
Hello, I’m Margaret Moser. I'm going to talk about my experiences teaching design students to code.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Here’s what I’ll talk about – first I’ll talk about my goals. Then we’ll look at some research. Then I’ll show some
specific tools I think are helpful for beginning programmers, and discuss why.

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

There was this controversy, from a couple of years ago. Do designers need to code? It’s an important question.

GDC 2016 – Teaching Designers to Code – Margaret Moser

But that’s not really my motivation. For me, it’s personal.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So this was the introductory CS curriculum when I started college. Where I have “handout”, I mean that they
literally gave us a paper handout. Sometimes they also went over it briefly in class.

They gave us powerful tools though!

GDC 2016 – Teaching Designers to Code – Margaret Moser

Computers hewn from

GDC 2016 – Teaching Designers to Code – Margaret Moser

the latest stone

GDC 2016 – Teaching Designers to Code – Margaret Moser

And emacs. Emacs had autocomplete… if you typed a bracket or paren it would provide the other one!

This screen shot shows menus, but we didn’t have menus. So to use it, you had to know a lot of arcane key
combinations – like even to save a file. I mean buffer.

I did okay learning the Unix command line and emacs and I even enjoyed functional programming. But then

GDC 2016 – Teaching Designers to Code – Margaret Moser

We got to data structures and algorithms in C++, and I couldn’t seem to keep up. Nobody thought that class was
easy, but somehow they were getting traction and I wasn’t. I didn’t get it – I got the highest score in AP Computer
Science; the only prerequisite was the Scheme class where I’d gotten an A.

GDC 2016 – Teaching Designers to Code – Margaret Moser

I remember working very late nights and spending a lot of time trying to decipher compiler error messages. I
talked to the TA, who was a CS grad student. I would come in with code that was seriously broken, and he would
say things like “this loop is inefficient.”

I was so frustrated by this experience that I ended up bailing

GDC 2016 – Teaching Designers to Code – Margaret Moser

and becoming a German

GDC 2016 – Teaching Designers to Code – Margaret Moser

major

GDC 2016 – Teaching Designers to Code – Margaret Moser

But I still wanted to make stuff, and there was this new thing called the Web. I taught myself a bit of JavaScript.

In my first job (as a tech writer) I got a chance to make web-based training. I kept going as a web developer, and I
kept teaching myself.

GDC 2016 – Teaching Designers to Code – Margaret Moser

I learned from coworkers’ code. I picked up some Java. I learned about encapsulation and design patterns. I spent
more time with the Java Date object than with search algorithms, but I could reliably solve problems and write
clean, modular, readable code. Eventually I had a business card like this.

But by then I wanted to make my own stuff. In particular I got interested in making games.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So I paused and got an MFA (and taught myself Unity). Then I worked at various small companies. And then

GDC 2016 – Teaching Designers to Code – Margaret Moser

miraculously I got a teaching job at one of the top programs. NOW I COULD

GDC 2016 – Teaching Designers to Code – Margaret Moser

RIGHT THE WRONGS111!!!

GDC 2016 – Teaching Designers to Code – Margaret Moser

But what was the job actually?

USC Games is actually four degrees (and a few minors) in two different schools. Our engineering school offers
degrees in computer science with a concentration in games.

Interactive Media & Games lives in the film school and focuses on design and production skills. That’s where I
work.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So our philosophy is that the designers in our program should in fact learn to code. And that’s the primary
teaching challenge I came into: teach Unity, including C# scripting, to design students. Just enough so they can
prototype their ideas.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So for them, coding is a means to an end. They don’t need the most powerful toolset or the cleanest code. Those
things will come with time, if they want them. But as Mitu and others have noted here at the Summit, putting all
that stuff in my intro class would just frustrate them.

GDC 2016 – Teaching Designers to Code – Margaret Moser

They come in with a huge range of experience with code, but it’s an intro course and I start at the beginning.

So. I had a solid syllabus from Jeremy Gibson but I didn’t have lesson plans. I looked around; there weren’t really
any direct equivalents of this course. I looked over to Computer Science…

GDC 2016 – Teaching Designers to Code – Margaret Moser

I’m not saying nothing changed, but it wasn’t as different as I would have thought.

But they were solving a very different problem anyway. In a CS class it’s reasonable to assume some amount of
intrinsic motivation to work with code. My students are smart, curious, hardworking people, but they’re not there
specifically to learn how to code. It’s a means to an end. My approach has to reflect that.

So back to the lesson plans. How about resources from Unity?

GDC 2016 – Teaching Designers to Code – Margaret Moser

They had some tutorials. After a while they even had videos. Problem solved…

GDC 2016 – Teaching Designers to Code – Margaret Moser

This is just bad subtitling for gimbal lock, but they are pretty rife with jargon – they seem to have their engine
coders do the tutorials. They’re not useless, but they’re not what I needed either.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So, okay, there’s Processing, which is a good model for what I’m after. I teach a Processing class, which we’ve
recently changed to half Processing and half Unity. I can probably adapt some of that material.

But in order to bring all of these sources together, I needed to look at the big question:

GDC 2016 – Teaching Designers to Code – Margaret Moser

In particular, what do my design students find difficult, versus your average CS major? And then naturally

GDC 2016 – Teaching Designers to Code – Margaret Moser

I refuse to just teach them less. I really want them to be able to express themselves and feel empowered to learn
more when they need it.

And I guess I’m attracted to hard problems.

GDC 2016 – Teaching Designers to Code – Margaret Moser

I’d like to preface this section saying I don’t have any formal education in the pedagogy computer science. If you
do, I would love to talk to you! You’ll see my Twitter handle at the end.

So, when I got this job, I didn’t have much teaching experience, and I started trying to educate myself. The first
thing I needed was a framework for understanding the pedagogical problem. What are we teaching when we teach
people how to program?

GDC 2016 – Teaching Designers to Code – Margaret Moser

And what are we not teaching?

For me it felt like there was something missing in that C++ course, but I couldn’t codify it.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So here’s a breakdown I liked. It’s many years old now, but it’s still cited. I tried to map this list to my experiences
as a student and as a teacher, and it seemed to me that

GDC 2016 – Teaching Designers to Code – Margaret Moser

The classes I took had focused almost exclusively on notation and schemas.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Notation is just syntax – where do you need braces, semicolons, etc. Schemas are various kinds of reusable
patterns that come up in solving problems: search algorithms and collision listeners and factories.

GDC 2016 – Teaching Designers to Code – Margaret Moser

These seemed to describe what was missing from my education.

These might seem fluffy, or like a waste of precious class time. But have you ever encountered a smart, capable
student who nonetheless struggled with CS? It could be that they were missing some of this.

Let’s go through these briefly.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So, starting at the beginning. These are some questions that we might address very briefly in the first class.

GDC 2016 – Teaching Designers to Code – Margaret Moser

What is code? What is it like to write it? I try to convey that the act of coding is difficult because you are basically
constructing a universe from scratch. We are not gods, so we make mistakes. Sometimes I even make them read a
bit of semiotics.

But orientation is also about WHO programs, and why.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Remember, my students don’t think of themselves as programmers. So I spend quite a while explaining my
background to them. I emphasize that I’m a German major, that I’m self-taught. I like using code because it lets
me express my ideas. But there are many reasons that people come to code, and many reasonable stopping
points depending on what you want.

I talk about soft skills and attitudes: fearlessness, patience, laziness (the good kind), plain old stubbornness. And
most of all, asking for help.

GDC 2016 – Teaching Designers to Code – Margaret Moser

The notional machine is your mental model of what the computer is doing – your ability to predict its behavior.

We often use analogies for this: variables are boxes and so on. Or we talk about von Neumann architecture, or
perhaps discuss stacks and heaps and registers. These things are all useful, but

GDC 2016 – Teaching Designers to Code – Margaret Moser

what students need to know is how to work with computers: things like why computers need variables. Yes, this is
implicit in the architecture, but pedagogically it’s like if I said “humans have two elbows, now write Crime and
Punishment”.

Now let’s look at the last item, pragmatics.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Pragmatics is using the tools of programming: IDEs, engines, compilers. If we talk about our tools at all, we tend to
say “this button does this, that button does that”.

GDC 2016 – Teaching Designers to Code – Margaret Moser

And this is where I thought – aha! Here’s a place I can bring in my professional experience.

As a UX designer my argument is that our tools should be better – they should help us to see and understand
what we are doing. I am a disciple of Bret Victor in this way.

One example is dev tools, built into every modern browser. Here it’s showing what’s called the box model, right
next to the object you’re trying to position. Exposing the model like this is extraordinarily helpful for making web
pages. But our tools generally don’t do this.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So I’m focusing on PRAGMATICS, because it’s where I feel I have the most to say.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Remember, I am working from the UX perspective. Our tools for programming, and often our design tools, make it
far too easy to make mistakes.

GDC 2016 – Teaching Designers to Code – Margaret Moser

I want to identify the usability problems that are specific to beginners. How do I determine what’s hard for them?

I needed a language for what’s going on mentally when someone is using Mono and Unity. So I went back to the
library. Here’s one way to do it:

GDC 2016 – Teaching Designers to Code – Margaret Moser

This is a breakdown of cutting and pasting a file in Windows. Did you know there are twelve steps? I didn’t. Once
you learn it you forget it.

So what are some small, atomic tasks in Unity? Let’s say I ask you to add a collider to a game object in Unity. For
me and you, it's like cut and paste.

GDC 2016 – Teaching Designers to Code – Margaret Moser

But – well, when I broke this down I was surprised. I was able to remember some of what it’s like to do this the
first time. But remember, this is only one small step of a larger process

GDC 2016 – Teaching Designers to Code – Margaret Moser

where this is the larger schema. And then each of these has its own set of steps

GDC 2016 – Teaching Designers to Code – Margaret Moser

And they are themselves part of a larger task like “respond to player death”… it goes on, as deep as you like.

So how to help students situate themselves in this process?

GDC 2016 – Teaching Designers to Code – Margaret Moser

It struck me that a lot of those steps started with words like “Recall”. I remember struggling with losing my mental
place a lot when programming, although I didn’t with other subjects. Aha! A hook!

GDC 2016 – Teaching Designers to Code – Margaret Moser

Okay, so particularly with 3D environments like Unity or Maya, you have a huge amount of information on the
screen.

You have to sort out what’s important, remember the location of buttons and so forth while also maintaining your
mental stack of tasks and schemas and so on. It’s a delicate dance of mental focus and it can break down in a
number of ways. Here’s a quick list of five from Claudia Roda.

GDC 2016 – Teaching Designers to Code – Margaret Moser

We usually mean habituation errors when we say we weren’t paying attention.

Task resumption is hard for everyone – you’ve read (and perhaps written) programmer rants about being
interrupted. It can only be harder for beginners.

So these two are less important.

GDC 2016 – Teaching Designers to Code – Margaret Moser

These are frequent sources of problems for beginners. For one, they haven’t yet built the short-term memory
skills. Perhaps more importantly they haven’t yet built up the higher-level chunks that experts use to recognize
problems and maintain a sense of what they are doing.

GDC 2016 – Teaching Designers to Code – Margaret Moser

This includes things like alert dialogs, but for beginners the main source of this is bugs and particularly compiler
errors. You have to shove back your whole stack and fix the bug before you can continue. Perhaps
understandably, beginners often try fixing problems with very small changes, basically hoping to make the
disruption go away. They already feel sidetracked and they feel like they need to keep getting results.

For this reason, debugging is considered the hardest skill to acquire for beginners. Lastly we have

GDC 2016 – Teaching Designers to Code – Margaret Moser

This is particularly tough for beginners. There’s all that stuff on the screen, in both Unity and Mono. So many
buttons and menus! You only learn to prioritize what you’re seeing when you’ve already built up a sense of the
tool and a strong mental model of what you’re doing.

So, how can our tools help with this? I’ll mostly focus on Unity here, with just a brief look at mobile and web tools.

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

So these are anti-patterns. A lot of people have tried to improve the Unity editor. These are great tools, but they do
not particularly help beginners.

GDC 2016 – Teaching Designers to Code – Margaret Moser

These are the four that I’ve found that most directly address the problems beginners have.

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

As mentioned before, debugging happens to be the hardest cognitive task for beginners. The Unity console does
not help.

GDC 2016 – Teaching Designers to Code – Margaret Moser

This is the usual console display. All the information has the same visual weight. You find whatever you’re looking
for by scrolling through. You can’t sort it, search it or export it. It’s absolutely terrible!

GDC 2016 – Teaching Designers to Code – Margaret Moser

Now we have visual guidance with the use of color, and particularly letting you customize what you are looking at
through search and filter.

GDC 2016 – Teaching Designers to Code – Margaret Moser

These features make debugging less painful, less distracting and more effective.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Script Inspector 3 is another great tool. Let’s take a quick look at the problem it’s solving.

GDC 2016 – Teaching Designers to Code – Margaret Moser

So this is the user experience for writing code in the Unity world. [Flip back and forth rapidly between this and the
next slide.] You are constantly flipping back and forth between Mono (or VS) and the Unity editor. Try to keep an
eye on the properties of the rigidbody while I do this. Can you?

It’s hard to keep your focus in one place when you’re constantly retraining your eyes. You get better at it with
practice, but when you’re first using Unity this is really disruptive.

GDC 2016 – Teaching Designers to Code – Margaret Moser

What if you could edit your code in the same visual context as your game objects?

GDC 2016 – Teaching Designers to Code – Margaret Moser

If you can edit your scripts in the same visual environment as your game object, you can maintain your sense of
place and task. You get a much shorter feedback cycle as well, so you can learn the connections between your
coding choices and their effects in the game.

This approach also rewards making small changes and testing them immediately, which experienced
programmers do but beginners pretty consistently do not.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Full Inspector is more for intermediate students. It is tremendously helpful for explaining code structures like
dictionaries and delegates.

GDC 2016 – Teaching Designers to Code – Margaret Moser

It allows you to see the cause and effect of script interactions by letting you define them in a visual editor.

Here, for example, you can specify events that will trigger effects. Letting the student see that multiple events can
trigger the same effect and vice versa gives them a good, concrete hook for understanding the idea of loose
coupling.

GDC 2016 – Teaching Designers to Code – Margaret Moser

You can also see and change statics, which are otherwise pretty abstract and mysterious for beginners.

GDC 2016 – Teaching Designers to Code – Margaret Moser

This lets them see, with their eyes, that statics are not attached to any specific game object or script instance.

GDC 2016 – Teaching Designers to Code – Margaret Moser

More abstract things like generics and interfaces also become much clearer with a concrete, visual editor.

GDC 2016 – Teaching Designers to Code – Margaret Moser

For example, you could create multiple kinds of dictionaries to let the students see how one data structure can
represent relationships between many combinations of types.

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

These are some other tools that I think could be adapted to be useful, or that are helpful but not revolutionary for
beginners.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Let’s take a quick look at how these principles would apply outside the world of Unity.

GDC 2016 – Teaching Designers to Code – Margaret Moser

A couple of primary problems with mobile development are
(1) understanding the development and deployment process with an extra device, store submissions and so on,
and
(2) the gap between working on your code on one device and viewing it on another, where you don’t have all your
tools.

These are tools I think help to keep students oriented to what they’re doing. We’ve already talked about dev tools.

GDC 2016 – Teaching Designers to Code – Margaret Moser

My favorite currently is a tool developed by Intel called XDK. It’s a set of tools for building hybrid mobile apps,
including a reskinning of the Atom editor, integrated cloud builds, and a pretty solid emulator among others.

GDC 2016 – Teaching Designers to Code – Margaret Moser

This is the “develop” view, where you manage files and write code.

GDC 2016 – Teaching Designers to Code – Margaret Moser

The tabs at the top lay out all the steps of mobile development, including the cloud builds there at the end. It’s
pretty much everything but store submission.

XDK is free, and Intel is actively developing it.

GDC 2016 – Teaching Designers to Code – Margaret Moser

Monaca is a commercial service that provides a similar toolset. The main difference is the cloud-based code
editor, allowing real-time collaboration.

I doubt anyone really likes writing code in a web browser, but they’ve done some work to make it less painful.

GDC 2016 – Teaching Designers to Code – Margaret Moser

The tool also provides a live connection to the devices for debugging (via weinre).

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

GDC 2016 – Teaching Designers to Code – Margaret Moser

And we owe it to them to try!

GDC 2016 – Teaching Designers to Code – Margaret Moser

I want to thank the makers of the Unity packages, USC Games and my students for helping me build this
presentation.

GDC 2016 – Teaching Designers to Code – Margaret Moser

And thank you for listening! I look forward to hearing your thoughts in the wrap-up area.

GDC 2016 – Teaching Designers to Code – Margaret Moser

