
Data Binding
Architectures for Rapid UI
Creation in Unity

Stephan Dilly
Head of Frontend Engineering
InnoGames GmbH

InnoGames GmbH

● Founded in 2007
● Started with browser games
● Migration to mobile
● Mobile-only strategy now

Lost Survivor

● RPG/Survival
● 3D
● Launched in

Netherlands

The Old Approach
● Artists work in Photoshop
● UI Developer applies magic
● QA finds the bugs

Artist Olli

Say Hi to..

Dev Lars QA Dennis

Flaws
● ‘Not my problem’ attitude
● Developer plays UI artist
● Untested spaghetti code
● Long turnaround times

Architecture in Lost Survivor
● Artist works directly in Unity
● Dev/Art work decoupled
● Dev/Art work parallel

Everyone is happy

How did we get there?

MVC

Int AmountXP;

void GainXP();
void LevelUp();

Textfield XP;

update

notify

update

user action

MVC

“[Objects] tend to be more reusable, and
their interfaces tend to be better defined.”

MVC
● Native iOS SDK support
● Seperation of concerns
● Visual designer in XCode

Windows Presentation Foundation

MVVM

Data Binding

TextField xp; Int amountXp;

CharModel char;

LevelModel level;

MVVM

● ViewModel serves the View
● One ViewModel per View
● Based on Data Binding

Our Architecture

Architecture in Lost Survivor

Int xp;
Int level;

void GainXP();
void LevelUp();

Data Binding

Classes

Examples

Example: Simple Data Binding

Example: Simple Data Binding

// bind toggles to method calls
Subscribe<SettingsConfigurationModel>()
 .BindToggle(MusicToggle, _audioService.MuteMusic, true)
 .BindToggle(SfxToggle, _audioService.MuteSfx, true)
 .BindToggle(PushNotificationToggle, SetPushEnabled)

Example: Custom Data Binding

Example: Custom Data Binding
Subscribe<CharacterModel>()
 .BindModelChangeAction(UpdateBuffObjects)
 .BindButton(HealButton, CurrentBuffSubview, (model, script) => ...)
 ...
.Finish();

private void UpdateBuffObjects(CharacterModel model){

 for (int i = 0, count = model.ActiveStageBuffs.Count; i < count; i++)
 {
 InstantiateNewBuffGameObject(CurrentBuffSubview, model.ActiveStageBuffs[i]);
 }
 ...
}

Performance Impact
● Based on Reflection
● Startup only
● No Garbage Collector pressure

Testing The Design
● Artist waits for dev
● Waits for build
● Has to actually play
● Isolation impossible

Mocking For The Rescue
● Isolated testing
● Fast iteration
● Little dependencies
● Everything can be simulated

Working Together in Unity

Asset Merging

Solve Asset Merging
● Not an issue in this architecture
● Artist owns the UI scene
● Dev owns code
● No conflict

Unit testing
● Untestable code
● No unit tests
● Long turnaround times

Unit Testing Now

Unit Testing Now

Unit Testing Now

Manual Testing
● Outsourcing costs
● Waterfall model
● Device fragmentation

Manual Testing

Automation Tests

©Facebook

© AWS DeviceFarm

Automation Tests

Validation
● What if linking breaks?

Validation
void OnValidate(){

 // perform the binding
 OnBind();

 // check if all fields expected from
 // the binding are present in the model
 CheckViewToModelRelation();

 // make sure all expected view elements are setup and wired
 CheckViewsetup();

 UnBind();
}

MessageBus

MessageBus - Code

// You subscribe to a type not a name
 _messageBroker.Sub<CombatModel>(UpdateState);

CombatModel combatModel;
combatModel.Pending.Add(...);
_messageBroker.Pub(_combatModel);

MessageBus - Performance
● Based on reflection
● Cached reflection objects
● No measurable impact

Alternatives

Alternative: Karma
● Inherit from MVCPresenter
● Annotate with [Element(path)]

Too much ceremony

Alternative: DataBind
● No DI
● Data Binding in the editor

Too Editor Oriented

Conclusion
● Dev/Art can focus
● Mocking
● Working together in Unity
● Unit testing
● UI Testing

Future Plans

Mocking Improvements
● Support interfaces/abstract classes
● Scan the assembly
● Provide DropDown list

Code Generation
● Reduce manual maintenance
● Artist can auto generate class
● Use partial C# classes

Make it OpenSource

Start Now!

Thank you.
Questions?

Contact me on Twitter @extrawurst

