 = 7



Unranking to Mixed Radix

?4 ?3 12 01
Rank = 7

15%2 = 1
Next Rank: 15/2 = 7



Unranking to Mixed Radix

?4 ?3 12 02
Rank = 7



Unranking to Mixed Radix

?4 ?3 12 02
Rank = 7



Unranking to Mixed Radix

?4 ?3 12 02
Rank = 7

7%3 = 1



Unranking to Mixed Radix

?4 13 12 02
Rank = 7

7%3 = 1



Unranking to Mixed Radix

?4 13 12 02
Rank = 7

7%3 = 1
Next Rank: 7/3 = 2



Unranking to Mixed Radix

?4 13 12 02
Rank = 2



Unranking to Mixed Radix

?4 13 12 02
Rank = 2



Unranking to Mixed Radix

?4 13 23 03
Rank = 2



Unranking to Mixed Radix

24 13 23 03
Rank = 2



Unranking to Mixed Radix

24 13 23 03
Rank = 2



Unranking to Mixed Radix

24 14 34 04



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Pseudo-code

void unrank(uint64_t hash, int *pieces, int count) 
{ 
 int numEntriesLeft = 1; 
 for (int x = count-1; x >= 0; x--) 
 { 
  pieces[x] = hash%numEntriesLeft; 
  hash /= numEntriesLeft; 
  numEntriesLeft++; 
  for (int y = x+1; y < count; y++) 
  { 
   if (pieces[y] >= pieces[x]) 
    pieces[y]++; 
  } 
 } 
} 



Detour: Randomize Deck



Detour: Randomize Deck



Detour: Randomize Deck



Detour: Randomize Deck



Myrvold & Ruskey

Rank: 4



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1



Myrvold & Ruskey

Rank: 4 Next card: 4%3 = 1
Next rank: 4/3 = 1



Myrvold & Ruskey

Rank: 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1



Myrvold & Ruskey

Rank: 1 Next card: 1%2 = 1
Next rank: 1/2 = 0



Myrvold & Ruskey

Rank: 0 Next card: 0%1 = 0



Myrvold & Ruskey

Rank: 0 Next card: 0%1 = 0



void unrank(uint64_t rank, int *pieces, int count) 
{ 
 size_t last = 0; 
  
 for (int i = count; i > 0; i--) 
 { 
  swap(pieces[rank%i], pieces[i-1]); 
  rank = rank/i; 
 } 
}

Pseudo-code



void unrank(uint64_t rank, int *pieces, int count) 
{ 
 size_t last = 0; 
  
 for (int i = count; i > 0; i--) 
 { 
  swap(pieces[rank%i], pieces[i-1]); 
  rank = rank/i; 
 } 
}

Pseudo-code



Sliding Tile Puzzle (k-permutation) 



Sliding Tile Puzzle (k-permutation) 



Sliding Tile Puzzle (k-permutation) 



Software
● http://www.movingai.com/GDC16/ 
● Find software to compute: 
● Permutations, k-permutations 

●Both lexicographical and MR 
● Combinations 
● Rankings & Unrankings for all approaches

http://www.movingai.com/GDC16/


For more information
● Combinatorics A Guided Tour                                                      

v                           David Mazur 

● http://www.movingai.com/GDC16/

http://www.movingai.com/GDC16/

