
Insomniac’s Web Tools  
(a postmortem) 
 
Andreas Fredriksson  
Lead Engine Programmer 
Insomniac Games

Hi, I’m Andreas

Hi, I’m Andreas

● I lead the tools & infrastructure team at Insomniac

Hi, I’m Andreas

● I lead the tools & infrastructure team at Insomniac
● “So you guys have web tools?”

● #1 conversation opener

Our web tools exodus

Our web tools exodus
● Disclosure: We have abandoned web tools development

Our web tools exodus
● Disclosure: We have abandoned web tools development
● This talk is about what was good

Our web tools exodus
● Disclosure: We have abandoned web tools development
● This talk is about what was good
● …And what wasn’t so good

The 2010 Web Tools Vision

The 2010 Web Tools Vision
● Overhauling tools+engine for cross-platform tech reboot

The 2010 Web Tools Vision
● Overhauling tools+engine for cross-platform tech reboot
● Games having ever-bigger data sets

● New focus on visualization and mining

The 2010 Web Tools Vision
● Overhauling tools+engine for cross-platform tech reboot
● Games having ever-bigger data sets

● New focus on visualization and mining
● More UI innovation in the web space!

● Compared to desktop space

● Also true of mobile space

The 2010 Web Tools Vision
● Overhauling tools+engine for cross-platform tech reboot
● Games having ever-bigger data sets

● New focus on visualization and mining
● More UI innovation in the web space!

● Compared to desktop space

● Also true of mobile space

● Strong team drive to try new things

2010 vision, continued

● Hire awesome web people!

http://www.codingdojo.com/blog/9-most-in-demand-
programming-languages-of-2016/

2010 vision: “Everyone can make a web page”
● Lower the barrier to entry!

● Empower the team to roll out simpler stuff whenever

2010 vision: “There’s tons of off the shelf web stuff”

2010 vision: “There’s tons of off the shelf web stuff”
● Lots, lots, lots out there

2010 vision: “There’s tons of off the shelf web stuff”
● Lots, lots, lots out there
● Open ecosystem

2010 vision: “There’s tons of off the shelf web stuff”
● Lots, lots, lots out there
● Open ecosystem
● Fewer wheels to reinvent

EngineTools

2010 vision: Enforce one-way data pipeline

EngineTools

2010 vision: Enforce one-way data pipeline

Source

Data

Built

Data

EngineTools

2010 vision: Enforce one-way data pipeline

Source

Data

Built

DataBuilders

2010 vision: Web browser = Data Sandbox

2010 vision: Web browser = Data Sandbox
● Hard to call browser logic from engine

2010 vision: Web browser = Data Sandbox
● Hard to call browser logic from engine
● Hard to call engine logic from browser

2010 vision: Web browser = Data Sandbox
● Hard to call browser logic from engine
● Hard to call engine logic from browser
● Much easier to do the right thing instead (write a builder)

2010 grand vision
● Zero install tools

● “Have a browser? You’re good to go.”

So that was the vision..

So that was the vision..
● …and the team started building stuff

So that was the vision..
● …and the team started building stuff
● Core Team = a bunch of C++ experts

● With almost no web experience at this point

So that was the vision..
● …and the team started building stuff
● Core Team = a bunch of C++ experts

● With almost no web experience at this point
● We had 3-5 people working on web tools full time for 5 years

Early days, early decisions

Early days, early decisions
● Single browser: Chrome

● Avoid the web compatibility/standards problem

● Leverage Chrome team smarts - let them worry about browser!

Early days, early decisions
● Single browser: Chrome

● Avoid the web compatibility/standards problem

● Leverage Chrome team smarts - let them worry about browser!

● 3D native engine view?

● Jam a native child window into Chrome!

● Tiny amount of glue code in a plugin needed

Early days, early decisions
● Single browser: Chrome

● Avoid the web compatibility/standards problem

● Leverage Chrome team smarts - let them worry about browser!

● 3D native engine view?

● Jam a native child window into Chrome!

● Tiny amount of glue code in a plugin needed

● Where do web pages come from?

● A server!

NTFS

Source Asset Management

LunaServerMongo

DB

NTFS

Web Tools

Source Asset Management

LunaServerMongo

DB

Chrome Tool

NTFS

ToolsWeb Tools

Source Asset Management

LunaServerMongo

DB

Chrome Tool 3D View

NTFS

ToolsWeb Tools

Source Asset Management Build System

LunaServer LunaTrackerMongo

DB LMDB

Chrome Tool 3D View

NTFS
Asset Builder

ToolsWeb Tools

Source Asset Management Build System

LunaServer LunaTrackerMongo

DB LMDB

Chrome Tool 3D View

NTFS
Asset Builder

ToolsWeb Tools

Source Asset Management Build System

LunaServer LunaTrackerMongo

DB LMDB

Chrome Tool 3D View

NTFS
Asset Builder

ToolsWeb Tools

Source Asset Management Build System

LunaServer LunaTrackerMongo

DB LMDB

Chrome Tool 3D View

NTFS
Asset Builder

ToolsWeb Tools

Source Asset Management Build System

LunaServer LunaTrackerMongo

DB LMDB

GameChrome Tool 3D View

NTFS
Asset Builder

Vision meets reality: Early tradeoffs

Vision meets reality: Early tradeoffs
● Desktop look and feel

● Early UX tests revealed dislike of “odd stuff”

● Traditional concepts like menu bars strongly desired

Vision meets reality: Early tradeoffs
● Desktop look and feel

● Early UX tests revealed dislike of “odd stuff”

● Traditional concepts like menu bars strongly desired

● Has to work together with Maya, Photoshop, …

● It’s not a web app on a deserted island, it exists side by side

Vision meets reality: Early tradeoffs
● Desktop look and feel

● Early UX tests revealed dislike of “odd stuff”

● Traditional concepts like menu bars strongly desired

● Has to work together with Maya, Photoshop, …

● It’s not a web app on a deserted island, it exists side by side

● “We can’t do that because it’s a web app” not a valid excuse

Our web tools: A gallery
● A complete AAA tool suite in the browser

● Not trying to impress you

● Need to understand the scope to get the rest of the talk

3D View
SceneEditor.exe attached to

Chrome

3D View
SceneEditor.exe attached to

Chrome

3D View
SceneEditor.exe attached to

Chrome

That’s a lot of stuff!

That’s a lot of stuff!
● We definitely answered the “is it even possible” question

That’s a lot of stuff!
● We definitely answered the “is it even possible” question
● 340,000 Javascript LOC, ~1,000 files

● Excluding generated and 3rd party code

That’s a lot of stuff!
● We definitely answered the “is it even possible” question
● 340,000 Javascript LOC, ~1,000 files

● Excluding generated and 3rd party code
● 500,000 C++ LOC of server infrastructure & builders

What went right

What went right

What went right
● Debugger and profiler on every machine

● Chrome dev tools are decent

What went right
● Debugger and profiler on every machine

● Chrome dev tools are decent
● Achieved clean data separation

What went right
● Debugger and profiler on every machine

● Chrome dev tools are decent
● Achieved clean data separation
● Centralized undo/redo

What went right
● Debugger and profiler on every machine

● Chrome dev tools are decent
● Achieved clean data separation
● Centralized undo/redo
● Symbolic data manipulation

Right: Central undo/redo

Server

Tool

Right: Central undo/redo

Server

Tool

Proposed Change:

Delta JSON

Right: Central undo/redo

Server

Tool

Proposed Change:

Delta JSON

Change Log

Right: Central undo/redo

Server

Tool

Proposed Change:

Delta JSON

Change:

Delta JSON

Change Log

Right: Central undo/redo

Server

Tool

Proposed Change:

Delta JSON

Tool

Change:

Delta JSON

Change:

Delta JSON

Change Log

Right: Central undo/redo

Server

Undo/Redo!

Right: Central undo/redo

Server

Change LogUndo/Redo!

Right: Central undo/redo

Server

ToolTool

Undo Change:

Delta JSON

Undo Change:

Delta JSON

Change LogUndo/Redo!

Right: Symbolic Data Manipulation

Right: Symbolic Data Manipulation
● Need to be able to edit any piece of game data in web tools

Right: Symbolic Data Manipulation
● Need to be able to edit any piece of game data in web tools
● Can’t link to game (C++) code from web browser

Right: Symbolic Data Manipulation
● Need to be able to edit any piece of game data in web tools
● Can’t link to game (C++) code from web browser

struct MySpecialObject {
 int32 Hitpoints; // Default = 100
 float Shininess; // Default = 3.5
 // …
}

Right: Symbolic Data Manipulation
● Solution: Edit all data formats using meta-data

● DDL compiler outputs both C++ code and metadata for tools

● Use symbolic meta-data in tools to edit assets

● Useful in native tools as well, reduces coupling

MySpecialObject metadata:
 Name=“Hitpoints” Type=i32 Default=100
 Name=“Shininess” Type=f32 Default=3.5
 // …

So, what went wrong?

So, what went wrong?

{} yourselves

Wrong: Early web mindset

Wrong: Early web mindset
● “It’s just a web page”

Wrong: Early web mindset
● “It’s just a web page”
● In rush to try to get something out the door

Wrong: Early web mindset
● “It’s just a web page”
● In rush to try to get something out the door
● Poor engineering style early on

● No tests

● Global variables aplenty

● Learning as we were going

Wrong: Javascript

Wrong: Javascript
● So much pain – a toy language that is still growing up

Wrong: Javascript
● So much pain – a toy language that is still growing up
● undefined is not a function

Wrong: Javascript
● So much pain – a toy language that is still growing up
● undefined is not a function
● Silently breaking other parts of the codebase

● Renaming a function = super high risk

● Adding a parameter? Good luck!

● Relying on grep or IDE searching to fix up references often fails

Wrong: Javascript
● So much pain – a toy language that is still growing up
● undefined is not a function
● Silently breaking other parts of the codebase

● Renaming a function = super high risk

● Adding a parameter? Good luck!

● Relying on grep or IDE searching to fix up references often fails

● Add quick fixes on top and you’ve got a nightmare

Wrong: No heavy lifting

Wrong: No heavy lifting
● JS single-threaded (web workers are a joke)

Wrong: No heavy lifting
● JS single-threaded (web workers are a joke)
● Garbage collection

Wrong: No heavy lifting
● JS single-threaded (web workers are a joke)
● Garbage collection
● Impractical to work with full game dataset

● Sunset Overdrive's streaming optimization, for example

Wrong: LunaServer became a dumping ground

Wrong: LunaServer became a dumping ground
● Anything you can’t do in the browser goes in the server..

Wrong: LunaServer became a dumping ground
● Anything you can’t do in the browser goes in the server..
● LunaServer quickly grew bigger and bigger

● Random program launching

● File system interfaces

● Desktop interop services

● Perforce interfaces

Wrong: LunaServer became a dumping ground
● Anything you can’t do in the browser goes in the server..
● LunaServer quickly grew bigger and bigger

● Random program launching

● File system interfaces

● Desktop interop services

● Perforce interfaces

● Lots of technical debt unless planned for carefully!

Wrong: LunaServer became a dumping ground
● Anything you can’t do in the browser goes in the server..
● LunaServer quickly grew bigger and bigger

● Random program launching

● File system interfaces

● Desktop interop services

● Perforce interfaces

● Lots of technical debt unless planned for carefully!
● Is this still used? Grep all the code and hope for the best!

Mixed: Javascript on V8

Mixed: Javascript on V8
● Optimizing for performance can be non-intuitive

● Programming several layers away from actual compiler

Mixed: Javascript on V8
● Optimizing for performance can be non-intuitive

● Programming several layers away from actual compiler
● V8 optimization best practices change over time

● Keeping up on this for 300k LOC is a hard problem

Mixed: Javascript on V8
● Optimizing for performance can be non-intuitive

● Programming several layers away from actual compiler
● V8 optimization best practices change over time

● Keeping up on this for 300k LOC is a hard problem
● Often conflicts between idiomatic vs fast

Mixed: Javascript on V8
● Optimizing for performance can be non-intuitive

● Programming several layers away from actual compiler
● V8 optimization best practices change over time

● Keeping up on this for 300k LOC is a hard problem
● Often conflicts between idiomatic vs fast
● Lack of information and “what good looks like”

● Many web frameworks have poor performance

Wrong: V8 Stability

Wrong: V8 Stability
● We wanted to use ES6/Harmony features

● In particular, ‘let’ fixes block scope
terribleness

Wrong: V8 Stability
● We wanted to use ES6/Harmony features

● In particular, ‘let’ fixes block scope
terribleness

● Great until

● Browser crashed in production, randomly

● Debugger crashed trying to debug it

Wrong: V8 Stability
● We wanted to use ES6/Harmony features

● In particular, ‘let’ fixes block scope
terribleness

● Great until

● Browser crashed in production, randomly

● Debugger crashed trying to debug it

● Resorted to taking it all out again

Wrong: Promises
● Lots of things you wait for in JS

● Because you’re constantly talking to some server

Wrong: Promises
● Lots of things you wait for in JS

● Because you’re constantly talking to some server
● Event handling this is messy

Wrong: Promises
● Lots of things you wait for in JS

● Because you’re constantly talking to some server
● Event handling this is messy
● Promises hope to solve this problem

animSetMojo.Source.prototype.loadAnimSetActor = function() {
 if (!this.isConnected()) {
 return Q.resolve();
 }
 return this.onStage1FetchActor()
 .then(this._private.callbacks.onStage2PreLoadAssets)
 .then(this._private.callbacks.onWaitForAssetLoad)
 .then(this._private.callbacks.onStage3CreateActor)
 .then(this._private.callbacks.onWaitForAssetLoad)
 .then(this._private.callbacks.onStage4WatchActor)
 .then(this._private.callbacks.onStage5Focus);
 };

animSetMojo.Source.prototype.loadAnimSetActor = function() {
 if (!this.isConnected()) {
 return Q.resolve();
 }
 return this.onStage1FetchActor()
 .then(this._private.callbacks.onStage2PreLoadAssets)
 .then(this._private.callbacks.onWaitForAssetLoad)
 .then(this._private.callbacks.onStage3CreateActor)
 .then(this._private.callbacks.onWaitForAssetLoad)
 .then(this._private.callbacks.onStage4WatchActor)
 .then(this._private.callbacks.onStage5Focus);
 }; Promise Chain

Promises = Now all your crashes look like this
TypeError: Cannot read property 'Path' of null  
at vault.js:1614  
at _fulfilled (q-0.9.6.js:714)  
at self.promiseDispatch.done (q-0.9.6.js:743)  
at Promise.promise.promiseDispatch (q-0.9.6.js:
680)  
at q-0.9.6.js:554  
at MessagePort.flush (q-0.9.6.js:108)  
msgLog.error @ msgLog.js:168  
(anonymous) @ msgLog.js:195  
defaultQPromiseErrorHandler @ env.js:928  
(anonymous) @ q-0.9.6.js:1553  
flush @ q-0.9.6.js:108

Promises = Now all your crashes look like this
TypeError: Cannot read property 'Path' of null  
at vault.js:1614  
at _fulfilled (q-0.9.6.js:714)  
at self.promiseDispatch.done (q-0.9.6.js:743)  
at Promise.promise.promiseDispatch (q-0.9.6.js:
680)  
at q-0.9.6.js:554  
at MessagePort.flush (q-0.9.6.js:108)  
msgLog.error @ msgLog.js:168  
(anonymous) @ msgLog.js:195  
defaultQPromiseErrorHandler @ env.js:928  
(anonymous) @ q-0.9.6.js:1553  
flush @ q-0.9.6.js:108

Your code

Promises = Now all your crashes look like this
TypeError: Cannot read property 'Path' of null  
at vault.js:1614  
at _fulfilled (q-0.9.6.js:714)  
at self.promiseDispatch.done (q-0.9.6.js:743)  
at Promise.promise.promiseDispatch (q-0.9.6.js:
680)  
at q-0.9.6.js:554  
at MessagePort.flush (q-0.9.6.js:108)  
msgLog.error @ msgLog.js:168  
(anonymous) @ msgLog.js:195  
defaultQPromiseErrorHandler @ env.js:928  
(anonymous) @ q-0.9.6.js:1553  
flush @ q-0.9.6.js:108

Your code

Unrelated,

generic & useless

Typescript

Typescript
● Adds a type system on top of JS

Typescript
● Adds a type system on top of JS
● We started migrating in late 2014

Typescript
● Adds a type system on top of JS
● We started migrating in late 2014
● Adding types means adding documentation/semantics

Typescript
● Adds a type system on top of JS
● We started migrating in late 2014
● Adding types means adding documentation/semantics
● It also means adding build steps

● JS just lost 98% of the “quick fix” appeal

Right/Wrong: Typescript

Right/Wrong: Typescript
● Definitely helps, but still not perfect

Right/Wrong: Typescript
● Definitely helps, but still not perfect
● Still very possible to write buggy code in it

● Use *all* the strictness options if you have a choice

Right/Wrong: Typescript
● Definitely helps, but still not perfect
● Still very possible to write buggy code in it

● Use *all* the strictness options if you have a choice
● AMD/CommonJS module system interop was hairy

Right/Wrong: Typescript
● Definitely helps, but still not perfect
● Still very possible to write buggy code in it

● Use *all* the strictness options if you have a choice
● AMD/CommonJS module system interop was hairy
● Wrapping JS modules with declarations was hairy

Wrong: Too many frameworks

Wrong: Too many frameworks
● Web is all about rapid evolution

Wrong: Too many frameworks
● Web is all about rapid evolution
● Most web apps don’t have 300k LOC

● Ours did, can’t keep up with web evolution at this codebase size

Wrong: Too many frameworks
● Web is all about rapid evolution
● Most web apps don’t have 300k LOC

● Ours did, can’t keep up with web evolution at this codebase size
● Ended up with way to many 3rd party frameworks

● All at once

Wrong: Too many frameworks
● Web is all about rapid evolution
● Most web apps don’t have 300k LOC

● Ours did, can’t keep up with web evolution at this codebase size
● Ended up with way to many 3rd party frameworks

● All at once
● Prevents sharing solutions between tools/pages

● Too many one-offs that can’t be reused

Wrong: Off the shelf is mostly useless

Wrong: Off the shelf is mostly useless
● Most stuff simply doesn’t scale to AAA data sizes

● Most web sites have dozens of things, we have tens of thousands

● Different constraints

Wrong: Off the shelf is mostly useless
● Most stuff simply doesn’t scale to AAA data sizes

● Most web sites have dozens of things, we have tens of thousands

● Different constraints

● Often designed to be “easy to use” or “friendly”

Case in point: Tree views

Case in point: Tree views
● jstree is a popular web tree control we evaluated

Case in point: Tree views
● jstree is a popular web tree control we evaluated

I would think that performance with a mere 1,000 nodes should be
unnoticeable. However, on my i7 machine with 12 GB ram, it takes
almost a minute and a half in Chrome to drag and drop those 1,000
nodes somewhere else in the tree

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Case in point: Color picker
● “pick a color you like” vs hard core pro user requirements

Most web controls Advanced web Pro space

Right/Wrong: node.js

Right/Wrong: node.js
● Using the web stack from scripts has value

● Reuse well tested code in batch scripts

Right/Wrong: node.js
● Using the web stack from scripts has value

● Reuse well tested code in batch scripts
● node.js is a terrible ecosystem

● Dependency hell (remember left-pad?)

Right/Wrong: node.js
● Using the web stack from scripts has value

● Reuse well tested code in batch scripts
● node.js is a terrible ecosystem

● Dependency hell (remember left-pad?)
● After light use we lug around 90 MB of deps

● 8,500 files

Right/Wrong: node.js
● Using the web stack from scripts has value

● Reuse well tested code in batch scripts
● node.js is a terrible ecosystem

● Dependency hell (remember left-pad?)
● After light use we lug around 90 MB of deps

● 8,500 files
● Found debugging & profiling super flaky

Wrong: JSON data in code as objects

Wrong: JSON data in code as objects
● Mistake: Used JSON asset data as JS objects directly

● ‘undefined’ everywhere when data formats change

● Fix litters code with if (typeof(thing) !== “undefined”)

Wrong: JSON data in code as objects
● Mistake: Used JSON asset data as JS objects directly

● ‘undefined’ everywhere when data formats change

● Fix litters code with if (typeof(thing) !== “undefined”)

● Obviously bad in hindsight, but was an easy trap to fall into

● Maintenance cost is astronomical, because it’s just strings

● No compile time help, grep and test all code branches

Wrong: JSON data in code as objects
● Mistake: Used JSON asset data as JS objects directly

● ‘undefined’ everywhere when data formats change

● Fix litters code with if (typeof(thing) !== “undefined”)

● Obviously bad in hindsight, but was an easy trap to fall into

● Maintenance cost is astronomical, because it’s just strings

● No compile time help, grep and test all code branches

● Partly fixed with symbolic access library (too late)

Wrong: “It’s OK, it’s just in the Javascript”

Wrong: “It’s OK, it’s just in the Javascript”
● Belief that it was OK to hack stuff in because “it’s just script”

● Very easy to deploy hacks and local changes and get away with it

● Tempting to work around hot issues this way

● Probably our C++ bias led to this mistake

Wrong: “It’s OK, it’s just in the Javascript”
● Belief that it was OK to hack stuff in because “it’s just script”

● Very easy to deploy hacks and local changes and get away with it

● Tempting to work around hot issues this way

● Probably our C++ bias led to this mistake

● Manifested as a legacy of unmaintainable hacks

● Performance regressions, copy-pasta

● Especially bad in first generation JS code which is still in

production

The Document Object Model (DOM)

The Document Object Model (DOM)
● Hardest part of performant web tools

● Black art

The Document Object Model (DOM)
● Hardest part of performant web tools

● Black art
● Reflows kill your performance

● Sandwich in a complete rebuild of your UI at “random” places

The Document Object Model (DOM)
● Hardest part of performant web tools

● Black art
● Reflows kill your performance

● Sandwich in a complete rebuild of your UI at “random” places
● Using animation frames is critical to performance

● Not well understood

Lesson: JS needs more rigor than C++, not less

Lesson: JS needs more rigor than C++, not less
● Suspect this is true in any dynamically typed ecosystem

Lesson: JS needs more rigor than C++, not less
● Suspect this is true in any dynamically typed ecosystem
● Especially hard for people jumping in only occasionally

● Typically “non JS” programmers left huge messes

● Did not want to invest in learning the “web tools way”

Wrong: Have you cleared cache?

Wrong: Have you cleared cache?
● Chrome caches very aggressively

● Clear cache, or risk running with random JS code out of date

Wrong: Have you cleared cache?
● Chrome caches very aggressively

● Clear cache, or risk running with random JS code out of date
● Constant drain on support and user base

● Handful of support issues every week due to this

Wrong: Have you cleared cache?
● Chrome caches very aggressively

● Clear cache, or risk running with random JS code out of date
● Constant drain on support and user base

● Handful of support issues every week due to this
● Laughably bad compared to native tool deployment

From: -REDACTED- 
Sent: Tuesday, January 31, 2017 6:30 PM 
To: Syndicate 
Subject: FW: BUG - cannot create new collections

I swung by –REDACTED-,

No amount of clearing cache/reloading extensions/restarting chrome
got this fixed. We cannot repro either. Anyone know what might be
going on here?

Wrong: “Try reinstalling the plugin”

Wrong: “Try reinstalling the plugin”

● Plugin part of the desktop interop

● 3D view, window management

Wrong: “Try reinstalling the plugin”

● Plugin part of the desktop interop

● 3D view, window management

● NPAPI drop mandated rewrite

Wrong: “Try reinstalling the plugin”

● Plugin part of the desktop interop

● 3D view, window management

● NPAPI drop mandated rewrite
● Forced Chrome Store requirement

● Now have security warnings on
every launch of the tools

Wrong: “Try reinstalling the plugin”

● Plugin part of the desktop interop

● 3D view, window management

● NPAPI drop mandated rewrite
● Forced Chrome Store requirement

● Now have security warnings on
every launch of the tools

Wrong: You’re not in charge

Wrong: You’re not in charge
● Chrome team doesn’t care about your tools

Wrong: You’re not in charge
● Chrome team doesn’t care about your tools
● Auto-updates will break everything

● Constant source of downtime & panic

● Random API changes, flash 0-day bugfixes, V8 regressions

Wrong: You’re not in charge
● Chrome team doesn’t care about your tools
● Auto-updates will break everything

● Constant source of downtime & panic

● Random API changes, flash 0-day bugfixes, V8 regressions

● Can run Canary builds to catch some of it early

● But you’re still not in charge

● Always a scramble to fix things last moment

Policies = The Nuclear Option
● You can control some policies for Chrome

Policies = The Nuclear Option
● You can control some policies for Chrome
● Used auto-update disable hammer to ship Sunset

● Frozen branch meant we couldn't get Chrome breakage fixes into
that game's codebase

Policies = The Nuclear Option
● You can control some policies for Chrome
● Used auto-update disable hammer to ship Sunset

● Frozen branch meant we couldn't get Chrome breakage fixes into
that game's codebase

● Plenty of user pushback about restricting Chrome

● Favored daily browser

Policies = The Nuclear Option
● You can control some policies for Chrome
● Used auto-update disable hammer to ship Sunset

● Frozen branch meant we couldn't get Chrome breakage fixes into
that game's codebase

● Plenty of user pushback about restricting Chrome

● Favored daily browser

● Should have done this from day 1

● And would have been hard sell then too

From: -REDACTED-  
Sent: Monday, October 14, 2013 10:51 AM  
To: Lunarest  
Subject: ads in Luna

This awesome ad popped up in my workspace last week. Not sure if
this issue has anything to do with whatever’s causing the white bar at
the bottom of the screen.

Wrong: A hostile environment for your tools

Wrong: A hostile environment for your tools
● Malware

Wrong: A hostile environment for your tools
● Malware
● Rampant extensions, addons and random junk

● AdBlock added 30 ms of latency for each outgoing AJAX request

● When you have 1000s of them, it starts to really suck

Wrong: A hostile environment for your tools
● Malware
● Rampant extensions, addons and random junk

● AdBlock added 30 ms of latency for each outgoing AJAX request

● When you have 1000s of them, it starts to really suck

● Themes

Wrong: Culture Shock

Wrong: Culture Shock
● JS and web stack is very different from engine dev

● Deep specialization inevitable and necessary to do the job

Wrong: Culture Shock
● JS and web stack is very different from engine dev

● Deep specialization inevitable and necessary to do the job
● Started to see cracks in the team culture

At road’s end (2015)

At road’s end (2015)
● Dev time for features snowballed

● Frustrated at lack of progress

● Lots of bugs were outside our control

● Maintenance costs killing productivity

At road’s end (2015)
● Dev time for features snowballed

● Frustrated at lack of progress

● Lots of bugs were outside our control

● Maintenance costs killing productivity

● Had lost 2 of our JS specialists

At road’s end (2015)
● Dev time for features snowballed

● Frustrated at lack of progress

● Lots of bugs were outside our control

● Maintenance costs killing productivity

● Had lost 2 of our JS specialists
● Team tension was mounting

● We needed a new direction

Our current tools direction (2016-)

Our current tools direction (2016-)

● Client layer in C++, with Qt for UI

● Right cultural choice for us

● Go back to mature dev tools, pipelines

Our current tools direction (2016-)

● Client layer in C++, with Qt for UI

● Right cultural choice for us

● Go back to mature dev tools, pipelines

● Keep what works!

● Edit loop, server infrastructure – enables gradual transition

Our current tools direction (2016-)

● Client layer in C++, with Qt for UI

● Right cultural choice for us

● Go back to mature dev tools, pipelines

● Keep what works!

● Edit loop, server infrastructure – enables gradual transition

● 9 months to get complete level editor beta up

● Included rewriting all JS infrastructure in C++

2016 Surprises

2016 Surprises
● Maintenance cost went way down as we stopped JS dev

● Breakage in production proportional to # of JS changes

2016 Surprises
● Maintenance cost went way down as we stopped JS dev

● Breakage in production proportional to # of JS changes
● Still firefighting things outside our control

● Auto-updates: gift that keeps on giving

● Flash update broke all node graphs over night

● About a week of engineering effort to drop everything and fix

How could you make it work?

How could you make it work?
● Embedded browser engine

● No auto-updates, add-ins and other craziness

● No more clear cache

How could you make it work?
● Embedded browser engine

● No auto-updates, add-ins and other craziness

● No more clear cache

● Use TypeScript exclusively

How could you make it work?
● Embedded browser engine

● No auto-updates, add-ins and other craziness

● No more clear cache

● Use TypeScript exclusively
● Settle on small number of technologies

● Use them consistently even if they’re not the latest web craze

How could you make it work?
● Embedded browser engine

● No auto-updates, add-ins and other craziness

● No more clear cache

● Use TypeScript exclusively
● Settle on small number of technologies

● Use them consistently even if they’re not the latest web craze
● Be conscious of specialization and team culture

Vision post-mortem: Hiring

Vision post-mortem: Hiring
● We put the word out, and people know about our web tools..

Vision post-mortem: Hiring
● We put the word out, and people know about our web tools..
● ..but no web specialists applied

Vision post-mortem: Hiring
● We put the word out, and people know about our web tools..
● ..but no web specialists applied
● Even if they had applied, would we have hired them?

● We need generalists on the Core team

Vision post-mortem: Lower the UI barrier

Vision post-mortem: Lower the UI barrier
● We found that web apps of this magnitude raise the barrier

● Extra context switching: JavaScript, client-server, DOM, HTML

● Takes months to learn all the intricacies of the tech stack

Vision post-mortem: Lower the UI barrier
● We found that web apps of this magnitude raise the barrier

● Extra context switching: JavaScript, client-server, DOM, HTML

● Takes months to learn all the intricacies of the tech stack

● It’s no better than a traditional desktop GUI dev

● At least not for apps this size

● You can totally make a throwaway log viewer in 10 minutes

● But no one wants that thing in production

Conclusion

● No regrets – 6 games shipped speak for themselves

Conclusion

● No regrets – 6 games shipped speak for themselves
● Our engine team is very versatile – but why stretch it?

Conclusion

● No regrets – 6 games shipped speak for themselves
● Our engine team is very versatile – but why stretch it?
● Probably wouldn't have done this if we knew the real costs

● First explorer gets to discover all the traps ☺

Conclusion

● No regrets – 6 games shipped speak for themselves
● Our engine team is very versatile – but why stretch it?
● Probably wouldn't have done this if we knew the real costs

● First explorer gets to discover all the traps ☺
● It could have been a lot smoother if we prepared better

Conclusion

● No regrets – 6 games shipped speak for themselves
● Our engine team is very versatile – but why stretch it?
● Probably wouldn't have done this if we knew the real costs

● First explorer gets to discover all the traps ☺
● It could have been a lot smoother if we prepared better
● “Zero install” remains an attractive goal

● Can probably get close with native tools too though

Conclusion

Thanks
● Q & A

● afredriksson@insomniacgames.com

● @deplinenoise on twitter

mailto:afredriksson@insomniacgames.com

