VRDC

Panel: Lessons from IEEE Virtual Reality

Doug Bowman, PhD Professor. Virginia Tech, USA Anthony Steed, PhD Professor. University College London, UK Evan Suma, PhD Research Assistant Professor. University of Southern California Pablo Figueroa, PhD Associate Professor. Universidad de los Andes, Colombia

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

What is IEEE VR?

- •Most prestigious VR academic conference
- •A community interested in systems, applications, devices, interaction techniques, human factors, and other VR related topics
- •It gave birth to ISMAR, SUI, 3DUI, SEARIS, ...

Rationale

- •Establish a dialog
 - •We'll have a similar panel at IEEE VR'16
- •Show interesting research ideas
- Listen research needs
- •Foster an IEEE VR GDC Community

Examples

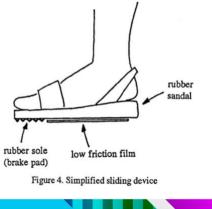

Virtual perambulator: a novel interface device for locomotion in virtual environment. VRAIS 1996 http://dx.doi.org.ezproxy.uniandes.edu.co:8080/10.1109/VRAIS.1996.490511

Figure 3. Hoop frame

display case item

Contributors: Mark Bolas, J. Logan Olson, David M. Krum, Evan A. Suma Sponsor: Institute for Creative Technologies, Army Research Lab

Community

 Mixed Reality Research and Development Group

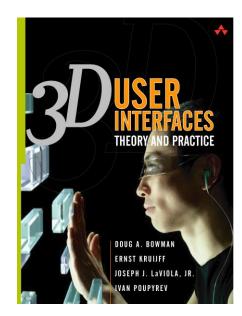
- mirriad@googlegroups.com
- Search for mirriad at google groups!

Highlights

- Interaction Techniques
- •Self Representation, Latency
- Locomotion, Redirected Walking
- Software Architectures for VR
- More Ideas
- •Final Remarks

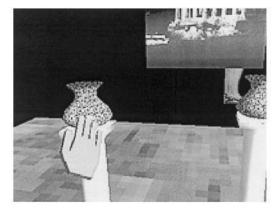
VRDC

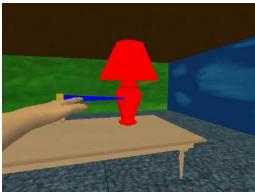
Doug Bowman Professor


Virginia Tech, USA

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

UBM


Universal 3D interaction tasks


- Selection
- Manipulation
- Navigation
- •System control

3D selection

- •Pick one or more objects from a set
- •Real-world metaphors:
 - Touching/grasping
 - Pointing
- •"Natural" techniques:
 - •Simple virtual hand
 - •Ray-casting

3D selection: hard cases

Technique	Distant targets	Small targets	Targets in cluttered regions	Moving targets
Simple virtual hand	×	✓/×	✓ / X	✔ / X
Ray-casting	~	×	×	×

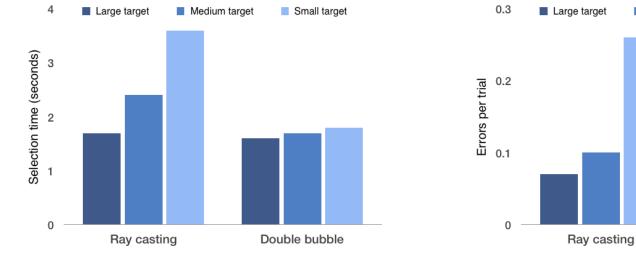


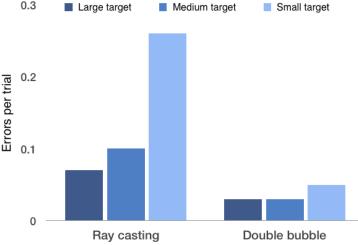
3D selection: failures of naturalism

- •Technology: tracking jitter, precision, latency
- •Human: hand jitter
- •Environment: distance, occlusion
- Natural techniques only semi-naturalEven fully natural techniques not optimal

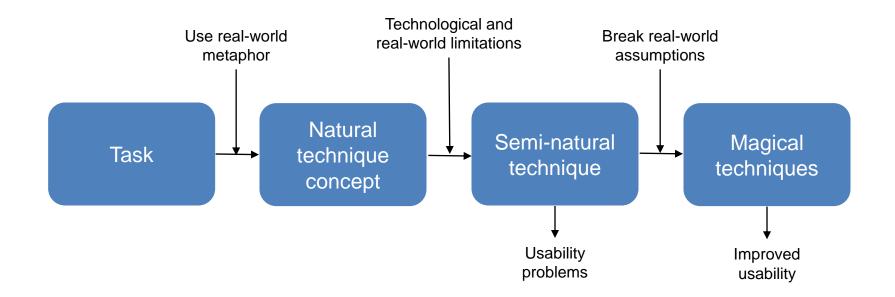
3D selection: Double Bubble

- •Extend ray-casting
- •Dynamic volume cursor
- •Progressive refinement



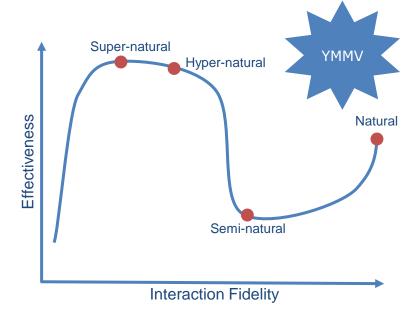

3D selection: hard cases

Technique	Distant targets	Small targets	Targets in cluttered regions	Moving targets
Simple virtual hand	×	✓ / X	✓/×	✔/X
Ray-casting	~	×	×	×
Double Bubble	~	~	~	~



3D selection: findings

Innovation in 3D interaction



Task	Natural metaphor	Semi-natural techniques	Usability issues	Magical techniques
Selection	Touching, pointing	Simple virtual hand, ray-casting	Small, distant, moving objects in cluttered envs.	Double Bubble, Hook, SQUAD, Aperture
Manipulation	Grasp and move	Simple virtual hand	Manipulation at a distance, precision	Go-Go, PRISM, Scaled HOMER
Navigation	Walking	Walking-in-place, treadmills	Unnatural force feedback, lack of inertial cues, large environments	Teleportation, grabbing the air, WIM
System control	GUI menus	Floating 3D menus	Occlusion, lack of surface constraints, menu placement	Pen-and-tablet menus, rapMenu

3D interaction: final thoughts

- •Naturalism vs. magic
 - •Hyper-natural
 - •Super-natural
- Precision interaction with imprecise tools
 - Progressive refinement
 - •Dynamic C/D gain
 - Virtual friction

VRDC

Anthony Steed Professor

University College London, UK

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

Main Thoughts

• From a user-interface point of view, what is disruptive about virtual reality?

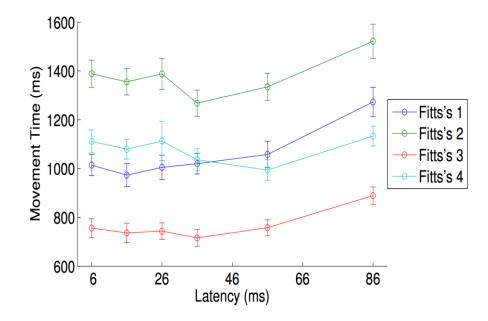
"perceptual illusion of nonmediation" (Lombard and Ditton)

• You are the agent acting, not primarily moderated by devices you need to learn to use.

Non-Mediation

- You (your senses in your body) are immersed
- What ever you do changes multiple sensory stimuli in predictable ways that you understand implicitly from "prior to VR" experiences
- Two implications among many:
 - How your movements are reproduced is critical
 - What you see is important for sensorimotor-match

Latency


- Reducing latency is not just important to combat sickness, but because latency is critical for performance of actions
- Latency of 18ms is sometimes claimed to be hard to perceive, but it can still affect performance
- If you are optimizing 3D interaction you must profile latency or your results may not transfer

Fitts' Law

- Models human movement on simple pointing tasks
- 100s of academic papers (pick any movement device you like)
- Most VR results from 1990s, 2000s, dealt with latency 30ms-200ms

Friston, Karlström, Steed, 2015

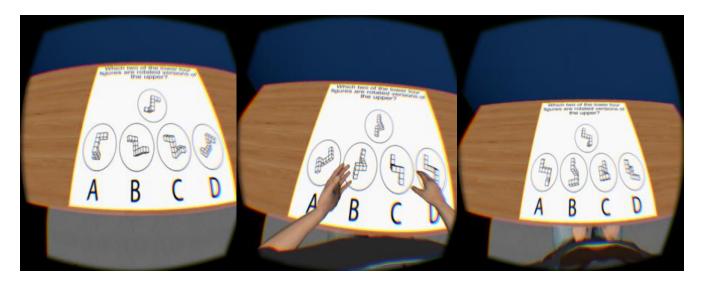
- "Performance" peaks around 30ms
- Lower than 30ms is more "natural" but slower (on this task)
- Hypothesis is that the motor system has "latencies"

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

Impact of the Virtual Body

- Many studies of the impact of an avatar
- Vital for social interaction
- Also vital for presence (for some people)

Pit demo at QMUL, circa 1993



Steed, et al., "An 'In the Wild' Experiment ... ", IEEE VR 2016

Gesture and the Body

- Gesture is needed to explain to others
- Some people gesture constantly
- Researchers in linguistics have studied impact of gesture on ability to explain difficult concepts

Steed, Pan, Zisch, Steptoe, IEEE VR2016

No avatar, full avatar, avatar no movement

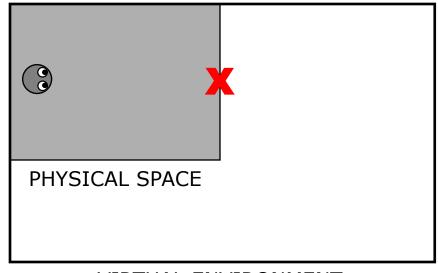
Impact of Avatar

- Having an avatar significantly improved ability to perform an object memory task
- People who had an avatar gestured a lot more than people without an avatar

Summary

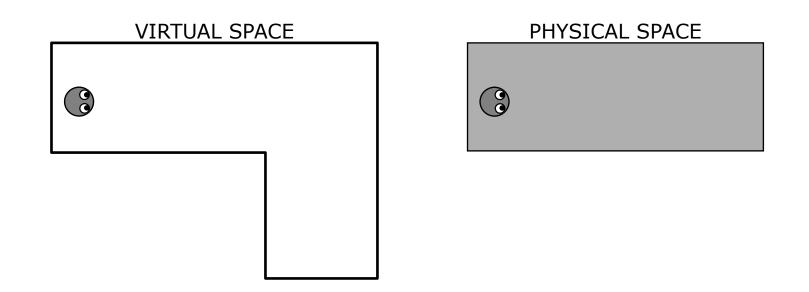
- Latency is critical. Lower latency tends towards more "natural" interfaces, but these might not be the most efficient interfaces in all situations
- Virtual body is very important to some users
- "Virtual reality" research can be found in a huge range of disciplines because impact and requirements are so broad
- A very diverse research community makes for exciting and interesting research collaborations

VRDC

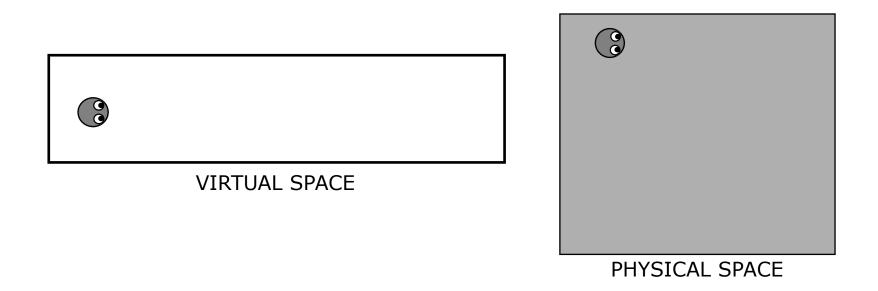

Evan Suma Research Assistant Professor

Institute of Creative Technologies (USC), USA

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16



Walking in Virtual Reality


VIRTUAL ENVIRONMENT

Redirected Walking (Rotation)

[Razzaque, Kohn, and Whitton, 2001]

Redirected Walking (Curvature)

[Razzaque, Kohn, and Whitton, 2001]

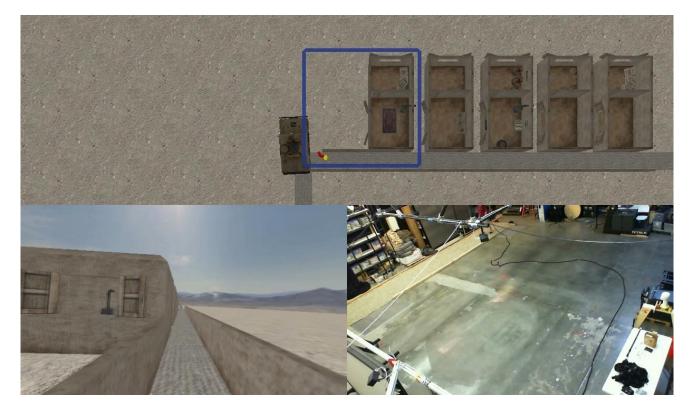
Redirected Walking (Translation)

PHYSICAL SPACE

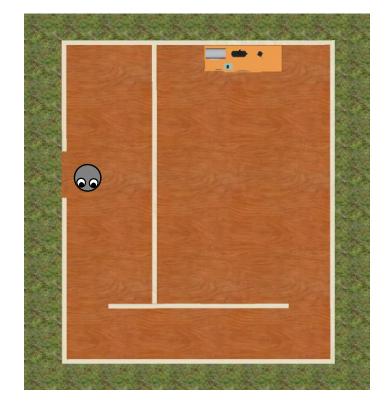
VIRTUAL SPACE

Why does redirection work?

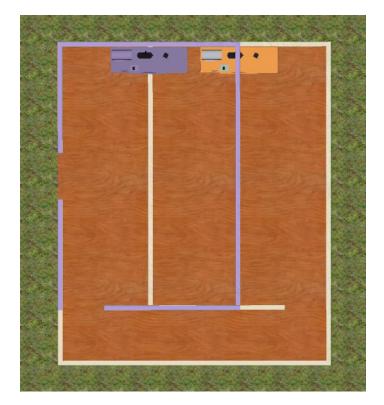
Vision dominates vestibular sensation. (within perceptual limits)


Rotation Gains 49% amplification

20% dampening


Curvature Gains arc radius >= 20 meters **Translation Gains** 26% upscale

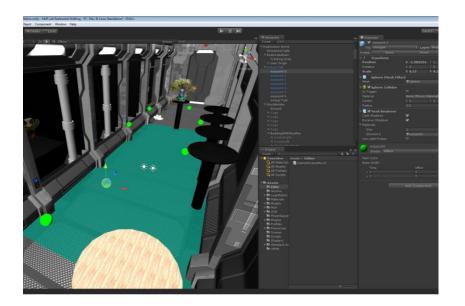
14% downscale


[Steinicke, Bruder, Jerald, Frenz, and Lappe, 2010]

Change Blindness Redirection [Suma, Clark, Finkelstein, Wartell, Krum, and Bolas, 2011]

Impossible Spaces [Suma, Lipps, Finkelstein, Krum, and Bolas, 2012]

Impossible Spaces [Suma, Lipps, Finkelstein, Krum, and Bolas, 2012]


Flexible Spaces [Vasylevska, Kaufmann, Bolas, and Suma, 2013]

Summary

- In VR, laws of physics are changeable
- Human perception is malleable
- We can leverage this to improve usability
- We can create surreal, magical experiences

Redirected Walking Toolkit

- Plug-and-play toolkit for Unity
- Supports Rift, Vive, and custom VR setups
- Open-source (BSD license)
- Free for commercial use

http://projects.ict.usc.edu/mxr/rdwt

VRDC

Pablo Figueroa Associate Professor

Universidad de los Andes, Colombia

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

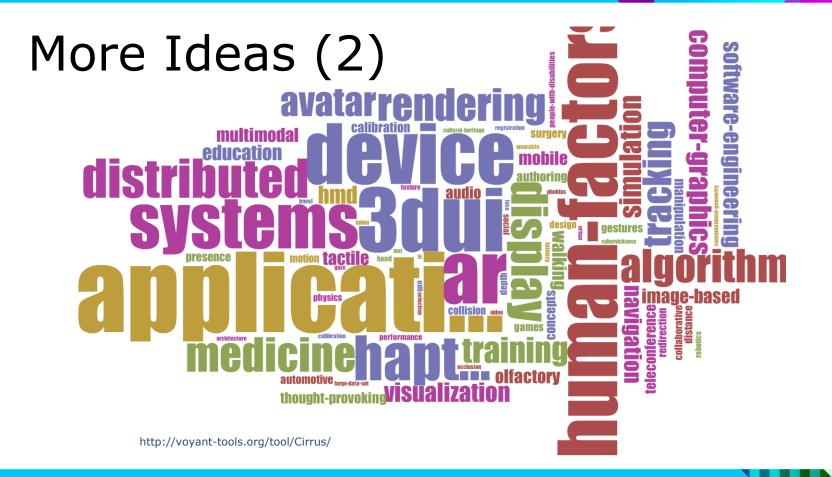
Software Architectures

•Software Engineering and Architectures for Realtime Interactive Systems

- •How can we build better MR?
- •How we report findings in this area?

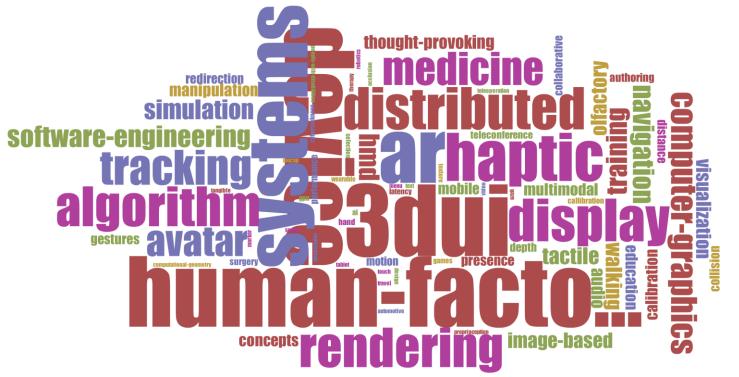
Software Architectures

- Architectures: Dataflows, Layered, VMs
- Programming languages: Scala, Haskell,
 Python, ...
- •Videogames in different VR setups: CAVEs, Table Tops, AR, under water (mobile)
- •Capabilities: Multimodality, AI, haptics, ...


More Ideas

⊞	List of Papers IEEE VR 🛛 ☆ 🖿													
	File	Edit View	Insert Forma	at Data	Tools Ad	dd-ons	Help	All change	es saved in	Drive				
	÷		0_ 123 -	Arial	-	10 -	BZ	5 A -	≽₀ - ⊞ -		≣ ∗ ⊥ ∗ + ∗	G		
f_x														
	Α	A B			С									
1	Year	Keywords	Data											
3974	2008			1										
3975		display,FOV		Providing	a Wide Fie	ld of Vie	ew for Effe	ctive Intera	action in De	esktop Tangible	Augmen	ted Reality		
3976					Seokhee Jeon ; Kim, G.J.									
3977					Publication Year: 2008, Page(s):3 - 10									
3978				Cited by: Papers (6)Multimedia										
3979				Abstract	PDF (152	47 KB)								
3980														
3981														
3982	AR,image-based,rendering			Capturing Images with Sparse Informational Pixels using Projected 3D Tags										
3983				Li Zhang	; Subraman	iam, N.	; Lin, R. ; I	Raskar, R	. ; Nayar, S	i.				
3984					n Year: 200		. ,	3						
3985					Papers (2)									
3986				Abstract	PDF (268	7 KB)	HTML							
3987														

https://docs.google.com/spreadsheets/d/1fGHRGQ1Rf8dl7h0a6-UXhAMaJb9qQhxmCpUxnzsCymg/edit?usp=sharing


VRDC VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

VIRTUAL REALITY DEVELOPERS CONFERENCE March 14–15, 2016 · Expo: March 16–18, 2016 #VRDC16

VRC

More Ideas (3): applications

Community

- Welcome to mirriad (Mixed Reality Research and Development) group
- Post a trailer, overview, or contribution of your MR experience
- Post questions or issues that you would like researchers to address
- mirriad@googlegroups.com

Thanks!

Questions?

Figure 3. Hoop frame

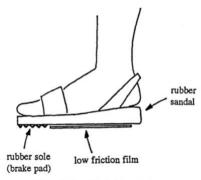


Figure 4. Simplified sliding device

mirriad@googlegroups.com