
Rendering Antialiased
Shadows with Moment
Shadow Mapping

Christoph Peters
PhD Student, University of Bonn

Welcome to this lecture on rendering antialiased shadows with moment shadow mapping. My name is
Christoph Peters.

About this PDF

● Original slides: Lots of videos, some
animations,

● PDF: Reformatted for static display,

● Don‘t miss out:

● Video version with audio is available,

● Powerpoint version is available,

● MomentsInGraphics.de

2

You are viewing a version of the slides that has been reformatted for static display in a PDF. The
original slides contain lots of videos and some animations. At many points the PDF version may be
less clear. If you want to get a more complete version, a video with audio or the original Powerpoint
version are available at http://MomentsInGraphics.de/ .

Introduction

● I‘m not in the games industry (yet),

● Research done as PhD student
at the University of Bonn,

● Papers presented at the
ACM SIGGRAPH Symposium on
Interactive 3D Graphics and
Games (i3D) in 2015 and 2016.

3

Unlike most speakers here I am not in the games industry. At least not yet. CLICK
I will be presenting work that I did as PhD student at the University of Bonn in the computer graphics
group of Reinhard Klein. CLICK
In particular, I will be speaking about papers published at i3D 2015 and i3D 2016.

Maybe you have seen some of this before. The first technique I will be speaking about is moment
shadow mapping for filtered hard shadows. As you can see, these shadows exhibit little aliasing and
appear correct throughout the scene.

Moment shadow mapping is not restricted to opaque occluders. We can also render shadows for
translucent occluders such as this smoke plume.

Model © Blender foundation | mango.blender.org

The approach also enables soft shadows for area lights. Note how these shadows harden at contact
points.

Even single scattering in homogenous participating media can be rendered efficiently at high resolutions
without any upscaling. We will cover all these techniques in detail.

Shadow map
filtering

To get started lets recall some basics of shadow map filtering.

Shadow mapping [Williams78]

Shadow map Scene

● Shadow map
stores light
space depth,

● Shadow test
with one
lookup,

● Aliasing  .

9

In modern real-time applications, dynamic shadows are typically rendered by means of shadow maps.
To the left, you can see a shadow map. It is an image rendered from the point of view of the light
source. Each texel stores the depth in light space of the visible surface. CLICK
If we want to shade a pixel on screen, we look up the corresponding depth in the shadow map. If the
pixel is lit, its actual depth should agree with the depth stored in the shadow map. CLICK
This shadow test is very efficient, but it is an image-based approach without any filtering. Therefore,
we get severe aliasing.

Shadow map aliasing

Shadow map Scene

● One texel,

● Covers many
pixels,

● Fine features
lost,

● Unstable.

10

To better understand this artifact, we look at a single texel in the shadow map. CLICK
This texel maps to many pixels on screen. CLICK
Therefore, fine features in the shadows are not resolved properly and the results are very unstable.

Shadow map sampling

● Diminish undersampling with a better
shadow map projection, e.g.:

● Trapezoidal shadow maps [Martin04],

● Cascaded shadow maps [Zhang06],

● Sample distribution shadow maps
[Lauritzen11].

● Helps a lot, but not enough,

● Not our topic today.

11

One way to diminish such undersampling artifacts is to use a better shadow map projection. Available
techniques are trapezoidal shadow maps, cascaded shadow maps and sample distribution shadow maps.
CLICK
All of these techniques help a lot but by themselves they are not enough to get rid of aliasing. CLICK
I do recommend that you use these techniques but they are not our topic today.

Percentage-closer filtering [Reeves87]

Shadow map Scene

● Filter
shadows,

● Oldest
solution,

● Still widely
used,

● Aliasing  .

12

To reduce aliasing further, we need to filter our shadows. CLICK
The oldest technique for this purpose is percentage-closer filtering. CLICK
It is still widely used and if you do not know what you are using, you are probably using percentage-closer
filtering. CLICK
It diminishes aliasing but aliasing introduced during generation of the shadow map remains.

Percentage-closer filtering

Shadow map Scene

● Per pixel:

13

We now take a detailed look at its inner workings. Lets say we want to shade the pixel highlighted to
the right. CLICK
Then we sample a neighborhood of this pixel in the shadow map. CLICK
For every single sample, we perform the shadow test to get a binary shadow intensity. CLICK
These shadow intensities can be filtered, for example by means of a Gaussian filter. We get a filtered
shadow intensity which can be anywhere between zero and one. CLICK
Of course this procedure is quite costly because we need many shadow map samples for every single
pixel on screen.

Percentage-closer filtering

Shadow map Scene

● Per pixel:

1. Sample filter
region,

14

We now take a detailed look at its inner workings. Lets say we want to shade the pixel highlighted to
the right. CLICK
Then we sample a neighborhood of this pixel in the shadow map. CLICK
For every single sample, we perform the shadow test to get a binary shadow intensity. CLICK
These shadow intensities can be filtered, for example by means of a Gaussian filter. We get a filtered
shadow intensity which can be anywhere between zero and one. CLICK
Of course this procedure is quite costly because we need many shadow map samples for every single
pixel on screen.

Percentage-closer filtering

Shadow map Scene

● Per pixel:

1. Sample filter
region,

2. Threshold,

15

We now take a detailed look at its inner workings. Lets say we want to shade the pixel highlighted to
the right. CLICK
Then we sample a neighborhood of this pixel in the shadow map. CLICK
For every single sample, we perform the shadow test to get a binary shadow intensity. CLICK
These shadow intensities can be filtered, for example by means of a Gaussian filter. We get a filtered
shadow intensity which can be anywhere between zero and one. CLICK
Of course this procedure is quite costly because we need many shadow map samples for every single
pixel on screen.

Percentage-closer filtering

Shadow map Scene

● Per pixel:

1. Sample filter
region,

2. Threshold,

3. Filter.

● Costly!

⋅ =
67% shadow

∑

16

We now take a detailed look at its inner workings. Lets say we want to shade the pixel highlighted to
the right. CLICK
Then we sample a neighborhood of this pixel in the shadow map. CLICK
For every single sample, we perform the shadow test to get a binary shadow intensity. CLICK
These shadow intensities can be filtered, for example by means of a Gaussian filter. We get a filtered
shadow intensity which can be anywhere between zero and one. CLICK
Of course this procedure is quite costly because we need many shadow map samples for every single
pixel on screen.

Depth distributions

Shadow map Depth
distribution

● Shadow as
function of
depth,

17

To improve on this situation, we need to interpret percentage-closer filtering a bit differently. CLICK
A texel of the shadow map (left) provides us with a depth-dependentshadow intensity for the corre-
sponding light-ray (right). Up to the stored depth everything is fully lit. Beyond this depth there is full
shadow. CLICK
We get such a function for every texel. CLICK
CLICK
Now if we build a weighted combination of these functions using weights from a filter kernel, we get the
depth-dependent shadow intensity computed by percentage closer filtering. It is a monotonous function
between zero and one modeling the distribution of depth values in the filter region. Our goal is to
precompute compact representations of such depth distributions.

Depth distributions

Shadow map Depth
distribution

● Shadow as
function of
depth,

● Step for one
texel,

18

To improve on this situation, we need to interpret percentage-closer filtering a bit differently. CLICK
A texel of the shadow map (left) provides us with a depth-dependentshadow intensity for the corre-
sponding light-ray (right). Up to the stored depth everything is fully lit. Beyond this depth there is full
shadow. CLICK
We get such a function for every texel. CLICK
CLICK
Now if we build a weighted combination of these functions using weights from a filter kernel, we get the
depth-dependent shadow intensity computed by percentage closer filtering. It is a monotonous function
between zero and one modeling the distribution of depth values in the filter region. Our goal is to
precompute compact representations of such depth distributions.

Depth distributions

Shadow map Depth
distribution

● Shadow as
function of
depth,

● Step for one
texel,

19

To improve on this situation, we need to interpret percentage-closer filtering a bit differently. CLICK
A texel of the shadow map (left) provides us with a depth-dependentshadow intensity for the corre-
sponding light-ray (right). Up to the stored depth everything is fully lit. Beyond this depth there is full
shadow. CLICK
We get such a function for every texel. CLICK
CLICK
Now if we build a weighted combination of these functions using weights from a filter kernel, we get the
depth-dependent shadow intensity computed by percentage closer filtering. It is a monotonous function
between zero and one modeling the distribution of depth values in the filter region. Our goal is to
precompute compact representations of such depth distributions.

Depth distributions

Shadow map Depth
distribution

● Shadow as
function of
depth,

● Step for one
texel,

● Monotonous
in general.

20

To improve on this situation, we need to interpret percentage-closer filtering a bit differently. CLICK
A texel of the shadow map (left) provides us with a depth-dependentshadow intensity for the corre-
sponding light-ray (right). Up to the stored depth everything is fully lit. Beyond this depth there is full
shadow. CLICK
We get such a function for every texel. CLICK
CLICK
Now if we build a weighted combination of these functions using weights from a filter kernel, we get the
depth-dependent shadow intensity computed by percentage closer filtering. It is a monotonous function
between zero and one modeling the distribution of depth values in the filter region. Our goal is to
precompute compact representations of such depth distributions.

This mode of visualization also helps to understand an artifact of percentage-closer filtering that is
shown here. The ground is lit at a grazing angle and percentage-closer filtering computes that parts of
the ground shadow nearby parts of the ground. This is an artifact known as surface acne. CLICK
Combined with the discretization of the shadow map it leads to obvious stripe patterns.

Surface acne and remedies

Shadow map Depth
distribution

● Surface has
many depths,

● Shadows itself,

22

To better understand this artifact, lets look at it in terms of depth distributions. To the left, you can see
a filter region with a pixel marked for which we want to compute a shadow. The depth distribution on
the right immediately provides the shadow intensity for the pixel depth. However, many texels belonging
to the same surface contribute to this shadow. It is darker than it should be. CLICK
This artifact can be eliminated by pushing the depth of the pixel to the left using a depth bias. CLICK
However, determining this depth bias is an art in itself. And by that I mean that your artists will waste
a lot of time doing it.

Surface acne and remedies

Shadow map Depth
distribution

● Surface has
many depths,

● Shadows itself,

● Apply bias to
pixel depth,

● An art in itself.

Depth

bias

23

To better understand this artifact, lets look at it in terms of depth distributions. To the left, you can see
a filter region with a pixel marked for which we want to compute a shadow. The depth distribution on
the right immediately provides the shadow intensity for the pixel depth. However, many texels belonging
to the same surface contribute to this shadow. It is darker than it should be. CLICK
This artifact can be eliminated by pushing the depth of the pixel to the left using a depth bias. CLICK
However, determining this depth bias is an art in itself. And by that I mean that your artists will waste
a lot of time doing it.

Variance shadow maps [Donnelly06]

R=𝑧
G=𝑧2

Stored data

● Store 𝑧, 𝑧2,

● Redundant,

24

Variance shadow maps provide a way to filter shadow maps more efficiently than by means of percentage-
closer filtering. Here to the left, you see such a variance shadow map. It is a two-channel texture. The
red channel is the same as for a common shadow map. However, the green channel stores the squared
depth. Of course this information is completely redundant for every individual texel. We basically store
a point on a parabola (right). If we know the x-coordinate, we know the y-coordinate. CLICK
Again this is the case for every texel. CLICK
CLICK
However, this changes if we apply a filter (e.g. a Gaussian blur) to the variance shadow map. The
stored point is now the center of mass of all the points stored by the individual texels that enter the
filter. The point does not lie on the parabola anymore and we actually get some additional information
about the depth distribution. CLICK
Following notations from probability theory, the values stored in the filtered variance shadow map are
called first and second moment of the depth distribution. CLICK
This information about the depth distribution can be used for an approximate reconstruction. The
result of percentage-closer filtering is shown in blue, the approximation of variance shadow mapping is
shown in green. The shadow intensity is always underestimated to avoid surface acne. CLICK
This approximation may look very coarse but at least it is good at some important points where there
is actually a surface receiving shadow. CLICK
On the other hand, it converges to one slowly and this will cause visible artifacts.

Variance shadow maps [Donnelly06]

R=𝑧
G=𝑧2

Stored data

● Store 𝑧, 𝑧2,

● Redundant,

25

Variance shadow maps provide a way to filter shadow maps more efficiently than by means of percentage-
closer filtering. Here to the left, you see such a variance shadow map. It is a two-channel texture. The
red channel is the same as for a common shadow map. However, the green channel stores the squared
depth. Of course this information is completely redundant for every individual texel. We basically store
a point on a parabola (right). If we know the x-coordinate, we know the y-coordinate. CLICK
Again this is the case for every texel. CLICK
CLICK
However, this changes if we apply a filter (e.g. a Gaussian blur) to the variance shadow map. The
stored point is now the center of mass of all the points stored by the individual texels that enter the
filter. The point does not lie on the parabola anymore and we actually get some additional information
about the depth distribution. CLICK
Following notations from probability theory, the values stored in the filtered variance shadow map are
called first and second moment of the depth distribution. CLICK
This information about the depth distribution can be used for an approximate reconstruction. The
result of percentage-closer filtering is shown in blue, the approximation of variance shadow mapping is
shown in green. The shadow intensity is always underestimated to avoid surface acne. CLICK
This approximation may look very coarse but at least it is good at some important points where there
is actually a surface receiving shadow. CLICK
On the other hand, it converges to one slowly and this will cause visible artifacts.

Variance shadow maps [Donnelly06]

R=𝑧
G=𝑧2

Stored data

● Store 𝑧, 𝑧2,

● Redundant,

26

Variance shadow maps provide a way to filter shadow maps more efficiently than by means of percentage-
closer filtering. Here to the left, you see such a variance shadow map. It is a two-channel texture. The
red channel is the same as for a common shadow map. However, the green channel stores the squared
depth. Of course this information is completely redundant for every individual texel. We basically store
a point on a parabola (right). If we know the x-coordinate, we know the y-coordinate. CLICK
Again this is the case for every texel. CLICK
CLICK
However, this changes if we apply a filter (e.g. a Gaussian blur) to the variance shadow map. The
stored point is now the center of mass of all the points stored by the individual texels that enter the
filter. The point does not lie on the parabola anymore and we actually get some additional information
about the depth distribution. CLICK
Following notations from probability theory, the values stored in the filtered variance shadow map are
called first and second moment of the depth distribution. CLICK
This information about the depth distribution can be used for an approximate reconstruction. The
result of percentage-closer filtering is shown in blue, the approximation of variance shadow mapping is
shown in green. The shadow intensity is always underestimated to avoid surface acne. CLICK
This approximation may look very coarse but at least it is good at some important points where there
is actually a surface receiving shadow. CLICK
On the other hand, it converges to one slowly and this will cause visible artifacts.

Variance shadow maps [Donnelly06]

R=1st moment
G=2nd moment

Stored data

● Store 𝑧, 𝑧2,

● Redundant,

● Until filtered,

● 2 moments,

27

Variance shadow maps provide a way to filter shadow maps more efficiently than by means of percentage-
closer filtering. Here to the left, you see such a variance shadow map. It is a two-channel texture. The
red channel is the same as for a common shadow map. However, the green channel stores the squared
depth. Of course this information is completely redundant for every individual texel. We basically store
a point on a parabola (right). If we know the x-coordinate, we know the y-coordinate. CLICK
Again this is the case for every texel. CLICK
CLICK
However, this changes if we apply a filter (e.g. a Gaussian blur) to the variance shadow map. The
stored point is now the center of mass of all the points stored by the individual texels that enter the
filter. The point does not lie on the parabola anymore and we actually get some additional information
about the depth distribution. CLICK
Following notations from probability theory, the values stored in the filtered variance shadow map are
called first and second moment of the depth distribution. CLICK
This information about the depth distribution can be used for an approximate reconstruction. The
result of percentage-closer filtering is shown in blue, the approximation of variance shadow mapping is
shown in green. The shadow intensity is always underestimated to avoid surface acne. CLICK
This approximation may look very coarse but at least it is good at some important points where there
is actually a surface receiving shadow. CLICK
On the other hand, it converges to one slowly and this will cause visible artifacts.

Variance shadow maps [Donnelly06]

R=1st moment
G=2nd moment

● Store 𝑧, 𝑧2,

● Redundant,

● Until filtered,

● 2 moments,

● Reconstruct
with lower
bound.

Percentage-closer
filtering

Variance shadow
mapping

28

Good

Bad

Variance shadow maps provide a way to filter shadow maps more efficiently than by means of percentage-
closer filtering. Here to the left, you see such a variance shadow map. It is a two-channel texture. The
red channel is the same as for a common shadow map. However, the green channel stores the squared
depth. Of course this information is completely redundant for every individual texel. We basically store
a point on a parabola (right). If we know the x-coordinate, we know the y-coordinate. CLICK
Again this is the case for every texel. CLICK
CLICK
However, this changes if we apply a filter (e.g. a Gaussian blur) to the variance shadow map. The
stored point is now the center of mass of all the points stored by the individual texels that enter the
filter. The point does not lie on the parabola anymore and we actually get some additional information
about the depth distribution. CLICK
Following notations from probability theory, the values stored in the filtered variance shadow map are
called first and second moment of the depth distribution. CLICK
This information about the depth distribution can be used for an approximate reconstruction. The
result of percentage-closer filtering is shown in blue, the approximation of variance shadow mapping is
shown in green. The shadow intensity is always underestimated to avoid surface acne. CLICK
This approximation may look very coarse but at least it is good at some important points where there
is actually a surface receiving shadow. CLICK
On the other hand, it converges to one slowly and this will cause visible artifacts.

Percentage-closer filtering
(no MSAA)

Variance shadow mapping
(8x MSAA)

29

Here you can see the result of variance shadow mapping (right) next to percentage- closer filtering (left).
We make two observations. Variance shadow mapping exhibits substantially less aliasing. This is because
we use 8x multisample antialiasing when we generate the variance shadow map. For percentage-closer
filtering this is not possible in an efficient manner and aliasing remains. On the other hand, variance
shadow mapping gives us some very obvious artifacts. Silhouettes of shadow casters are visible as bright
lines in the shadows. This is known as light leaking and it is simply due to the slow convergence to the
maximal shadow intensity that I showed you on the previous slide.

Other filterable shadow maps

● Convolution shadow maps [Annen07] store
Fourier coefficients,

● Exponential shadow maps [Salvi08,Annen08]
store exp(𝑐 ⋅ 𝑧),

● Exponential variance shadow maps
[Lauritzen08] store exp(𝑐+ ⋅ 𝑧), exp(𝑐+ ⋅ 𝑧)

2,
exp(−𝑐− ⋅ 𝑧), exp(−𝑐− ⋅ 𝑧)

2.

30

Various similar approaches have been proposed, such as convolution shadow maps, exponential shadow
maps and exponential variance shadow maps. They all use shadow maps with some number of channels
and store some vector that is derived from the depth. Exponential variance shadow maps used to be
the most practical technique using 64 bits per texel. It has been used in several shipping titles.

Moment shadow mapping (ours)

R,G,B,A store
𝑧,𝑧2,𝑧3,𝑧4

Scene

● 4 channels,

● 4 moments,

● 64 bits per
texel,

● Little light
leaking.

31

Basically, moment shadow mapping is yet another technique in this branch but it is a good one. It uses
a shadow map with four channels. The channels store four powers of the depth. After filtering, these
are four moments of the depth distribution. Note that we use a checkerboard to visualize the alpha
channel. CLICK
The four moments fit into 64 bits. CLICK
The result is a high-quality heuristic for filtered hard shadows at a moderate cost. There is little light
leaking and multisample antialiasing is applicable.

Moment shadow
mapping

Lets take a closer look.

From moments to shadows

Many distributions share same 4 moments.

33

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

From moments to shadows

Many distributions share same 4 moments.

34

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

From moments to shadows

Many distributions share same 4 moments.

35

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

From moments to shadows

Many distributions share same 4 moments.

36

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

From moments to shadows

Many distributions share same 4 moments.

37

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

From moments to shadows

Many distributions share same 4 moments.

38

Avoids
surface
acne

We want to reconstruct depth distributions from their moments. But this problem is ill-defined. Here
is an example of a depth distribution. CLICK
Here is another one. Its moments are the same as for the first distribution. CLICK
This is also true for this distribution CLICK
and this one CLICK
and all of these. CLICK
There is not much we can tell about the shape of these functions but we can tell that they have to lie
within specific bounds. The lower bound is what we will use as approximation to the shadow intensity.
CLICK
This way, we avoid surface acne. At the same time we make the most of our data because knowing
only the moments, the ground truth may agree with the lower bound.

Construction of the bounds

39

We need an efficient way to compute these bounds. I won‘t go into the details here but the basic idea is
to exploit a useful mathematical theorem. It states that the bounds are always realized by very specific
depth distributions. They only use three different depth values to match the four given moments. One
of them is the depth where we are minimizing. Thus, we only need to compute the two other depth
values and the height of the three steps. That‘s exactly what the moment shadow mapping algorithm
does and I‘ll be showing you the implementation later.

Bounds are often very narrow

40

If you find that the bounds in the previous example are not sharp enough, take a look at this example.
As you can see, the bounds are extremely narrow, so the reconstruction is very accurate.

Bounds are often very narrow

Shadow map Depth
distribution

● Two surfaces in
filter region,

● Perfect recon-
struction  ,

● Covers most
cases.

41

The origin of this example is shown here. As you can see, the filter region in the shadow map covers
the silhouette of a shadow caster. Thus, it contains two distinct surfaces which correspond to two steep
increases in shadow intensity. CLICK
If we idealize this case with exactly two depth values, the reconstruction is known to be perfect. CLICK
It is rare that a small filter region covers more than two surfaces. Thus, we get a very good reconstruction
in most cases.

Quantization

Problem: Just storing 𝑧, 𝑧2, 𝑧3, 𝑧4 in 64 bits
gives too much rounding error.

42

Stored basis functions

R

G

B

A

There is one problem though. We cannot really afford more than 64 bits per texel for filtered hard
shadows. But if we just store powers of the depth, rounding errors are too strong. Basically, the four
channels of our shadow map would store the four basis functions shown at the bottom.

Quantization

Available range of values is poorly utilized.

43

B
=

R=
A
=

G=

To understand why this does not work well, we visualize the values that we store. Each of the four
values is plotted on one axis and since we have four channels, we need two plots. The values that we
store initially lie on the blue line but after filtering they may lie anywhere in the convex hull, which is
shown in yellow. However, we never store any values in the white area. Thus, most values that we
could be storing are never actually used. The available memory is not utilized efficiently.

Quantization

Solution: Use an optimized basis of
polynomials. Now 64 bits suffice.

44

Stored basis functions

R

G

B

A

To overcome this problem, we use a different basis of quartic polynomials. It is optimized numerically
to use the memory as efficiently as possible. Now 64 bits suffice.

Quantization

Volume of utilized range is maximized.

45

B
=

R=
A
=

G=

Here you can see the corresponding range of utilized values again. As you can see it has grown
immensely. In fact, its area is as large as it could be.

Implementation
of moment shadow mapping

That should be enough theory for one talk, so lets get to the implementation.

Generate a moment shadow map

1. Render to a multisampled depth buffer.

R16 normalized uint, 1024², 4x multisampling

Sample 0 Sample 1 Sample 2 Sample 3

47

For all techniques we discuss today, the first step is to generate a moment shadow map. In doing so,
it is best to utilize hardware-accelerated multi-sample antialiasing. Thus, we render to a multisampled
depth buffer (without having a render target bound) to produce a multisampled shadow map. Basically,
we get one version of the shadow map for each sample. They are slightly offset at the subpixel level.
Hardware- acceleration makes this very fast.

Generate a moment shadow map

2. Compute moments in resolve.

R16G16B16A16 normalized uint, 1024², no mipmaps

Resolve

Each depth 𝑧 ∈ [−1, 1]
maps to moments
𝑅
𝐺
𝐵
𝐴

=

1.5 0 −2 0
0 4 0 −4

3

2
0 −

12

9
0

0 0.5 0 0.5

⋅

𝑧
𝑧2

𝑧3

𝑧4

+

0.5
0
0.5
0

48

We create the moments as we resolve this multisampled texture into a common texture. For each
texel we get all the depth values from the multisampled depth buffer and convert them to moments by
computing powers. Then we apply a matrix transform which corresponds to the basis of polynomials
I explained before. The mean of these vectors is stored to the four-channel moment shadow map. It
should use normalized unsigned integers and at this point we do not need mipmaps.

Generate a moment shadow map

3. Filter (e.g. 2-pass Gaussian + mipmap).

Horizontal

R16G16B16A16 normalized uint, 1024², full mipmaps

Vertical

49

Now that we have got a filterable shadow map we should apply some filtering to diminish aliasing.
Typical choices would be a two-pass Gaussian and mipmapping. Applying the Gaussian is done with a
horizontal and a vertical pass. Efficient mipmap generation is usually offered by the API.

Retrieve moments

● To shade a fragment,

● Sample the filtered moment shadow map
(with mipmapping, anisotropy, etc.),

● Undo the quantization transform:
𝑏1
𝑏2
𝑏3
𝑏4

≔

−
1

3
0 3 0

0 0.125 0 1

−0.75 0 0.75 ⋅ 3 0
0 −0.125 0 1

⋅

𝑅
𝐺
𝐵
𝐴

−

0.5
0
0.5
0

50

Now our moment shadow map is ready to use and we can take care of shading a fragment. First we
retrieve the moments by taking a filtered sample from the moment shadow map. We can use all the
great filtering features that the hardware provides such as mipmapping and anistropic filtering. CLICK
Next we undo the quantization transform by simply multiplying with the inverse matrix.

Bias the moments

● Example: Two moments stored in 2⋅3 bit.

• Rounding errors invalidate the
moments,

51

In spite of the quantization transform, rounding errors are still a problem. To visualize why, we look at
two of our four moments and store them in only three bit. CLICK
The problem is that moments in the convex hull (shaded yellow) may be rounded to points outside
this convex hull (marked red). If we use these erroneous moments as input, they do not correspond to
any meaningful depth distribution. The algorithm cannot get meaningful results with such meaningless
inputs. CLICK
Our solutions is to pull all points back into the convex hull by means of a simple linear interpolation.
We scale them towards a fixed point (blue) inside the convex hull. CLICK
Of course, the rounding errors are smaller when we use 16 bits per moment and we only need an
interpolation weight of 6*10^-5. This value is scene independent. It only depends on the amount of
rounding error that you introduce. CLICK
Our biasing strategy increases light leaking a little but not too much.

Bias the moments

● Example: Two moments stored in 2⋅3 bit.

• Rounding errors invalidate the
moments,

• Lerp them back in: 𝛼 = 0.15

𝑏′ ≔ 1− 𝛼 ⋅ 𝑏 + 𝛼 ⋅ (0,0.63,0,0.63)T

• At 4⋅16 bit: 𝛼 = 6 ⋅ 10−5,

• Slightly more light leaking.

52

In spite of the quantization transform, rounding errors are still a problem. To visualize why, we look at
two of our four moments and store them in only three bit. CLICK
The problem is that moments in the convex hull (shaded yellow) may be rounded to points outside
this convex hull (marked red). If we use these erroneous moments as input, they do not correspond to
any meaningful depth distribution. The algorithm cannot get meaningful results with such meaningless
inputs. CLICK
Our solutions is to pull all points back into the convex hull by means of a simple linear interpolation.
We scale them towards a fixed point (blue) inside the convex hull. CLICK
Of course, the rounding errors are smaller when we use 16 bits per moment and we only need an
interpolation weight of 6*10^-5. This value is scene independent. It only depends on the amount of
rounding error that you introduce. CLICK
Our biasing strategy increases light leaking a little but not too much.

Compute the shadow intensity
float ComputeMSMShadowIntensity(float4 b,float FragmentDepth){

float L32D22=mad(-b[0],b[1],b[2]);

float D22=mad(-b[0],b[0], b[1]);

float SquaredDepthVariance=mad(-b[1],b[1], b[3]);

float D33D22=dot(float2(SquaredDepthVariance,-L32D22),

float2(D22, L32D22));

float InvD22=1.0f/D22;

float L32=L32D22*InvD22;

float3 z;

z[0]=FragmentDepth;

float3 c=float3(1.0f,z[0],z[0]*z[0]);

c[1]-=b.x;

c[2]-=b.y+L32*c[1];

c[1]*=InvD22;

c[2]*=D22/D33D22;

c[1]-=L32*c[2];

c[0]-=dot(c.yz,b.xy);

float InvC2=1.0f/c[2];

float p=c[1]*InvC2;

float q=c[0]*InvC2;

float r=sqrt((p*p*0.25f)-q);

z[1]=-p*0.5f-r;

z[2]=-p*0.5f+r;

float4 Switch=

(z[2]<z[0])?float4(z[1],z[0],1.0f,1.0f):(

(z[1]<z[0])?float4(z[0],z[1],0.0f,1.0f):

float4(0.0f,0.0f,0.0f,0.0f));

float Quotient=(Switch[0]*z[2]-b[0]*(Switch[0]+z[2])+b[1])

/((z[2]-Switch[1])*(z[0]-z[1]));

return saturate(Switch[2]+Switch[3]*Quotient);

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Input:

• Biased moments 𝑏′,

• Fragment depth 𝑧𝑓.

Output:

• Shadow intensity,

• Divide by ~98% to
diminish remaining
light leaking.

53

Now we are ready to shade fragments. Here you see an HLSL implementation of the core algorithm. Its
inner workings are beyond the scope of this lecture but the basic idea is what I explained to you earlier.
I recommend that you use this code verbatim. Its inputs are the biased moments and the depth of the
fragment that is to be shaded. CLICK
The output is the filtered shadow intensity. CLICK
You may want to divide this by something like 98 percent and clamp to cut off weak light leaking. This
is particularly important if you are doing an sRGB conversion because this conversion strengthens light
leaking.

Results
for filtered hard shadows

Now it is time to take a look at the filtered hard shadows that we get with moment shadow mapping.

Our technique provides pleasant antialiased shadows throughout this moderately complex test scene. If
you look very closely, you can see some light leaking in short- range shadows (e.g. in the shadow of the
small roof at the bottom left when the dragon passes over it) but most of the time the result is fine.

Our strongest competitor is exponential variance shadow mapping. Here you see results of this technique
using 64 bits per shadow map texel. CLICK
There is some fairly obvious light leaking.

Our technique does not lead to such an artifact using the same amount of memory.

Here‘s an indoors example where exponential variance shadow maps fail quite badly. The wall to the
left is lit from the outside. A lot of light leaks into its shadow on the ground. There is also a lot of
light leaking for the shadow on the wall to the right. Note that these images are over-exposed to make
the artifacts more visible.

With moment shadow mapping, the light leaking is reduced heavily but does not vanish entirely. In
general, moment shadow mapping with 64 bits performs much better than exponential variance shadow
mapping with 64 bits but you still should expect some light leaking over short distances.

For reference, here‘s the result of percentage-closer filtering. Even here there are some artifacts because
to avoid surface acne, we need a large depth bias.

Run time
for filtered hard shadows

Of course quality is only part of what we care about. Next, we look at the run time.

62

NVIDIA
GeForce
GTX 970

Output resolution 1920⋅1080, kernel size 9⋅9

When we discuss the run time, there are three major parameters that affect it. The output resolution
(i.e. the resolution on screen), the size of our filter region and the resolution of the shadow map. Here
we vary the shadow map resolution while keeping the other two parameters fixed. We then look at
the frame time that rendering shadows adds to our total frame time. As you can see, percentage-
closer filtering barely gets more expensive as we increase the shadow map resolution. For techniques
with filterable shadow maps, the cost per texel is higher because we use more bandwidth, multisample
antialiasing and prefiltering. In this example, the filterable shadow maps are slightly slower at 20482.
However, the effective resolution of the filterable shadow maps is higher due to multisample antialiasing.

63

NVIDIA
GeForce
GTX 970

Shadow map resolution 10242, kernel size 9⋅9

Looking at the dependence on the output resolution, we get quite a complementary result. The cost
per output pixel is very high for percentage-closer filtering because we need many texture samples.
Filterable shadow maps only require one texture sample per pixel and therefore, the cost per pixel is
low. Therefore, they scale well to 4k rendering and virtual reality applications where high resolutions
are needed. We also note that moment shadow mapping only has a slightly higher cost per pixel than
exponential variance shadow mapping in spite of the more complex algorithm. This is because we are
bandwidth-limited.

64

NVIDIA
GeForce
GTX 970

Shadow map resolution 10242, output resolution 1920⋅1080

Finally, we look at the dependence on the kernel size. Here, percentage-closer filtering behaves in a
rather catastrophic manner. Its run time is quadratic in the kernel radius. For filterable shadow maps,
we use the two-pass Gaussian. Its run time barely depends on the kernel size.

Translucent
occluders

Next we will briefly discuss how moment shadow maps can be used for translucent occluders.

Render to a moment shadow map
with alpha blending*

Channel 1, 2 Channel 3, 4

66

This is achieved by simply rendering to a moment shadow map with alpha blending enabled. Here you
see a moment shadow map with some opaque occluders. To properly show all four channels, we split
it up into two images. Rendering shadows for translucent occluders is done by simply rendering to this
moment shadow map with alpha blending. CLICK
For example, here we have rendered a smoke plume modeled by several alpha- blended planes. CLICK
The blend mode that we use is just standard alpha-blending, i.e. linear interpolation. CLICK
You have to trust me, that it makes sense to do so. If you don‘t, you can find a rigorous derivation in
the paper.

Render to a moment shadow map
with alpha blending*

Channel 1, 2 Channel 3, 4

67

* Trust me, it makes sense if you think about it [Peters16].

Blend mode:
𝛼 ⋅source +
1 − 𝛼 ⋅destination

This is achieved by simply rendering to a moment shadow map with alpha blending enabled. Here you
see a moment shadow map with some opaque occluders. To properly show all four channels, we split
it up into two images. Rendering shadows for translucent occluders is done by simply rendering to this
moment shadow map with alpha blending. CLICK
For example, here we have rendered a smoke plume modeled by several alpha- blended planes. CLICK
The blend mode that we use is just standard alpha-blending, i.e. linear interpolation. CLICK
You have to trust me, that it makes sense to do so. If you don‘t, you can find a rigorous derivation in
the paper.

Here you can see the result of this approach. As you can see, we get plausible shadows throughout
the entire scene. The smoke casts partial shadow onto the walls and the ground, there is proper self-
shadowing within the smoke and the pipes receive a plausible shadow as well. All of this is done with
a single 64-bit moment shadow map. You may get some additional light leaking but the technique is
made compelling by its simplicity and efficiency.

Moment soft
shadow mapping

Lets move on to soft shadows.

Percentage-closer soft shadows
[Fernando05]

1. Blocker search

• Compute average
blocker depth

2. Penumbra estimation

• Compute kernel size

3. Percentage-closer
filtering

70

Our technique is based on percentage-closer soft shadows, which is a three step procedure. First the
shadow map is sampled to find the average depth of shadow casters for a pixel. CLICK
Based on this depth, we estimate how large the penumbra should be at this depth. Close to the caster
it is small, but it grows linearly. CLICK
Finally, we apply percentage-closer filtering with a corresponding kernel size. Of course, this procedure
requires many samples and thus it is quite expensive.

Summed-area tables (SAT)

● Each texel stores sum to the left top,

● Get sum over any
rectangle D from
4 samples,

● Constant time  ,

● Created by horizontal/
vertical compute passes.

71

We use a summed-area table to accelerate it. In a summed-area table each texel stores the sum of
texels which are to the left top in the source texture. For example the texel marked with A stores the
sum over the red rectangle. CLICK
To compute the sum over an arbitrary rectangle D, we take samples at the four corners. Then one
addition and two subtractions reveal the desired sum at a constant cost. CLICK
This takes constant time, independent of the size of the rectangle. CLICK
Construction of the summed-area table can be done using two compute shaders. First we compute
horizontal prefix sums and then vertical prefix sums.

SAT over a moment shadow map

● Generate a SAT from a moment shadow map,

● Store 4 moments in 4 32-bit uints,

● Multiply by
232

𝑛
, then round to integer,

● 𝑛 is number of texels in largest kernel,

● May overflow after 𝑛 adds but end result is fine,

● Precision of log2
232

𝑛
bits: 272 kernel → 22.5 bits.

72

We create a summed-area table over a moment shadow map. The details are a bit intricate because
we need to ensure a sufficient precision. Therefore, we store each of the four moments in a 32-bit
unsigned integer. The floating point moments between zero and one are multiplied by 2^32/n. Then
we round to integer. After n additions, we may get integer overflows. However, n is the number of
texels in the largest kernel that we use. Thus, the end result is fine if we just let the overflows happen.
The precision of the moments is given by the base-2 logarithm of this factor. For example, a 272 kernel
yields a precision of 22.5 bits. This is almost as good as single-precision floats.

Moment-based blocker search

● Input: Moments for search region, depth 𝑧𝑓.

● Output: Average blocker depth.

1. Reconstruct with
three depth values,

2. Compute average
blocker depth, e.g.

73

𝑤1 ⋅ 𝑧1 + 𝑤2 ⋅ 𝑧2 + 𝜀 ⋅ 𝑧𝑓

𝑤1 +𝑤2 + 𝜀 𝜀:= 10−3

Now we want to shade a pixel. Using the summed-area table, we can easily get the four moments for
the search region. We also know the depth of the pixel. In the blocker search, we want to compute the
average depth of shadow casters. CLICK
As a first step, we reconstruct a matching depth distribution using three depth values. Hopefully this
looks familiar to you. It is what I showed you when I explained moment shadow mapping. Therefore,
the algorithm for the reconstruction is already available. CLICK
Now we simply assume that this reconstruction is correct because having more than three surfaces in the
search region is unlikely. Under this assumption, the average blocker depth can be computed directly.
CLICK
To make this robust to cases where the denominator is small, we add a little bias towards the depth of
the pixel.

Penumbra estimation and filtering

● Penumbra size is estimated as in
percentage-closer soft shadows,

● A single interpolated query to the SAT
provides moments for the filter region,

● Rectangular filter → rectangular light source,

● A little unrealistic, but the shadows look fine.

● Moment shadow mapping yields shadow.

74

With the average blocker depth we can estimate the size of our penumbra as in percentage-closer soft
shadows. CLICK
A single interpolated query to the summed-area table gives us the moments for the corresponding filter
region. Note that this filter region has to be rectangular, i.e. we assume a rectangular light source.
This might not be what you really want in many cases but the soft shadows still look plausible. CLICK
Then we apply standard moment shadow mapping and we get our shadow intensity. The moment bias
can be smaller here.

Caveat: Bilinear interpolation

● Have to interpolate uints in the shader.

1. Load 4⋅4 texels,

2. Compute sums for
3⋅3 rectangles,

3. Convert to float,

4. Combine.

● Costly but acceptable.

75

There is one pitfall though. Your API probably refuses to perform interpolation on the integers in the
summed-area table and even if it would do it, it would probably do it wrongly. We have to interpolate
the integers in the shader. CLICK
Suppose we are given an arbitrary query rectangle. CLICK
First we load the four texels adjacent to the four corners of this query. CLICK
From these values we compute sums for the 3*3 rectangles shown here. CLICK
All of these rectangles are smaller than the maximal kernel size, so we can safely convert to float.
CLICK
Finally, we combine the results with weights proportional to the area covered by the query. CLICK
This is quite costly but still better than brute-force sampling.

Results
for soft shadows

Lets take a look at the results.

Model © Blender foundation | mango.blender.org

Here you see soft shadows computed by moment soft shadow mapping for a complex model. They are
hard at contact points and then gradually soften as expected. The hard contact shadows exhibit some
aliasing but it is not too bad thanks to 8x multisample antialiasing.

Model © Blender foundation | mango.blender.org

• Shadow of small hole,
• Rectangular light rather

obvious,
• Still ok.

Here you see a still from this video. The magnified inset at the bottom left shows the shadow of a
small hole. CLICK
You basically see the projection of the light source and the fact that it is rectangular is quite obvious.
CLICK
However, this is not very distracting and in other situations it is nearly impossible to tell that the light
is rectangular.

Model © Blender foundation | mango.blender.org

Here you see the result of percentage-closer soft shadows. It is quite similar but there are two noteworthy
issues. The shadow does not get as soft as it should because we have limited the search region to 15*15
which is not quite enough but already slow. Besides aliasing for contact shadows is much worse because
we cannot use multisample antialiasing for the common shadow map.

An artifact that moment soft shadow mapping inherits from percentage-closer soft shadows is demon-
strated here. CLICK
The shadow of the distant wall makes the shadow of the nearby column softer. This is clearly an
artifact but usually not too distracting. Every approach using the blocker search of percentage-closer
soft shadows exhibits such artifacts. CLICK

NVIDIA
GeForce
GTX 970

81

Output resolution 1920⋅1080 Shadow map resolution 10242

We take a look at the run time for shadows in a similar manner as before. To the left we vary the
shadow map resolution, to the right we vary the output resolution. Even with a 9*9 search region,
which is too small for realistic shadows, percentage-closer soft shadows is always slower than moment
soft shadow mapping. Again we observe that approaches using moment shadow maps have a high cost
per texel but a low cost per pixel. The cost per pixel is increased heavily when we enable interpolation.
Optimizations for specific use cases or specific hardware may help to close this gap.

Prefiltered single
scattering

To conclude the talk lets move from surface shadows to volumetric single scattering.

83Photograph by Carlos Perez Couto, Wikimedia Commons, CC-BY-SA 3.0

We want single scattering because it is beautiful and helps to direct the attention of the viewer.

Integrate shadow along view ray

• Directional light
• Homogeneous

participating media

84

Here is a simple scene lit by a directional light. CLICK
If there is homoegenous participating media, the shadow volumes of objects become visible as they
reduce single scattering. CLICK
To render this effect, we need to integrate the shadow term over each view ray, e.g. by using many
shadow map samples along the view ray. Note that our technique is limited to the scenario described
here, i.e. we do not support point lights or inhomogenous media but get a high performance for this
special case.

Prefiltered single scattering [Klehm14]

● Ray marching = Percentage-closer filtering
with view ray as kernel,

● Klehm et al. use a convolution shadow map,

● The convolution shadow map is filtered,

● Then each texel encodes the single
scattering result for an entire light ray,

● 256 bits per texel  .

85

Our technique is an extension of prefiltered single scattering by Oliver Klehm. The key observation in
this technique is that ray marching is like percentage-closer filtering using the view ray as filter region.
CLICK
Oliver Klehm uses a convolution shadow map to precompute this result. CLICK
Each texel encodes the single scattering result for an entire light ray. Thus, we no longer need to
integrate per pixel. CLICK
On the other hand, we need 256 bits per texel for a reasonable quality. That‘s quite expensive.

Prefiltered single scattering with
6 moments (ours)

● Moment shadow maps yield better results
with 64 bits per texel,

● Prefiltered moment shadow map:

● Encodes single scattering result per light ray,

● Using six moments.

● Interpolate between lower and upper bound
to minimize artifacts.

86

In our work we use a moment shadow map instead. Using four times less memory we get better results.
CLICK
Each texel in the prefiltered moment shadow map encodes the single scattering result for one light ray.
We no longer use four moments but six moments to a get a more faithful reconstruction. CLICK
With the same approach as before, we can compute lower and upper bounds for the single scattering.
We then interpolate between the two in a manner that keeps objectionable artifacts to a minimum.

Resampling using epipolar geometry

87

● z=𝜋-𝜃, u=𝑟, v=𝜑 ⟶ View rays are rows.
′

To make this work, we transfer the moment shadow map into a new coordinate system based on epipolar
geometry. This transform is nonlinear, so we have to apply resampling. For the coordinate conversion,
we first put the camera into the origin and align the light direction with the z-axis. Then we compute
spherical coordinates. The inclination is used as new shadow map depth. The azimuth is used as
vertical shadow map coordinate. CLICK
In this coordinate system the whole left column of the shadow map corresponds to the camera. CLICK
Each row corresponds to a view ray. CLICK
CLICK

Resampling without filtering

88

Pixel
shader

1. Convert coordinates,

2. Sample shadow
map,

3. Convert depth,

4. Compute 6
moments.

• Aliasing  .

𝑧1

𝑧2

⋮
𝑧6

𝑧′

Shadow map
Resampled

6 moment shadow map

𝑧

Here is one way to construct this resampled shadow map. We use a pixel shader. Suppose we want to
compute the moments for the texel highlighted in the resampled 6 moment shadow map. CLICK
As a first step we compute the corresponding coordinate in the original shadow map coordinate system.
CLICK
Then we take a sample from a common shadow map. CLICK
The sampled depth has to be converted into the new coordinate system. CLICK
Finally, we compute the six moments and write them to the output texture. CLICK
The problem with this approach is that we must not filter the common shadow map. Thus, we get bad
aliasing.

Resampling with filtering

89

Pixel
shader

1. Convert coordinates,

2. Sample 4 moment
shadow map,

3. Reconstruct 3
moments with 2
depths 𝑧0

′ , 𝑧1
′ ,

4. Convert 2 depths,

5. Compute 6
moments.

𝑤0 ⋅

𝑧0
1

𝑧0
2

⋮
𝑧0
6

+ 𝑤1 ⋅

𝑧1
1

𝑧1
2

⋮
𝑧1
6

𝑏1
𝑏2
𝑏3
𝑏4

4 moment
shadow map

Resampled
6 moment shadow map

𝑧0

𝑧1

Here‘s a more sophisticated approach. The first step is the same. We just convert the shadow map
coordinates. CLICK
However, we then sample a moment shadow map with filtering. CLICK
We dispose the fourth moment and represent the other three moments using two depth values. The
corresponding algorithm is closely related to what we‘ve seen before. CLICK
Then we convert both depth values used in the reconstruction to the new coordinate system. CLICK
Finally, we construct two vectors of six moments and combine them into one. This gives us the final
output.

Quantization

● 6 moments: 2×R10G10B10A2 normalized
uint, i.e. 64 bits total (4 bit waste),

● Quantization transform:
𝑅0
𝐺0
𝐵0

=
2.5 −1.87499864 1.26583039
−10 4.20757543 −1.47644883
8 −1.83257679 0.71061660

𝑇

⋅
𝑧1

𝑧3

𝑧5
+

0.5
0.5
0.5

𝑅1
𝐺1
𝐵1

=
4 9 −0.57759806
−4 −24 4.61936648
0 16 −3.07953907

𝑇

⋅
𝑧2

𝑧4

𝑧6
+

0
0

0.018888946

90

As before, we need to ensure a sufficient precision of the moments. It turns out that rounding errors are
less malicious for single scattering. Thus, we choose to use only 10 bits per moment. All six moments
are stored in two textures where red, green and blue each use 10 bits. The four bits for alpha are
unused. CLICK
We also need an optimized quantization transform for six moments which you can see here.

Prefix sums along rows

Precompute all single scattering results.

91

Compute
shader

∑ ∑ = =

Resampled
6 moment shadow map

Prefiltered
6 moment shadow map

Next we precompute the single scattering integrals for each view ray by simply summing over rows.
CLICK
This is done by a compute shader. The sums should be normalized to avoid overflows.

Deferred pass for single scattering

92

Additive
deferred

pass

Depth buffer

Prefiltered 6 moment shadow map

Scene with
single scattering

2 shadow map samples
per pixel on screen.

Finally, we perform an additive deferrred pass. The depth buffer of the scene and the prefiltered six
moment shadow map are used as input. For each pixel, we only need one lookup in each of the two
textures for the six moment shadow map. Thus, the deferred pass is very efficient.

Results
for single scattering

We will now take a look at the results.

Ray marching with 128 samples provides us with a ground truth. This result is what we are going for
but computing it like this is very expensive.

Here you see the result that we get using prefiltered single scattering with six moments. As you can see,
the appearance is very close to the ground truth. Throughout this animation there is just one obvious
artifact, namely some leaking shadows at the roof to the left. If you do not look out for it, you probably
won‘t notice it.

Here‘s a bad case of aliasing when we do not use filtering during resampling of the shadow map. The
single scattering is extremely unstable.

If we instead filter a moment shadow map, this aliasing goes away almost entirely. The result is much
smoother and more stable.

98

NVIDIA
GeForce
GTX 970

Output resolution 1920⋅1080 Shadow map resolution 10242

Looking at the run time, we make similar observations as before. The cost per texel is fairly high for
prefiltered single scattering with moments. However, the cost per pixel is much lower than for ray
marching because we only need two texture samples (instead of 128). It is impractical, to perform ray
marching at full resolution. The most widely used solution is to compute it at a much lower resolution
and to use a bilateral upscale afterwards. However, this approach will certainly fail in presence of
detailed geometry. With prefiltered single scattering, you do not need this upscaling. We also note that
the cost of filtering is fairly small.

Closing remarks

Finally, we draw some conclusions.

Conclusions

● Moment shadow maps outperform other
filterable shadow maps:

● The memory requirements are much lower
than for convolution shadow maps,

● Less light leaking than variance shadow
maps, exponential shadow maps and
exponential variance shadow maps.

100

Moment shadow maps are better than all earlier types of filterable shadow maps, at least in some
way. Compared to convolution shadow maps the memory and bandwidth requirements are substantially
lower. Compared to all other earlier techniques, there is less light leaking.

Conclusions (continued)

● Moment shadow maps are faster than
common shadow maps for:

● Small shadow map resolutions (feasible
thanks to antialiasing),

● Large output resolutions (i.e. 4k and VR),

● Large filter regions (great for soft shadows).

● Surface acne is hardly a problem.

101

Common shadow maps are still a valid option but there are many scenarios where they are slower.
Moment shadow maps are faster if the shadow map resolution is small, which is feasible thanks to
multisample antialiasing. They are also faster when the output resolution is large. In 4k and virtual
reality rendering you should definitely use them. Even at 1080p, they are quite competitive. Moment
shadow maps also scale better to large filter regions which makes them a good fit for soft shadows and
single scattering. CLICK
Another major advantage over common shadow maps is that surface acne is much less of a problem.
With moment shadow maps you can likely get away by using a small, globally constant depth bias.
Tweaking is not required.

Code, demos, papers and more

MomentsInGraphics.de

102

If you want to implement any of these techniques, please take a look at my new blog. There you will
find shader code, executable demos, papers, videos and more.

Acknowledgments

● I would like to thank:

● Michiel van der Leeuw and Giliam de
Carpentier at Guerrilla Games who gave
valuable feedback during review,

● My coauthors Cedrick Münstermann, Nico
Wetzstein and Reinhard Klein who contributed
to the two i3D papers.

103

I would like to thank Michiel van der Leeuw and Giliam de Carpentier at Guerilla Games who gave a
lot of valuable feedback during review. I would also like to thank my coauthors Cedrick Münstermann,
Nico Wetzstein and Reinhard Klein who contributed to the two i3D papers.

My job search

● I‘m about to hand in my PhD thesis,

● Do you have an open position in graphics
R&D?

● Please contact me:
peters@cs.uni-bonn.de

104

And last but not least, I am about to hand in my PhD thesis and will be looking for a job after that.
If you have an open position in graphics R&D, please let me know.

Thanks!
Questions?
Contact me at peters@cs.uni-bonn.de.

That‘s it. Thank you for your attention and I‘m looking forward to your questions.

References

● [Annen07] Annen, T., Mertens, T., Bekaert, P., Seidel, H.-P., and
Kautz, J. (2007). Convolution shadow maps. In EGSR07: 18th
Eurographics Symposium on Rendering, pages 51–60. Eurographics
Association.

● [Annen08] Annen, T., Mertens, T., Seidel, H.-P., Flerackers, E., and
Kautz, J. (2008). Exponential shadow maps. In GI ’08: Proceedings
of graphics interface 2008, pages 155–161. Canadian Information
Processing Society.

● [Donnelly06] Donnelly, W. and Lauritzen, A. (2006). Variance
shadow maps. In Proceedings of the 2006 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, i3D ’06, pages
161–165. ACM.

106

References (continued)

● [Fernando05] Fernando, R. (2005). Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches. ACM.

● [Klehm14] Klehm, O., Seidel, H.-P., and Eisemann, E. (2014). Filter-
based real-time single scattering using rectified shadow maps.
Journal of Computer Graphics Techniques (JCGT), 3(3):7–34.

● [Lauritzen08] Lauritzen, A. and McCool, M. (2008). Layered variance
shadow maps. In Proceedings of graphics interface 2008, pages
139–146. Canadian Information Processing Society.

107

References (continued)

● [Lauritzen11] Lauritzen, A., Salvi, M., and Lefohn, A. (2011). Sample
distribution shadow maps. In Proceedings of the 15th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, i3D
’11, pages 97–102. ACM.

● [Martin04] Martin, T. and Tan, T.-S. (2004). Anti-aliasing and
continuity with trapezoidal shadow maps. In EGSR04: 15th
Eurographics Symposium on Rendering, pages 153–160.
Eurographics Association.

● [Peters15] Peters, C. and Klein, R. (2015). Moment shadow
mapping. In Proceedings of the 19th ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, i3D ’15, pages 7–14. ACM.

108

References (continued)

● [Peters16] Peters, C., Münstermann, C., Wetzstein, N., and Klein, R.
(2016). Beyond hard shadows: Moment shadow maps for single
scattering, soft shadows and translucent occluders. In Proceedings
of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, i3D ’16, pages 159–170. ACM.

● [Reeves87] Reeves, W. T., Salesin, D. H., and Cook, R. L. (1987).
Rendering antialiased shadows with depth maps. In Proceedings of
the 14th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’87, pages 283–291. ACM.

109

References (continued)

● [Salvi08] Salvi, M. (2008). ShaderX 6 , chapter Rendering filtered
shadows with exponential shadow maps, pages 257–274. Cengage
Learning Inc.

● [Williams78] Williams, L. (1978). Casting curved shadows on curved
surfaces. In Proceedings of the 5th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’78, pages 270–274.
ACM.

● [Zhang06] Zhang, F., Sun, H., Xu, L., and Lun, L. K. (2006).
Parallel-split shadow maps for large-scale virtual environments. In
Proceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications, pages 311–318. ACM.

110

Bonus slides

Computing the
bounds
in moment shadow mapping

Computing the bounds

● Given: Moments 𝑏𝑗 = 𝔼𝑍(𝒛
𝑗) for 𝑗 = 1…4, depth 𝑧𝑓

● Problem: Find 𝑧1, 𝑧2, 𝑤0, 𝑤1, 𝑤2 such that

1 1 1
𝑧𝑓 𝑧1 𝑧2

𝑧𝑓
2 𝑧1

2 𝑧2
2

𝑧𝑓
3 𝑧1

3 𝑧2
3

𝑧𝑓
4 𝑧1

4 𝑧2
4

⋅

𝑤0

𝑤1

𝑤2

=

1
𝑏1
𝑏2
𝑏3
𝑏4

.

113

Suppose we are given four moments and one depth. We want to compute two additional depth values
and three weights such that all moments match. Additionally, the weights have to sum up to one.

Computing the bounds

● Solution: Compute roots 𝑧1, 𝑧2 of polynomial

1
𝑧1/2

𝑧1/2
2

𝑇

⋅

1 𝑏1 𝑏2
𝑏1 𝑏2 𝑏3
𝑏2 𝑏3 𝑏4

−1

⋅

1
𝑧𝑓

𝑧𝑓
2

= 0.

114

Now we can either solve this equation by hand or we can use some clever tricks. Either way, we find
that it implies the following equation. Note that the weights are gone. And the two depth values are
now simply the two roots of a quadratic equation. We can easily solve that.

Computing the bounds
● Input: Depth 𝑧𝑓 ∈ ℝ, moments 𝑏𝑗 = 𝔼𝑍(𝒛

𝑗) for j = 1…4

● Output: Approximate shadow intensity

1. Solve

1 𝑏1 𝑏2
𝑏1 𝑏2 𝑏3
𝑏2 𝑏3 𝑏4

⋅

𝑐1
𝑐2
𝑐3

=

1
𝑧𝑓

𝑧𝑓
2

2. Solve 𝑐3 ⋅ 𝑧
2 + 𝑐2 ⋅ 𝑧 + 𝑐1 = 0 for 𝑧1, 𝑧2 ∈ ℝ

3. Solve

1 1 1
𝑧𝑓 𝑧1 𝑧2

𝑧𝑓
2 𝑧1

2 𝑧2
2

⋅

𝑤0

𝑤1

𝑤2

=
1
𝑏1
𝑏2

4. Return ∑𝑖=1,𝑧𝑖<𝑧𝑓
2 𝑤𝑖 (add 𝑤0 for upper bound)

115

By putting the pieces together, we get our main algorithm. It computes an approximate shadow intensity
from four moments and a fragment depth. CLICK
First, we have to compute the coefficients of the quadratic equation from the previous slide by solving
a system of linear equations. CLICK
Then we solve the quadratic equation itself using the quadratic formula. CLICK
Now the three weights can be computed using only three of our five linear equations. CLICK
The lower bound is obtained by simply adding up the appropriate weights. That is the lower bound for
our shadow intensity. We can also add weight zero to get the upper bound. When implementing this
technique it is crucial to use numerically stable methods for every step. Most importantly, you have to
use a Cholesky decomposition in step one.

Moment shadow
maps at 128 bits

116

Use in production

More on prefiltered
single scattering

Interpolation between bounds

● Algorithm yields lower and upper bounds.

● We can interpolate arbitrarily:

𝛽 ⋅lower bound+ 1 − 𝛽 ⋅upper bound

● 𝛽 = 0: Single scattering always too dark,

● 𝛽 =1: Single scattering always too bright,

● Choose 𝛽 intelligently per pixel.

125

Adaptive overestimation

● We are looking for a smooth function that is
0 for 𝜃 = 𝜋 and 1 for 𝜃 = 0.

● The following looks good:

𝛽 ≔
1 + 𝜔𝑙

𝑇 ⋅ 𝜔𝑝

2
,

● Where 𝜔𝑙 is the normalized light direction,

● And 𝜔𝑝 is the normalized view ray direction.

128

