
The filtered and culled

Visibility Buffer

Wolfgang Engel
CEO Confetti

Demo

Table of contents

● The Visibility Buffer

● Cluster Culling / Triangle Filtering

● Re-using triangle filtered results for
multiple rendering passes

The Visibility Buffer
… or how to improve deferred shading performance

Game Developers Conference Europe. Cologne, Germany. 15 - 16 August 2016

Motivation

● Forward rendering shades all fragments in triangle-
submission order

● Wastes rendering power on pixels that don’t contribute to the final image

● Deferred shading solves this problem in 2 steps:
● First, surface attributes are stored in screen buffers -> G-Buffer

● Second, shading is computed for visible fragments only

● However, deferred shading increases memory
bandwidth consumption:

● Screen buffers for: normal, depth, albedo, material ID,…

● G-Buffer size becomes challenging at high resolutions

High-Level View 2009
G-Buffer (taken from [Engel2009] Killzone 2 layout)

Depth Buffer

Deferred
Lighting

Forward
Rendering

Switch off depth write

Specular /
Motion Vec

Normals
Albedo /
Shadow

Render opaque objects Transparent objects

Sort Back-To-Front

8:8:8:8 8:8:8:8 8:8:8:8 32-bit

High-Level View 2014
G-Buffer – Frostbite Engine [Lagarde]

10:10:10:2

8:8:8:8

8:8:8:8

11:11:10

Depth - R32G8X24_TYPELESS

High-Level View 2014
G-Buffer – Frostbite Engine [Lagarde]

Depth Buffer

Deferred
Lighting

Forward
Rendering

Switch off depth write

BaseColor etc.Normals etc. MetalMask etc.

Render opaque objects Transparent objects

Sort Back-To-Front

10:10:10:2 8:8:8:8 8:8:8:8 32-bit

IBL / GI

11:11:10

High-Level View
Visibility Buffer (similar to [Burns][Schied])

Depth Buffer

Vertex Buffer

Visibility Vertex Buffer holds opaque
and transparent objects

Lighting

Forward
Rendering

Transparent objects

Sort Back-To-Front

Encodes
- 1 bit alpha-mask
- 8-bit drawID
- 23-bit triangleID / primID

8:8:8:8

Visibility Buffer PC 1080p – Memory
Memory Description NoMSAA 2xMSAA 4xMSAA

Visibility Buffer keeps address of each triangle in 32-bit per pixel
4 bytes * 1920 * 1080

7.9 MB 15.8 MB 31.6* MB

Depth Buffer 4 byte * 1920 * 1080 7.9 MB 15.8 MB 31.6* MB

Hierarchical Z 4 byte * 1920 * 1080 * 1/64 0.12 MB - -

Vertex Buffer 28 bytes per vertex + padding
float3 position;
uint normal;
uint tangent;
uint texCoord;
uint materialID;
uint pad; // to align to 128 bits – 32 byte for NVIDIA
Does not increase with resolution.

Textures 21* MB - -

Draw arguments, Uniform, Descriptors etc. 2* MB - -

Overall 38.80* MB 54.60* MB 86.20* MB

* rough estimate; driver might increase it

G-Buffer PC 1080p – Memory
Memory Description NoMSAA 2xMSAA 4xMSAA

Normals 10:10:10:2 - 4 bytes * 1920 * 1080 7.9 MB 15.8* MB 31.6* MB

PBR 8:8:8:8 - 4 bytes * 1920 * 1080 7.9 MB 15.8* MB 31.6* MB

Albedo 8:8:8:8 - 4 bytes * 1920 * 1080 7.9 MB 15.8* MB 31.6* MB

GI / IBL 11:11:10 - 4 bytes * 1920 * 1080 7.9 MB 15.8* MB 31.6* MB

Depth 8:8:8:8 - 4 bytes * 1920 * 1080 7.9 MB 15.8* MB 31.6* MB

Hierarchical Z 4 bytes * 1920 * 1080 * 1/64 0.49 MB - -

Draw arguments. Etc. 2* MB

Overall 41.99* MB 81.49* MB 160.49* MB

* rough estimate; driver might increase it

Visibility Buffer PC 4k – Memory
Memory Description NoMSAA 2xMSAA 4xMSAA

Visibility Buffer keeps address of each triangle in 32-bit per pixel
4 bytes * 3840 * 2160

31.64 MB 63.28* MB 126.56* MB

Depth Buffer 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

Hierarchical Z 4 bytes * 3840 * 2160 * 1/64 0.49 MB - -

Vertex Buffer 28 bytes per vertex + padding
float3 position;
uint normal;
uint tangent;
uint texCoord;
uint materialID;
uint pad; // to align to 128 bits – 32 byte for NVIDIA
Does not increase with resolution.

- -

Textures 21* MB

Draw arguments, Uniform, Descriptors etc. 2* MB

Overall 86.77 MB 150.05 MB 276.61 MB

* rough estimate; driver might increase it

G-Buffer PC 4k – Memory
Memory Description NoMSAA 2xMSAA 4xMSAA

Normals 10:10:10:2 - 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

PBR 8:8:8:8 - 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

Albedo 8:8:8:8 - 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

GI / IBL 11:11:10 - 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

Depth 8:8:8:8 - 4 bytes * 3840 * 2160 31.64 MB 63.28* MB 126.56* MB

Hierarchical Z 4 bytes * 3840 * 2160 * 1/64 0.49 MB - -

Draw arguments. Etc. 2* MB - -

Overall 160.69* MB 318.89* MB 635.29* MB

* rough estimate; driver might increase it

Visibility Buffer XOne 1080p – Memory
ESRAM Description NoMSAA 2xMSAA

Visibility Buffer keeps address of each triangle in 32-bit per pixel
4 bytes * 1920 * 1080

7.9 MB 15.8 MB

Depth Buffer 4 byte * 1920 * 1080 7.9 MB 15.8 MB

Hierarchical Z 4 byte * 1920 * 1080 * 1/64 0.12 MB -

Visibility Buffer – Filling pseudocode

● Visibility Buffer generation step

● For each pixel in screen:
● Pack (alpha masked bit, drawID, primitiveID) into 1 32-bit UINT

● Write that into a screen-sized buffer

● The tuple (alpha masked bit, drawID, primitiveID) will allow a
shader to access the triangle data in the shading step

Visibility Buffer – Shading pseudocode

● For each pixel in screen-space we do:

1. Get drawID/triangleID at pixel pos

2. Load data for the 3 vertices from the VB

3. Compute triangle gradients

4. Interpolate vertex attributes at pixelpos using gradients
(could do triangle / object-space lighting)

a) Attribs use w from position to compute perspective correct
interpolation

b) MVP matrix is applied to position

5. We have all data ready: shade and calculate final color

Visibility Buffer - Benefits

● Better decouples visibility from shading
● Calculating derivatives can be done separate from the

shading phase (we include it in the moment)
● We can shade then with different frequency or quality

● Improves memory efficiency
● Improves cache utilization

●Memory accesses are highly coherent
 high cache hit rates

●A G-Buffer needs to store data per screen-space pixel. Compared to a vertex / index
buffer some of this data is redundant
-> we can see 99% L2 cache hits for the Visibility Buffer for textures, vertex and index
buffers

Visibility Buffer - Benefits

● Stores less data for complex lighting models like e.g. PBR
compared to a G-Buffer

● PBR data for Visibility Buffer is a struct in constant memory indexed by
material id in vertex structure

● This struct holds indices into a texture array for various PBR textures

● It also holds per-material descriptions of what is necessary to drive
BRDF

● Any data that changes per-pixel is stored in textures that are
referenced by the struct

● Decouples G-buffer footprint from screen resolution

● Improves performance at high resolutions: 2K, 4K, MSAA …

● Improves performance on bandwidth-limited platforms

Visibility Buffer – Triangle Counts
Triangles rendered after culling
• 1.87 Million triangles main view
• 2.40 Million triangles shadow map

San Miguel Scene
• 8 Million Triangles
• 5 Million Vertices

Modern Game in 2016
1.8 Million triangles combined in Ultra

How do you do lighting?

● You can pick your favorite lighting architecture -
> Tiled-Deferred <-> Tiled Forward etc.

● Tiled-Forward or Forward+ seems to be a natural
fit because it will benefit from the decreased
vertex count through culling, filtering and
visibility check and offers consistent lighting for
opaque and transparent objects

● Triangle or Object-Space lighting is possible

What about Tessellation?

● Following [Wihlidal][Brainerd] this is a pre-
step before or in parallel to Triangle
filtering

Why didn’t we implement this earlier?

● Two recent developments made the
Visibility Buffer more attractive compared
to a G-Buffer

● DirectX 12 / Vulkan with multi draw indirect

● Triangle culling / filtering [EDGE][Chajdas]
[Wihlidal]
… see the next slide …

Cluster Culling / Triangle
filtering
… or how efficiently discard geometry

Game Developers Conference Europe. Cologne, Germany. 15 - 16 August 2016

Motivation

● Polygonal complexity of games increases every
year

● Efficient triangle removal is an important aspect

● 2 culling stages
● Cluster culling : cull groups of triangles before sending them

to the GPU (following [Chajdas] on the CPU; [Wihlidal] on
GPU)

● Triangle Filtering: cull individual triangles after being sent to
the GPU

Cluster culling

● Groups triangles in small
chunks of 256 triangles
with similar orientations

● Chunks have a model
matrix associated (they
can be moved around)

● Each chunk must pass a
quick visibility test before
being sent to the GPU:
● Cone test

Cone test for fast cluster culling

Triangles

Normals

If the eye is in the safe area
then we can NOT see any
triangle because they are
back-facing

Exclusion volume

Triangle cluster

Exclusion volume

Triangles

Normals

First, locate the center
of the cluster

Exclusion volume Normals

Then, negatively
accumulate normal

starting at cluster center

Exclusion volume Normals

Negatively accumulate
second normal after

the first one

Exclusion volume Normals

Accumulate
next one

Exclusion volume Normals

After accumulating
the last one we have
the starting point of
the exclusion volume

and the direction

Exclusion volume

This is the calculated
exclusion volume If the eye is in this area

then the eye can NOT
see any triangle

Most restrictive triangle
planes used to calculate

cone open angle

Cone angle

Cluster culling efficiency

● Effectivity depends on the orientation of
the faces in the cluster

● The more similar the orientations, the bigger
the exclusion / culling volume

● Depending on the triangles the exclusion
volume can not be calculated

● Invalid cluster for cluster culling  just pass it!

Invalid cluster  cluster

culling not possible

Compute-based triangle filtering
● Motivation:

● Cull triangles before they go into the graphics pipeline
● Use the unused compute units during graphics pipeline execution with

async compute

● Compute-based filter  one triangle per thread
● Degenerate triangle culling
● Back-face culling
● Frustum culling
● Small primitives culling
● Depth culling (requires coarse depth buffer)(not in this demo)

● Triangle indices that pass these tests are appended to index buffer

Compute-based triangle filtering

● Degenerate triangle culling

● Allows to cull invisible zero-area triangles

● Cost: quick test (discard if at least two
triangle indices are equal)

● Effectiveness: low

cull = (indices[0] == indices[1] ||
indices[1] == indices[2] ||
indices[0] == indices[2]);

Compute-based triangle filtering

● Back-face culling
● Allows to cull triangles that face away from the viewer

●If tessellation is used must take into account max patch height

● Cost: calculate the determinant of a 3x3 matrix [Olano]
(homogeneous 2D coordinates)

● Effectiveness: high (potentially cull 50% of the geometry)

Compute-based triangle filtering

● Frustum culling
● Allows to cull triangles that are

projected outside the clipping
cube

●Takes into account near and far
planes

● Cost: check if all vertices lie in
the negative side of the clip-space
cube

● Effectiveness: medium-high
(depends on the size of the scene
and eye pos)

Compute-based triangle filtering

● Small-primitives culling
● Allows to cull triangles that are too small to be seen

●Triangles that do not touch any sample point after projection
●Long and thin triangles that do not touch any sample are culled as
well
●More efficient use of hardware resources

● Cost: triangle touches any subpixel samples
● Effectiveness: medium (depends on the size of the

triangles and screen res)

Primitive-rate bound
• only one primitive per cycle per tile can

be scanned (see [Wihlidal])
• Very inefficient use of rasterization units

Compute-based triangle filtering

● Depth culling (not used
in this demo)

● Allows to cull triangles that are
occluded by the scene

●This test requires a coarse
depth buffer

● Cost: load depth values from
map and check triangle/BB
intersection

● Effectiveness: medium-high
(depends on scene complexity
and the size of the triangles)

Can be generated by
• Downsampling previous z-

buffer and reprojecting depths
• Rendering selected LOD

geometry at low res

Compute-based triangle filtering

Degenerated
triangles
Backfaces

Frustum

Small primitives

Depth

Requires
coarse depth

map

Culling
tests

Culled
results Compaction

Draw this
using multi

draw indirect

Compute-based triangle filtering

● Triangle filtering is executed on groups of 256 triangles
(one batch) -> empty draws

● Draw batch compaction to the rescue
● Can be run in parallel in a compute shader

● Eliminates empty draws from the multi indirect draw buffer

Removed empty draw


Filter

Compac
t

256 triangles per
Batch

Empty draws
-> inefficient

Adding Triangle/cluster filtering - Frame
pseudocode

1. [CPU] Early discard invisible geometry using cluster
culling

2. [CS] Generate unculled indices and multi draw indirect
buffers using triangle filtering (one triangle per thread)

3. Like before

Adding Triangle/cluster filtering – Data
management

● For this static scene one large vertex buffer and an
index buffer generated by triangle culling and filtering

● Draw batches that hold a block of geometry each for
one materal
-> Only two “materials” opaque and alpha masked,
transparent objects and other materials would go into
the same buffer

● For dynamic objects we would use a dedicated VB/IB
pair for each; this is optional

Adding Triangle/cluster filtering – Data
management

San Miguel Scene Number of Draw calls
(ExecuteIndirect)

● Shadow opaque 214

● Shadow alpha masked 59

● Main view opaque 200

● Main view alpha masked 60

● Dispatch calls for filtering 81

Compute-based triangle filtering - Benefits

● Allows to cull triangles before sending them to
the graphics pipeline
● Avoid overwhelming parts of the graphics pipeline (rasterizer)

● Graphics pipeline is better utilized with the
visible triangles (rasterizer efficiency, command
processor,…)

● Can make use of async compute to potentially
overlap with the graphics pipeline

Re-using triangle filtered
results for multiple Views /
Rendering Passes

Game Developers Conference Europe. Cologne, Germany. 15 - 16 August 2016

Motivation

● Compute-based triangle filtering comes at a cost

● For every triangle: load indices and vertices, transform

vertices, append (lock) triangle data to index buffer

● We came up with the idea to generate filtered data for
several rendering passes like main view, shadows etc.

● Use filtered data to cull the same triangle set from
different views

●Load indices/vertices, transform vertices only once for
all views

Motivation

● Reduces the effectivity of cluster culling / triangle filtering

● harder to cull cluster for N views

● however, it was worth it:

Use filtered data to cull triangles from different
views

● The algorithm is generalized to test against
different N-views

● Load indices / vertices once, transform vertices for every view

Algorithm

unculledClusters  ClusterCulling(sceneObjs, views)

filteredIndicesArray  TriangleCulling(unculledClusters, views)

ShadowPass(filteredIndices[shadowView])

MainPass1(filteredIndices[mainView])

CPU

GPU

GPU

GPU

Compute

Graphics

Graphics

MainPass2(filteredIndices[mainView])GPU Graphics

Adding re-usage of triangle filtered data - Frame
pseudocode
1. [CPU] Early discard geometry not visible from any view

using cluster culling
2. [CS] Generate N index and N multi draw indirect buffers

using triangle filtering testing against the N views (one
triangle per thread)

3. For each i view use (ith index buffer and ith MDI buffer):
1. [Gfx] Clear visibility and depth buffers
2. [VS,PS] Visibility buffer pass

[PS] Output triangle / instance IDs

3. [PS] Interpolate attributes from gradients and shade pixel

* Using a dedicated
Visibility Buffer for
shadow pass is overkill,
but you can still use the
filtered data for it.

Results
San Miguel Scene average for main view

 8 Million triangles

 5 Million vertices

Total triangles Rendered Culled

8,010,146 851,517 (10.6%)
7,158,629
(89.4%)

3,185,203
(39.8%)

Back-face

5,244,787
(65.5%)

Frustum

1,950,030
(24.4%)

Small primitives

GPU Culling Shadow
Map

Fill VB HDAO Shade
VB

Resolve
MSAA

UI Overall

Visibility Buffer 1080p – No MSAA

AMD RADEON R9 380 2.59 1.42 2.79 0.66 1.02 - 0.02 8.57

NVIDIA GeForce GTX 970 3.29 1.13 1.69 0.47 1.01 - 0.02 7.68

Visibility Buffer 1080p – No MSAA No Culling

AMD RADEON R9 380 - 5.17 7.58 0.66 1.02 - 0.02 14.52

NVIDIA GeForce GTX 970 - 3.61 4.21 0.47 1.00 - 0.02 9.44

Visibility Buffer 1080p – 2x MSAA

AMD RADEON R9 380 2.60 1.42 3.41 0.96 2.33 0.59 0.03 11.44

NVIDIA GeForce GTX 970 3.39 1.14 2.13 0.92 1.81 0.09 0.02 9.63

Visibility Buffer 1080p – 4x MSAA

AMD RADEON R9 380 2.66 1.45 4.27 1.44 4.40 0.94 0.03 15.27

NVIDIA GeForce GTX 970 3.20 1.14 3.02 1.32 3.44 0.23 0.02 12.47

Visibility Buffer 1080p

GPU Culling Shadow
Map

Fill
Buffer

HDAO Shade
Buffer

Resolve
MSAA

UI Overall

Deferred Shading 1080p – No MSAA

AMD RADEON R9 380 2.60 1.44 4.56 0.66 0.38 - 0.02 9.75

NVIDIA GeForce GTX 970 3.34 1.09 3.37 0.47 0.33 - 0.02 8.72

Deferred Shading 1080p – No MSAA No Culling

AMD RADEON R9 380 - 5.17 7.86 0.66 0.38 - 0.02 14.16

NVIDIA GeForce GTX 970 - 3.67 5.74 0.47 0.33 - 0.02 10.30

Deferred Shading 1080p – 2x MSAA

AMD RADEON R9 380 2.63 1.44 7.60 0.96 2.82 0.59 0.02 16.16

NVIDIA GeForce GTX 970 3.25 1.14 5.36 0.92 0.64 0.09 0.02 11.58

Deferred Shading 1080p – 4x MSAA

AMD RADEON R9 380 2.70 1.48 12.95 1.45 5.27 0.94 0.02 24.90

NVIDIA GeForce GTX 970 3.39 1.14 9.39 1.31 1.41 0.23 0.02 17.00

Deferred Shading 1080p

GPU Culling Shadow
Map

Fill VB HDAO Shade VB Resolve
MSAA

UI Overall

Visibility Buffer 1440p – No MSAA

AMD RADEON R9 380 2.72 1.52 3.47 1.17 1.73 - 0.03 10.72

NVIDIA GeForce GTX 970 3.27 1.09 2.00 0.78 1.55 - 0.02 8.83

Visibility Buffer 1440p – No MSAA No Culling

AMD RADEON R9 380 - 5.17 7.87 1.10 1.63 - 0.02 15.86

NVIDIA GeForce GTX 970 - 3.74 4.39 0.78 1.56 - 0.02 10.64

Visibility Buffer 1440p – 2x MSAA

AMD RADEON R9 380 2.85 1.64 4.78 1.82 4.17 1.00 0.02 16.38

NVIDIA GeForce GTX 970 3.36 1.10 2.96 1.54 2.89 0.15 0.02 12.21

Visibility Buffer 1440p – 4x MSAA

AMD RADEON R9 380 2.66 1.43 5.50 2.42 7.13 1.57 0.03 20.82

NVIDIA GeForce GTX 970 3.39 1.09 5.61 2.46 5.61 0.38 0.02 17.47

Visibility Buffer 1440p

GPU Culling Shadow
Map

Fill
Buffer

HDAO Shade
Buffer

Resolve
MSAA

UI Overall

Deferred Shading 1440p – No MSAA

AMD RADEON R9 380 2.61 1.42 6.44 1.10 0.63 - 0.02 12.30

NVIDIA GeForce GTX 970 3.47 1.09 4.65 0.78 0.55 - 0.02 10.67

Deferred Shading 1440p – No MSAA No Culling

AMD RADEON R9 380 - 5.17 9.67 1.10 0.63 - 0.02 16.66

NVIDIA GeForce GTX 970 - 3.63 6.89 0.78 0.54 - 0.02 11.91

Deferred Shading 1440p – 2x MSAA

AMD RADEON R9 380 2.67 1.46 11.49 1.62 4.73 1.00 0.03 23.09

NVIDIA GeForce GTX 970 3.32 1.10 7.86 1.54 1.08 0.15 0.02 15.23

Deferred Shading 1440p – 4x MSAA

AMD RADEON R9 380 2.67 1.42 19.42 2.43 8.75 1.57 0.03 36.37

NVIDIA GeForce GTX 970 3.35 1.10 14.98 2.46 2.36 0.38 0.02 24.76

Deferred Shading 1440p

GPU Culling Shadow
Map

Fill VB HDAO Shade VB Resolve
MSAA

UI Overall

Visibility Buffer 4k – No MSAA

AMD RADEON R9 380 2.66 1.42 5.07 2.51 3.43 - 0.02 15.19

NVIDIA GeForce GTX 970 3.46 1.12 3.36 1.82 3.29 - 0.02 13.52

Visibility Buffer 4k – No MSAA No Culling

AMD RADEON R9 380 - 5.18 9.25 2.51 3.43 - 0.02 20.45

NVIDIA GeForce GTX 970 - 3.74 5.31 1.79 3.25 - 0.02 14.39

Visibility Buffer 4k – 2x MSAA

AMD RADEON R9 380 2.72 1.42 8.27 3.65 8.27 2.29 0.03 25.87

NVIDIA GeForce GTX 970 3.34 1.09 6.17 3.58 6.17 0.34 0.02 19.87

Visibility Buffer 4k – 4x MSAA

AMD RADEON R9 380 2.70 1.43 8.73 5.70 15.58 3.61 0.03 37.86

NVIDIA GeForce GTX 970 3.37 1.11 7.86 6.86 12.35 0.87 0.02 32.68

Visibility Buffer 3840 x2160

GPU Culling Shadow
Map

Fill
Buffer

HDAO Shade
Buffer

Resolve
MSAA

UI Overall

Deferred Shading 4k – No MSAA

AMD RADEON R9 380 2.67 1.42 12.19 2.51 1.29 - 0.03 20.19

NVIDIA GeForce GTX 970 3.36 1.20 9.04 1.79 1.21 - 0.02 16.82

Deferred Shading 4k – No MSAA No Culling

AMD RADEON R9 380 - 5.18 15.00 2.51 1.29 - 0.03 24.06

NVIDIA GeForce GTX 970 - 3.75 10.44 1.79 1.22 - 0.02 17.49

Deferred Shading 4k – 2x MSAA

AMD RADEON R9 380 2.70 1.42 21.65 3.65 10.86 2.29 0.03 42.68

NVIDIA GeForce GTX 970 3.35 1.10 15.36 3.59 2.41 0.34 0.02 26.27

Deferred Shading 4k – 4x MSAA

AMD RADEON R9 380 2.72 1.44 35.88 5.74 20.13 3.60 0.02 69.64

NVIDIA GeForce GTX 970 3.40 1.18 30.29 6.87 5.39 0.87 0.02 48.12

Deferred Shading 3840 x2160

GPU Culling Shadow
Map

Fill VB HDAO Shade
VB

Resolve
MSAA

UI Overall

Visibility Buffer 1080p – No MSAA

Xbox One 7.19 3.32 3.90 1.73 3.90 - 0.02 19.78

Visibility Buffer 1080p – No MSAA No Culling

Xbox One - 9.16 9.09 1.73 3.89 - 0.02 23.98

Visibility Buffer 1080p – 2x MSAA

Xbox One 7.28 3.20 7.57 5.17 7.57 0.46 0.02 28.00

Visibility Buffer 1080p

GPU Culling Shadow
Map

Fill Buffer HDAO Shade
Buffer

Resolve
MSAA

UI Overall

Deferred Shading 1080p – No MSAA

Xbox One 7.19 3.14 11.18 1.74 1.38 - 0.02 24.77

Deferred Shading 1080p – No MSAA No Culling

Xbox One - 9.09 15.07 1.73 1.39 - 0.02 27.45

Deferred Shading 1080p – 2x MSAA

Xbox One 7.21 3.18 21.85 5.18 8.46 0.47 0.02 46.41

Deferred Shading 1080p

Deferred Shading

GPU

AMD RADEON R9
380

1080p 1440p 2160p

No MSAA 9.75 12.30 20.19

No MSAA – No Culling 14.16 16.66 24.06

2x MSAA 16.16 23.09 42.68

4x MSAA 24.90 36.37 69.64

NVIDIA GeForce
GTX 970

1080p 1440p 2160p

No MSAA 8.72 10.67 16.82

No MSAA – No Culling 10.30 11.91 17.49

2x MSAA 11.58 15.23 26.27

4x MSAA 17.00 24.76 48.12

GPU

AMD RADEON R9
380

1080p 1440p 2160p

No MSAA 8.57 10.72 15.19

No MSAA – No Culling 14.52 15.86 20.45

2x MSAA 11.44 16.38 25.87

4x MSAA 15.27 20.82 37.86

Visibility Buffer

Summary

Xbox One 1080p 1440p 2160p

No MSAA 24.77 - -

No MSAA – No Culling 27.45 - -

2x MSAA 46.41 - -

Xbox One 1080p 1440p 2160p

No MSAA 19.78 - -

No MSAA – No Culling 23.98 - -

2x MSAA 28.00 - -

NVIDIA GeForce
GTX 970

1080p 1440p 2160p

No MSAA 7.68 8.83 13.52

No MSAA – No Culling 9.44 10.64 14.39

2x MSAA 9.63 12.21 19.87

4x MSAA 12.47 17.47 32.68

How about VR?

● We are working on the StarVR SDK. StarVR
uses a large field of view with very high
resolution

● The Visibility Buffer will help substantially
with performance here
● We can cull and prepare the data for all views and the

shadow map views in one go

● We render forward+ and therefore do not have to deal
with transparency issues

Executive Summary

We built a rendering system that
● Cluster culls and filters triangles for different views like

main view, shadow view, reflection view, GI view etc.
● The optimized triangles are used to fill a screen-space

Visibility Buffer or more Visibility Buffers for more views
● We then render lights, shadows, bounce lights with the

optimized geometry based on visibility
● We can differ between visibility of geometry and

shading frequency
● We can light per triangle or in so called object space

Future work

● Re-use culled triangles over several frames

● Use intrinsics for several parts of the pipeline
[Chajdas Compaction]

● Better improve asynchronous scheduling
● Async compute is powerful

● Add a Forward+ or Tiled-Forward lighting system

● @SebAaltonen 's trick for using MSAA to reduce
bandwidth on XBox One

Source Code

● Free source code in two weeks time (after
vacation of some of the guys who worked
on this ) -> clean-up

● Probably on github if we can fit
everything on there  (1 GB limit)

● If you want the code now, send me an e-
mail …

Credits

● Christoph Schied – wrote implementation of his paper with the OpenGL 4.5
run-time at our office

● Confetti People
● Marijn Tamis – wrote the initial OpenGL 4.5 run-time

● Leroy Sikkes – wrote the initial DirectX 12 run-time and added hardware
performance counters

● Max Oomen (intern) added linear lighting and fixed many bugs

● Jesús Gumbau – added triangle filtering, came up with the idea and
implemented re-usage of filtered triangle data and made it cross-platform
running on NVIDIA and AMD GPUs and then brought it to DirectX 12

● Jordan Logan – brought it to XBOX One and optimized for this console

Acknowledgements

● Graham Wihlidal DICE Frostbite

● Nicolas Thibieroz, Gareth Thomas, Matthaeus Chajdas, Steven Tovey AMD

● Mike Acton Insomniac

● James McLaren, Q-Games

● Remi Arnaud, Starbreeze / StarVR

● Kev Gee Microsoft

References
● [Burns] Christopher A. Burns, Warren A. Hunt “The Visibility Buffer: A Cache-Friendly Approach to Deferred

Shading” Journal of Computer Graphics Techniques (JCGT) 2:2 (2013), 55- 69. Available online at
http://jcgt.org/published/0002/02/04

● [Chajdas] Matthaeus Chajdas “GeometryFX” http://gpuopen.com/gaming-product/geometryfx/

● [Chajdas Compaction] Matthaeus Chajdas “Fast compaction with mbcnt”, http://gpuopen.com/fast-compaction-
with-mbcnt/

● [Edge] Edge Library, PS3 SDK

● [Engel2009] Wolfgang Engel, “Light Pre-Pass”, “Advances in Real-Time Rendering in 3D Graphics and Games”,
SIGGRAPH 2009, http://halo.bungie.net/news/content.aspx?link=Siggraph_09

● [Lagarde] Sebastien Lagarde, Charles de Rousiers, “Moving Frostbite to Physically Based Rendering”, Course
notes SIGGRAPH 2014

● [Olano] Marc Olano, http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

● [Schied] Christoph Schied, Carten Dachsbacher “Deferred Attribute Interpolation Shading”, GPU Pro 7, CRC
Press / shorter and free version: http://cg.ivd.kit.edu/publications/2015/dais/DAIS.pdf

● [Wihlidal] Graham Wihlidal, “Optimizing the Graphics Pipeline with Compute”, GDC 2016,
http://www.frostbite.com/2016/03/optimizing-the-graphics-pipeline-with-compute/

http://jcgt.org/published/0002/02/04
http://gpuopen.com/gaming-product/geometryfx/
http://halo.bungie.net/news/content.aspx?link=Siggraph_09
http://www.frostbite.com/2016/03/optimizing-the-graphics-pipeline-with-compute/

wolf@conffx.com

