clo @
R

Moving to DirectX 12:
Lessons Learned \

Tiago Rodrigues
3D Programmer, Ubisoft Montreal

GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17 . lﬁ;fn

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
[alk goals:
L

 Many other talks have already focused on
more direct API usage advice [1-(s]

o I'll focus on some higher level strategies
to implement some of this advice

e

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Background : Anvil Next

e Anvil (in-house engine), has shipped 8 AC tiles in
the last 10 years. Anvil Next was a major upgrade
we developed for ACU.

QASSASSIN Sﬂ 7 ASSASSING 2
UNITY 8 ORIV

- i
UBM

« For ACU we did a significant upgrade, which we call "Anvil Next”. You can
see examples of the most recent ACs that have shipped with this version.

GOIC o v 1 s | ot s s 4/
Background : Anvil Next

o Draw batching and 'GPU submission’ to
reduce CPU work and improve GPU perf r10]

o Heavy use of GFX compute (also async.
Compute and MultiDrawIndirect on consoles)

b
- UBM

+ We did a lot of work for AC:Unity related to draw call batching and ‘GPU
submission’ (using the GPU to cull draws/instances/triangle
clusters/triangles), you can get some more details on this topic from
Ulrich’s GDC15 presentation on the subject.

« We also had console specific optimizations on the rendering pipeline, since
certain features weren’t available on PC (like using async. compute for the
GPU culling dispatches and multidrawindirect), DX12 enables the use of
these features on PC.

GO oo o e sesson 1 cvosar o s 4/
Background : moving to DX12

o Started with ‘naive port’ to gage perf
bottlenecks and gain familiarity with API

o Result was, as expected, bad performance,
specially on GPU (~200% of DX11)

b
- UBM

« Started with a very basic port, where the DX12 API details were hidden
behind the old renderer interfaces

« As expected we had extreme bad performance (GPU time was ~200% of
DX11). It was simply too hard to implement some of common API usage
advice, mainly due to very low level and narrow view of resource states in
the hardware abstraction layer

GO oo o e sesson 1 cvosar o s 4/
Background : moving to DX12

o Main GPU perf issues:
- Barrier abuse
« Memory over commitment

e Main CPU perf issues:
« PSO compilation hitching rendering threads
« Amount of descriptor copying

- &b
uBMm

» Barrier abuse:

- We did a lot of individual barrier calls, even when batching between
commits

- I was quite hard to manage barriers with multithreaded CMD list
recording, without spreading forced initial states everywhere (leading us
to do a lot of intermediate unnecessary transitions)

* Regarding Memory:

- We were significantly overcommitted (due to the lack of aliasing, tiled
resources/mip streaming)

- We also had issues with CMD list management and reuse

+ PSO and descriptor management:
- Hitching in rendering threads due to PSO compilations

- Due to using a common root signature to handle all use cases, we had a
lot of descriptor copying

| FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Background : moving to DX12

« Started planning renderer redesign
based on:
« experience from initial port
« other teams at Ubisoft
« advice from various talks on DX12

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

API guidance recap:

e Minimize and batch resource barriers [7]

« Take full advantage of parallel CMD list
recording (17

o Make use of the several GPU queues s

- &b
uBM

Minimizing and batching resource barriers is very important:

- Otherwise you’ll end up hurting GPU performance by serializing your
work or flushing caching unnecessarily.

- DX11 drivers have had many years to optimize this under the hood.
DX12 still provides you with a bit of help here: if you batch barriers
in a single call, it will produce the minimal set of barrier actions for
all transitions in that call

DX12 also provides fully functional, low overhead parallel CMD list
recording, using it is essential to obtain good CPU perf.

- There are some caveats to have in mind, like not having too many
tiny CMD lists, or calling ExecuteCommandlILists too often, else you’ll
hurt CPU perf

We also now have access to copy engines and async. compute queues, if
you want to match the DX11 driver you’ll probably have to use them

- Also, for console developers, feature set wise, we are now pretty
close to feature parity on PC, which is great from an engine design
perspective

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

API guidance recap(2):

o Use precompiled render state to minimize
runtime work (s

« Manage memory efficiently (2;

- &b
uBM

« Using precompiled render state effectively to minimize runtime work is
also quite important for CPU perf.
- The API has a heavy focus on precompiled state blobs, allowing us to
do some expensive work once, cache it, and then have minimal
overhead at bind time

« Memory management is a large topic, I'll only touch on some aspects of it
that relate to the systems I'll introduce

- The API now enables users much control over how memory is
allocated and managed (enabling for example implementing memory
aliasing)

Systems

e Producer System
o Shader Input Groups
e Pipeline State management

&b
uBMm

10

| FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System

11

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System: Motivation

e Increasingly complex rendering pipelines

« Resource memory and state management
now API user responsibility

o Exploit newly exposed GPU features without
extensive user low level knowledge

- &b
uBM

« At the end of the development of AC:Unity, we started to really feel the
limitations of our rendering pass architecture as the complexity of the
rendering pipeline continued to grow.

« At the same time, we felt that the new graphic APIs coming in the near
future, would really allow a different level of control on all platforms that
should be addressed on a architectural and cross-platform level to get the
full range of benefits.

« This new level of control does mean that managing of resource memory
and state is now an API user concern. We want to efficiently drive the API,
while at the same time avoiding imposing a large burden on the engine
users.

12

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Complex Rendering Pipelines

e Producers are GPU resource writers/readers

« Resource dependencies determine execution order on GPU

GPU Queues:

Producers:

]

Dependencies:
—

1 Graphics

=

N e

Compute

Copy

GPU execution order:

L

« Example diagram of a rendering pipeline:

- You can see a number Producers (squares in the diagram), these

are essentially writers and readers of GPU resources

- Then you have dependencies between these that define the GPU

execution order

- you also have several GPU queues, which add another layer of

complexity in terms of synchronization, resource lifetime

management, etc.

« Just looking at the static configuration of this graph it’s already quite
complex, however you’ll have to add another layer of permutations to

i

uBMm

support different sets of enabled features (for example, for performance
scaling on lower end machines)

We needed some level of automation that would not sacrifice
performance, but allow us to capture enough high level information to

then drive the low level API efficiently

Reconfiguring the pipeline to the several use cases, has many knock-on
effects which make manual/explicit scheduling somewhat impractical.

13

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System : Design Goals

e Use resource dependencies to derive:
e Resource memory lifetime
e Cross queue synchronization
e Resource state transitions
o CMD list execution ordering and batching

- i
UBM

« One of the key design aspects of this system was to make resource
dependencies explicit

14

GO .coormscocamnce 1 esrmmsson | s s s
Resource Dependency Tracking

« Explicit resource dependencies specified for each
producer

Explicit dependencies:

& : resource write
B : producer & : resource read
[: resource
]

@ —o—] Derived dependencies:
3

= . execution order

| <

i

« In this example you can see a set of producers and how they specify their
relationship to resources when executing on the GPU

15

GO .coormscocamnce 1 esrmmsson | s s s
Resource Dependency Tracking

« Explicit dependencies allow us to automatically
determine GPU resource lifetime

Explicit dependencies:
‘ . resource write
& : resource read

B : producer
[: resource

Derived dependencies:
=P . execution order

L

+ Based on these dependencies we can then automatically derive the
lifetime of each GPU resource:

i

uBMm

16

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource Memory Aliasing

e Use derived resource lifetimes to reuse
memory throughout the frame

e Placed resources enable user control of
memory allocation

e Reduce frame GPU resource memory
footprint

- &b
uBMm

« Using placed resources and the derived resource lifetimes we can reuse
memory throughout the frame and reduce GPU memory footprint

17

GO . ocvmores covammce 1 resaranzon | omsnsszon s
Resource Memory Aliasing

e Use resource lifetime to derive memory reuse

Explicit dependencies:
‘ . resource write
& : resource read

B : producer
[: resource

Derived dependencies:
=P . execution order

i

GO . ocvmores covammce 1 resaranzon | omsnsszon s
Resource Memory Aliasing

e Use resource lifetime to derive memory reuse

Explicit dependencies:
‘ : resource write
B : producer & : resource read

[: resource
P : aliased resource))
Derived dependencies:

= . execution order

b
- UBM

« Memory aliasing is automatically derived based on resource lifetime and
following cross-queue synch points. In the diagram, you can see an
example of two GPU resources that share the same memory since their
usage does not overlap in the GPU execution lifetime

19

GO oconvmormscovsmmce 1 ressrannzon | oz s
Resource Access Synchronization

o EXxplicit resource dependencies:
« Used to automatically determine necessary
inter-queue synchronization
o Support explicit synchronization:
« Specified via fence resource dependencies
« Allow users to define execution windows

. i
UBM

« One aspect the producer system automates is: Resource Access
synchronization

« Every producer specifies a GPU queue that it wants to execute it's
command lists on: graphics/async. compute/copy (which can change at
runtime for debugging or other configuration purposes).

« Based on the explicitly specified resource dependencies for each producer,
we can then derive necessary cross-queue synchronization (fencing) to
guarantee the correct execution order of CMDs lists on the GPU

« We still support explicit synchronization via fence resources so users have
control over execution windows (for example to better match GPU
workloads running in different queues)

20

L S Y
Resource Access Synchronization

e SSAO buffer produced in compute,
consumed in GFX queue

Grap hics Explicit dependencies:

Producers:
[: G-Buffer ‘ : resource write
[: lighting ‘ : resource read
. : SSAO
Resources: Com pute Derived dependencies:
[1: SSAO =» : execution order
g : Depth

- i
UBM

* Here is an example of a simple necessary cross queue synchronization:

- You can see the SSAO producer (in red) running in the compute
queue, it depends on the G-Buffer depth, produced in the GFX by the

GBuffer producer (in blue)

21

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Resource Access Synchronization

« SSAO on compute queue must wait for
G-Buffer rendering to finish

Producers: Gra p hics Explicit dependencies:
[: G-Buffer ‘ : resource write
[: lighting ‘ : resource read
B : SSAO
Resources: Com pute Derived dependencies:
:1 SSAtC:‘ = : execution order
B - Vep ‘0, : auto fencing

e

« The first necessary synchronization is before the SSAO producer as it
cannot start before the GBuffer pass has finished writing to the scene

depth.

i

UBM

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource Access Synchronization

« Deferred lighting on GFX queue must
wait for SSAO to finish

Producers: Gra p hics Explicit dependencies:

[: G-Buffer & : resource write
E] : lighting ‘ : resource read
: SSAO
Resources: Compute Derived dependencies:
I:] SSAtCr)w ~» : execution order
B - Vep ‘O, : auto fencing

. i
UBM

« Conversely, we also need fencing between the SSAO producer in the
compute queue and the first consumer of the SSAO mask, which in this
case is the deferred lighting producer in the GFX queue (which you can
see in green in the diagram)

« This example is quite simple, in a real frame schedule there could be
many more producers that could, for example, write to the scene depth
after the G-Buffer. If one of these producers where to move, and
synchronization was done manually by the user, it could introduce timing
dependent glitches that are sometimes hard to spot and debug

VA

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource Access Synchronization

« User can add manual sync (via a fence
resource) to better match workloads

Producers: Gra p hics Explicit dependencies:
B : G-Buffer & : resource write
[0 : lighting & : resource read
= : gﬁA;-) 3 : manual fencing
: Shadows
Resources: Com pute Derived dependencies:
[1: SSAO =¥ : execution order
[: Depth 0 : auto fencing

P : ShadowMap
- b
UBM

« To better match GPU workloads on different queues the user might want
to explicitly define a window in which the async. compute workload will
run

- For example, over the vertex heavy shadow map producer (in black
in the diagram)

- A manual sync is simply done by depending on a fence resource
(fences are a producer resource just like any other)

- Because explicit fencing is a resource, we can easily cope with
alternative configurations (for example load time/lazy updated static
shadow maps on some levels, where the system automatically adds
automatic syncing when the shadow producer isn’t scheduled every
frame)

« Since the remaining fencing was automatically derived, it can take into
account the user fencing and eliminate any extra synching due to the GFX
workload execution order (as you can see in the diagram by the absence
of automatic sync between the GBuffer producer and the SSAQO)

« One alternative to manual fencing for this purpose, would be to tag
producers at a high level to indicate if they are Vertex heavy/Bandwidth
heavy/ALU heavy and then let the producer scheduling attempt to match

them automatically

24

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource Transitions

o API requires explicit transitions via barriers

- Manage: decompression, cache flushes, wait for
idle, etc.

o Easy to get suboptimal performance:

= Too many, states too generic, unnecessary
intermediate states

- b
uBMm
« Resource Transitions are another aspect our system automatic manages

« In the API these are specified via barriers, which manage operations like
resource decompression, cache flushes, waits for idle, etc.

« As I mentioned before, it's easy to get suboptimal GPU performance by
having a very narrow view of resources, which can lead to doing too many
individual barrier calls, transitioning to generic or unnecessary
intermediate states, etc.

25

GO oo o | evsmans son 1 coomsrs s sesen 4/
Resource Transitions

o Using producer resource dependencies:
« Batch transitions at producer boundaries
« Determine minimal set of merged states
« Auto split barriers

- &b
uBMm

« Using resource dependencies:

- Batch barriers at producer boundaries to minimize the work that is
actually performed by the driver

- We avoid doing unneeded intermediate state changes, because
knowing the resource dependency graph, we can know upfront the
best set of state(s) to transition to

- Having knowledge of when you finish producing a resource and
when it's actually needed to be used for the first time, allows us to
split the barriers and potentially hide some internal driver work

26

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource State Transitions
» Barriers at producer boundaries

Barriers:

: Producer ‘
: Depth Buffer D DepthWrite ->

: Shadow Map I T 1| PS Resource
. resource write)

- DDI

: resource read

- &b
uBMm

« In this example you can see a number of producers (in purple), and a
couple of “depth write” to “pixel shader resource” barriers (the red arrow
heads), which can trigger a depth decompression

« As I mentioned before, we issue barriers at the end producers, and since
we know what is the next required state in the graph, we can make the
transition to the next required state early

27

GO oo o v ssanson 1 svasaasason seem D 4/
Resource State Transitions
o Auto split barriers
Barriers:

B Begin DepthWrite ->
PS Resource

: Depth Buffer s :-
+ Shadow Map 4 End DepthWrite ->
it PS Resource
. resource write .
: resource read . ‘ » DepthWrite ->
l:)ﬁ PS Resource

: Producer

- e

- &b
uBMm

« Instead of an instant barrier, we can use split barriers which define a
window where we guarantee we won't access that resource, to hint to the
driver it can ‘hide’ some potentially expensive internal operations in that

window

™~
GO oo o v ssanson 1 svasaasason seem 4/
Resource State Transitions
o Group barriers
Barriers:
: Producer B Begin DepthWrite ->

: resource read

-& DDI

» DepthWrite ->
PS Resource

Single call

Depth Buffer N :- PS Resource
: Shadow Map 4 End DepthWrite ->
it PS Resource
. resource write . ‘

to ResourceBarrier()

L

i

uBMm

- As mentioned before, we have a list of transitions so we batch them in a

single call to reduce the number of internal driver side-effects to the
minimum set

29

Producer System: Implementation

e Resource Identifiers

e TWO Steps: Gather resources, Record
CMD buffers

e Scheduling

&b
uBMm

30

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Resource Identifiers

e Global resource identifiers without link
time dependency

e Provide handle to quickly obtain a
resource view at a specific point in time

o Typed to limit interface at compile time

b
- UBM

Identifiers are used to logically address a specific resource from different
producers

Due to using resource IDs, producers don’t need to depend on each other
at compile time allowing us to implement resource memory aliasing, as I
showed before, where different IDs point to the same memory at different
times during the GPU execution timeline

At static initialization time, we ‘bake’ these identifiers into an index that
we can them use in the producer system to efficiently obtain it's
associated resource view

These IDs are also strongly typed in order to provide meaningful compile
time error checking and allow function overloading

31

GO o ovvmores covammce 1 rensrsason | vm sz s
Resource Identifiers: examples

DEFINE_ID DS(CascadedShadowMap);
DEFINE_ID RT(LightingDiffuse);
DEFINE_ID_SB(LightTiles);

DEFINE_ID FE(VisibilityWindowStart);

DEFINE_ID RC(SetupMaterialTable);
DEFINE_ID IC(AmbientLightingInputs);

i

UBM

32

GO o ovvmores covammce 1 rensrsason | vm sz s
Resource Identifiers: examples

DEFINE_ID_DS(CascadedShadowMap); « Depth Buffer
DEFINE_ID_RT(LightingDiffuse); « Render Target
DEFINE_ID SB(LightTiles); « Structured Buffer
DEFINE_ID FE(VisibilityWindowStart); « Fence

DEFINE_ID RC(SetupMaterialTable);

DEFINE_ID IC(AmbientlLightingInputs); - Callbacks

. i
UBM

« Examples of resource IDs:
1) Depth surfaces
Render targets
Structured buffers
2) Explicit Fence resources
3) Callbacks:
Render callbacks (that we can use to call functions form other producers
Input callbacks (that group several other input dependencies together)

33

GO oo o 1 ressrmses som 1 oaaess o ssoen
Producer system: interface

class GfxProducer

{

public:
virtual void GetInputOuput(GfxScheduleContext& context);
virtual void Record(GfxRenderContext& context);

}s

- &b
uBM

« At its core the producer interface is quite simple, only two main entry
points:
- Gathering of input/outputs
- Recording of commands

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Producer System: Gather Resources

e Specify:
« Resource dependencies
- New resources
= Manual synchronization
« Resource identifier aliasing

. i
UBM

« In GatherResources():

- The user specifies resource dependencies (and the required access
type: read, write, depth test, etc.)

- Also, this is where new resources are specified (defining initial state
parameters)

- Any required manual synchronization

- Resource identifier aliasing (essentially pointing a resource ID to
another after a producer is scheduled)

35

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System: Gather Resources

void TestProducer: :GetInputOutput(GfxScheduleContext& context)
{
context.Write(ID_DS(DepthBuffer));
context.WriteRead(ID_SB(MaterialTable));
context.Read(ID_RT(GBufferNormal));
context.Input(ID_IC(AmbientLightingState));

context.SignalAfter(ID_FE(ShadowWindow));
context.WaitFor(ID_FE(VisibilityWindow));

context.Alias(ID_RT(ShadowESRAM), ID_RT(Shadow));

'III &b
uBMm

36

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Producer System: Gather Resources

void TestProducer::GetInputOutput(GfxScheduleContext& context)

{
context.Write(ID_DS(DepthBuffer)); .
context.WriteRead(ID_SB(MaterialTable)); » DependenCIeS /
context.Read(ID_RT(GBufferNormal)); Access type

context.Input(ID_IC(AmbientLightingState));

context.SignalAfter(ID_FE(ShadowWindow)); M | F "
context.WaitFor(ID_FE(VisibilityWindow)); = anua encing

context.Alias(ID_RT(ShadowESRAM), ID_RT(Shadow)); =« Resource ID Alias

- i
UBM

« Examples:

1) At the top you can see examples of specifying resource dependencies and
the required access type

2) Manual synchronization (in the middle)
3) Resource identifier aliasing at the bottom

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Producer System: Gather Resources

void TestProducer::GetInputOutput(GfxScheduleContext& context)

{
context.New(ID_RT(BloomBuf), width, height, GfxFormat::HDRColor, flags);
context.New(ID_SB(MaterialTable), sizeof(MaterialTableData), count, flags);
context.New(ID_IC(AmbientLightingState), &TestProducer::SetAmbientState);

}

void TestProducer::SetAmbientState(GfxInputCallbackContext& context)
{
context.Read(ID_DS(GICascades));
context.Read(ID_DS(LocalCubeMaps));

38

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Producer System: Gather Resources

void TestProducer::GetInputOutput(GfxScheduleContext& context)

{
context.New(ID_RT(BloomBuf), width, height, GfxFormat::HDRColor, flags); « New
context.New(ID_SB(MaterialTable), sizeof(MaterialTableData), count, flags);
context.New(ID_IC(AmbientLightingState), &TestProducer::SetAmbientState); Resources

}

void TestProducer::SetAmbientState(GfxInputCallbackContext& context)

{ « Input Callback
context.Read(ID_DS(GICascades));
context.Read(ID_DS(LocalCubeMaps));

}

. i
UBM

« Examples:
1) Creating new resources:
- Where we pass the initial configuration

2) Input callback example: where we can provide a shortcut to depend on a
number of resources at the same time

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System: Record

o Each producer is assigned a unique
resource context

e Producers index into this context to get
resources views to use in a CMD list

- &b
uBMm

« During the Record step, the requested resources can then be accessed via
a producer specific resource context using the resource IDs.

« This resource context is unique to every producer, and contains the
assigned resource views for the point in time where this producer’'s CMD
lists execute on the GPU

40

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System: Record

void TestProducer::Record(GfxRecordContext& context)

{
cmdList.SetRenderTarget(®, context.Get(ID_RT(LightingBuffer)));

cmdList.Set<PS>(@, context.GetSR(ID_RT(ClipDepth));
cmdList.Set<PS>(1, context.GetSR(ID_SB(MatTableData));

context.Call(ID RC(TestCallback), context);

- &b
uBMm

GO .coormscocamnce 1 esrmmsson | s s s
Producer System: Record

void TestProducer::Record(GfxRecordContext& context)

| {
cmdList.SetRenderTarget (@, context.Get(ID RT(LightingBuffer))); = RTV

cmdList.Set<PS>(@, context.GetSR(ID_RT(ClipDepth));

L]
| cmdList.Set<PS>(1, context.GetSR(ID_SB(MatTableData)); SRVs

context.Call(ID_RC(TestCallback), context); « Callback
}

L

« Here are some examples of obtaining resource views using the IDs...
1) Setting a render target view
2) Shader resource views

3) A callback into another producer (that might issue it's own set of
commands)

i

uBMm

42

GOC ocommormmcovemmc: 1 reamsaaszon | oo saars o ssses
Producer system: Scheduling

o Explicit skeleton schedule:

» Determines CPU traversal order, for identifier aliasing
» Determines GPU per queue execution order

« Producers for dependent resources are automatically
added

- i
UBM

« We could theoretically construct the whole GPU schedule just based on
the desired final outputs and producer dependencies

« To have more control on the actual execution order we decided to support
a partial explicit skeleton

Here we add at least a few key producers (where relative execution
order needs to be set more precisely)

It's also easier to add platform/configuration specific producers (ex:
explicit transfer memory between memory pools [ESRAM/DRAM] on
console

This is also where we would generally add producers that define the
bounds of executing windows to match workload across queues, etc.

Producers of required resources, that are not specified in this
skeleton are pulled in automatically by resource dependencies from
other producers

43

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer system: Scheduling

o CPU: producers record in parallel

e GPU: order based on skeleton schedule &
derived and explicit cross-queue
synchronization

b
- UBM

« On the CPU, producers record their CMD lists in parallel, maximizing CPU
utilization across available work threads (this also forces us to remove
CPU dependencies between producers. We have a shader parameter
system, that allows a producer to fill a set of parameters to be used by
other producers)

« The order of execution on the GPU is based on the skeleton schedule
ordering and cross-queue derived and explicit synchronization

GOC ocommormmcovemmc: 1 reamsaaszon | oo saars o ssses
Producer system: Scheduling

o Dependency discovery:
« Find inputs and outputs for each producer
» Pull-in dependent producers
« Build reference counts
» Build high level state W->R/R->W transitions

. i
UBM

« The first step in building the schedule is to perform dependency discovery
(This is essentially obtaining all of the inputs and outputs for each
producer)

« During this process we also pull any producers for resources that have not
yet been scheduled and build reference counts for each resource to later
drive resource memory allocations

« We also keep track of resource, write->read and read->write transitions
across producer boundaries and produce a list of hecessary GPU
synchronization across queues, as resources output from a producer
running on one queue, are requested as inputs to a producer on another
queue

45

GOC ocommormmcovemmc: 1 reamsaaszon | oo saars o ssses
Producer system: Scheduling

e Resource allocation & lifetime
« Assign aliased memory for outputs
« Assign inputs to producer contexts

o Build barrier list at end of producers
based on next required state in graph

. i
UBM

« We then have enough information to do another pass and allocate and

free the resources at the appropriate producer, filling its resource context
with the correct views.

« Finally, we can generate the barrier list based on resource types and the
high level resource transitions

46

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer System : Tools

e Scheduling, memory lifetime, graphs

e In game producer Input/Output
RT/Texture viewer Ul

o Validation: Fence deadlock, circular
dependency detection, etc.

- &b
UBM

« One of the key advantages of this kind of system is that it enables us to
develop very rich debugging tools, that exploit the data we get from the
explicitly defined dependencies and automatic scheduling:

- The first tool we developed is a graph of the generated schedule
including a lot useful information (you can see an example of this
graph on the next slide)

- We also generate a number of other graphs for easy visualization of
memory aliasing

- Another tool we have is an in game resource viewer, where we can
inspect the contents of a resource at producer boundaries (by
injecting a resource copy in the schedule to capture the resource
state)

« Finally, we have a number of validation tools that can help detect user
induced deadlocks or circular dependencies

a7

Schedule Gra ph (autogenerated)

« Here you can see a diagram of one configuration of our rendering pipeline
- GPU execution order is from top to bottom

- GPU queues are represented in Blue (graphics on the left, compute
in the middle, and copy on the right)

- Producers are shown in orange

« The graph is quite information dense since it exposes a lot of details

« On the right side you can see a window of the schedule, centered around
some async. compute work

48

GDC GAME DEVELOPERS CONFERENCE' | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

« Zooming further..

49

GDC GAME DEVELOPERS CONFERENCE' | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

T

« On the left, you can see resource lifetimes bars (from top to bottom),
color coded by memory pool

50

GDC GAME DEVELOPERS CONFERENCE' | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

« Some producers running on the async. compute queue in orange...

51

GDC GAME DEVELOPERS CONFERENCE' | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

« Dependencies from producers to resources, represented by the many
horizontal lines linking them to the resource lifetime bars on the left

52

B E | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

JEN ERRERNEERN

-

ii I:;‘.;.:.ﬁ.i!l.ii = |

« Cross-queue fencing, represented by the thick arrows

53

colel o A
Schedule Graph Tooltips

Waiting for: Shadow Async Window (Graphics Device)
\ ShadowAsyncWindowStartFence { Manual)
gy =y
GBufferDepth(GBulferDepthES) R
 Resource transition (WRITE TO READ)

Waiting for: TransferGBufferToDR (DMA Device)
ETO

n
GBufferhiorma(GButterNormalOR) R
GButferDepth(GBulferDepthES) R
ViewDepth R
RefractionGBufferNomal R
RefractionViewDepth &
RefractionClipDepth R
DepthDownsampleHighRes R

Out

DepthDownsample RW
Resource transition (READ TO WRITE)

SSAOBuffer
SSBCTempPackedBufferUAVD
SSBCTempPackedBufferUAVL
BB Created: Cascade shadow buffer ESRAM |
Released: TransferSunCascadesToDR
Freed:Cascade shadow buffer

« Each of these elements has tooltips that show useful information when we
hover over them, for example:

List of resources a producer creates and depends on
Parameters of resource state transitions

Fencing parameters

- etc.

54

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer system: Stats
_ |Averageperframe|[Notes |

Producer count 50 Have a lot of small ones that get
their CMD lists merged

ResourceBarrier() calls Still high, mainly intra-producer
UAV/for indirect buffers

Fence count 5 Most resources are frame fenced

ExecuteCommandLists() 15 Due to batching

Producer Resource 130 Still have a few resources

count outside producers

Resource Memory 200Mb (With aliasing) 375Mb (With no aliasing)

Footprint

- &b
uBMm

« We have a lot of producers (~50 on an average frame), but a lot of them
record a small amount of work so we ‘merge’ their CMD lists (that is, we
end up record them into the same DX12 command list)

« The ratio of barrier to producers is still high, the reason behind this is
mainly UAV barriers within producers for our GPU culling and indirect
parameter buffer filling dispatches

- We tackled these on console with async. compute, but on PC, fence
granularity is not good enough for this kind of synching, we are
doing some further work to reduce these, at the expense of some
higher memory usage

« Fence count is quite small since most of the memory related lifetime
management is done with frame fencing

« For a 1080p frame (not counting persistent or tiled resources) we have
almost 50% memory saving vs not using memory aliasing (memory
aliasing still has a few caveats, tierl heap restrictions relating to resource
type segregation and some rather high alignment requirements for some
resource types)

- As you would expected, the bulk of our resource memory footprint is
for RO textures (we do not track these in the producer system) which
we tackle with mip streaming.

GO .conmiosms o 1 res s som 1 e uanss o sa0en
Producer system: Summary

o Leverages high level knowledge of how
producers relate to resources to optimize
API calls

o Simple user interface, automates
resource transitions and cross queue
synchronization

e

« Simple user interface: producers, which queues they execute on, which
inputs they depend on, and which new outputs they produce. This
interface relieves users from API responsibilities like issuing barriers and
doing cross-queue synchronization, by doing them automatically

56

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer system: Summary(2)

o Shields users from setup specific changes
by reconfiguring the execution graph
dynamically

o Reduces memory footprint by aliasing
non overlapping resource memory

e

» Shields users from configuration specific features (like disabling certain
passes for performance scaling on lower end machines) by reconfiguring
the execution graph dynamically, taking care of all the side effects that it
might entail in terms of synchronization, barriers, etc.

57

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Producer system: Summary(3)

o Maximize CPU utilization by recording
CMD lists in parallel

o Implements small producer and CMD list
execution batching to reduce API call
overhead

- &b
uBMm

« Enables us to maximize CPU utilization by distributing CMD recording over
the available worker threads, while at the same time hiding some details
like cost of frequent exec calls, by batching and coalescing small
producers into the same CMD list

58

Shader Input Groups

&b
uBMm

59

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3

R 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader Input Groups
o A system to setup shader parameters to

match the DX12 binding model

o Expose this binding model to users via a
simple abstraction

&b
uBMm

60

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups : Challenges

o Shader parameter binding interface still
based on explicit slots:
e €X: cmdList.SetTexture(TexS1lot@,texture);

e Large code base, with a few hundred
hand written shaders

- i
UBM

« We had some challenges going in, mainly due to:

- Our existing shader input binding interface was very granular, still
based on explicit slots

- We also had a significant amount of hand-crafted shaders that
would have to be ported (we had many more generated from
shader graphs, but for these we could easily patch the code
generator)

61

4/

GOIC cocorvome comrmsnc | rev s som 1 o om ssoes
Shader Input Groups : Challenges

G-Buffer Producer _ Shadow Producer

SetTex() Draw*()

SetUAV() Dispatch*()
SetBuffer() : 1

. *SetShaderResources()
CBs, SRVs, UAVs 4 *SetConstantBuffers()

CSSetUnorderedAccessViews:

+ Here you can see a diagram exemplifying setting shader parameters with
the previous granular interfaces:
- Producers record command lists in parallel and issue a lot of very
granular input resource changes
- Work is done at Draw/Dispatch time, converting the cached data into
the required shader inputs (a lot of this work is also repeated if any of
the parameters change due to the slot based interface)

62

GOC oo commocs 1 reamsasszon | ooasars o sases
Shader Input Groups : Design

o Bind parameters as groups, precompiled
at the rate of change

e Uniform Set/Get interface across all APIs
via auto-generated headers

&b
uBMm

63

GOC ocommormmcovemmc: 1 reamsaaszon | oo saars o ssses
Shader Input Groups : Design (2)

o Offline compiler:

e Parses ‘Shader Input Groups’ (SIGs)
definitions, generates CPP/HLSL header files

e Runtime:
o Compile SIGs into immutable blob
e Bind to an entry of a ‘Shader Input Layout’

. i
UBM

« In order to transition to a precompiled blob of parameters approach we
developed an offline compiler that parses what we call "Shader Input
Group” definitions and generates headers files that abstract the
setting/getting of parameters in CPP and HLSL respectively

» At blob compile time we can (for DX12):
- Fill descriptor heaps and build descriptor tables

- We can also hide how constant memory is copied, for example by
using the upload heap directly or batch updates to reduce copy
queue related transitions

« Parameter binding points are represented in what we call a "Shader Input
Layout”, which you can see an example of in the next slide

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader Input Groups: Layouts

ShaderInputlLayout DefaultlLayout <UpdateFreg=LowToHigh» « Generates Root

{ Signature for DX12
ShaderInputGroup Frame;
ShaderInputGroup Pass; ¢ Seg reQatEd slot ranges
ShaderInputGroup Material; for Other APIs

ShaderInputGroup Instance;

static const SamplerState PointWrap = {
.filterMinMagMip = POINT_POINT_POINT;
.addressUVW = WRAP_WRAP_WRAP; };
3

b
- UBM

* Here is an example of a layout definition

« We already grouped constants by frequency of update with segregated
constant buffers, now we extend this concept to all shader input
parameters

« For DX12, this layout will generate a root signature(s), based on the max
required resource counts from the Shader Input Groups that bind to the
same entry

65

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups: Layouts

{

};

ShaderInputlLayout DefaultlLayout <UpdateFreg=LowToHigh>

ShaderInputGroup Frame; - B.nd pOintS
ShaderInputGroup Pass;

ShaderInputGroup Material;
ShaderInputGroup Instance;

« Static samplers

static const SamplerState PointWrap = {
.filterMinMagMip = POINT_POINT_POINT;
.addressUVW = WRAP_WRAP_WRAP; };

Generates Root
Signature for DX12

Segregated slot ranges
for other APIs

. i
UBM

« Here you can see examples of those bind points (segregated by update
frequency)

« In DX12, each layout bindpoint entry, essential defines a set of descriptor
tables (ex; a CBV/SRT/UAV table and a SAMPLER one if needed)

« We also support handling of static samplers automatically across APIs by
generating the required CPP side code for platforms that don’t support it

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader Input Groups: Layouts

o Generate root signatures for each shader
binding mode (HLSL strings/CPP)

o Hide details like:

e« 1.0/1.1 root signatures

e Tier restrictions/Optimizations (null CBVs/UAVs,
merging tables, push parameters, etc.)

- &b
uBMm

For a layout, the SIG compiler:

- Generates several versions of the root signature for each stage
combination with the required visibility flags

- Generates rootsig 1.1 versions with the appropriate static flags for
runtime hinting to the driver so it can optimize parameter
management

- Handles tier restrictions and implementing other optimizations to
reduce root table count, placing parameters directly at the root,
etc.

67

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
Shader Input Groups

Include Test2; .
ShaderInputGroup Test <BindTo=DefaultlLayout::Frame> L4 HLSL ||ke Syntax

{ = Textures/Buffers
static const uint testValue = 2; = All of the common

float4 value; constant types
Samplers

Texture2D<float4> tex@; <Default=Black2D>
RWTexture2D<float4> uave; - Nested SUbtypes
e Rich set of annotations

« Default values

R = Static assignments

b = Autogen debug code

SamplerState sampler; <StaticSampler=PointWrap>

||III i
UBM

« “Shader Input group” definitions have pretty much HLSL syntax, plus
some annotation support

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups

Include Test2;

ShaderInputGroup Test <BindTo=DefaultlLayout::Frame> b4 HLSL ||ke SyntaX
{ = Textures/Buffers
static const uint testValue = 2; « Constants . All of the common
float4 value; constant types
Samplers
Texture2D<float4> tex®; <Default=B8lack2D>
RWTexture2D<float4> uave; « Resources - Nested subtypes
e Rich set of annotations
SamplerState sampler; <StaticSampler=PointWrap> .« Default values
SamplerState dynamicSampler; . Samplers

e ————— = Static assignments
¥ s « Sub-Types - Autogen debug code

||III i
UBM

« Here we can specify constants and a full set of resources and samplers

+ We support a wide range of annotations (for example: for specific bind
points [allow building of the descriptor tables], defining resource defaults,
generating debug code [ex: GPU debug print code], etc.)

« We can also specify nested types (ex: Test2), in order to manage
segregated groups of parameters more easily

GO oo coemmmce. essnsaas s 1 o s e s 4/
Shader Input Groups: CPP

#include “sig/test.h” _ .) e« SIG compiled into

void GfxTestProducer: :CompileParams(GfxDevice& device) . bl b| b

{ immutable blo
= e At compile time we
test.SetValue(ubivector4(l.ef, 2.ef, 3.ef, 4.ef)); .
test.SetTex@(testTexture); copy descrlptors to GPU
test.SetUav@(testUAV); ® B|nd|ng of parameters
m_CompiledTestParams = test.Compile(device); I,nVOIVeS_nO COpYIng,

just setting handles of

/. root descriptor tables
cmdList.SetShaderInputGroup(m_CompiledPassParams);

}

b
- UBM

« At runtime, we use the auto generated setter interface (these provide
provide a layer of validation based on type information and annotations)

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader Input Groups: CPP

#include “sig/test.h”
void GfxTestProducer::CompileParams(GfxDevice& device)

{
sig::Test test;
test.SetValue(ubivector4(l.0f, 2.0f, 3.0f, 4.0f));
test.SetTex0(testTexture);

test.SetUave(testuav); » Fill Shader Inputs
m_CompiledTestParams = test.Compile(device);
. Compile into immutable blob

cmdList.SetShaderInputGroup(m_CompiledParams);
} « Bind descriptor tables

SIG compiled into
immutable blob

At compile time we
copy descriptors to GPU
Binding of parameters
involves no copying,
just setting handles of
root descriptor tables

'III i
UBM

« We use the Set methods to fill the required shader parameters

» Before being able to bind these, we require compiling them into an
immutable blob (it is at this point that we issue descriptor copying)

- Once we have a blob, we can then reuse it multiple times,
effectively just passing around descriptor table handles

71

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader Input Groups: Shader

#include “sig/test.hlsl”

void main()
{
uint2 index = (uint2)g_Test.GetValue().xy;]
float4 value = testFunc(index, testFunc.GetSubType());
g _Test.GetUave()[index] = value;

}

float4 testFunc(in int2 index, in Test2 test2) .

{
return test2.GetTex@()[index];

}

Parameters accessed
though Get* methods

Groups of parameters
can be passed around
in a structured way

Features like static
samplers are handled
transparently

L

4/

i

uBMm

72

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups: Shader

#include “sig/test.hlsl”

void main()

{
uint2 index = (uint2)g_Test.GetValue().xy;

float4 value = testFunc(index, testFunc.GetSubType());

}
float4 testFunc(in int2 index, in Test2 test2)
{ - i
return test2.GetTex®()[index]; US|ng neSted
} parameters

g_Test.GetUav@()[index] = value; _ Using accessors

« In terms of shader interface, it's also quite simple:

Parameters accessed
though Get* methods

Groups of parameters
can be passed around
in a structured way

Features like static
samplers are handled
transparently

. i
UBM

- We use the auto generated get methods to access resources and

constants

- The use of nested SIG types, allows us to write shader code headers
that can be easily reused without depending on global parameters
or passing a long large lists of individual parameters

- We also support auto-generating loader functions for loading
structures of parameters from buffers, which we use in draw

instancing code

- We can also have auto generated GPU debug tracing code based on

annotations

73

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Shader input groups: Stats
 |Averagevalue |[Notes

Static descriptors loaded # 15000 Copied once at asset load time

Transient descriptors # 5000 Copied every frame (mostly for
pass SIGs)

Unique SIG Layouts 10

Unique SIG definitions 300

U
‘ -

* Here are some stats related to this system:

- As you can see, most of the shader input parameters are static
(these come from material SIGs, whose associated descriptors and
constants are copied once during asset load)

- Most of the transient descriptor copying is not between individual
draw calls, but at the start of producers

- The unique SIG instances actually end up matching up roughly
between themselves in term of descriptor table sizes, so we don't
have many unique layouts, mostly for very specific rendering like
terrain, water, etc.

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups: Summary

o Abstracts underlying API details:
» Root signatures/Descriptor tables

e Pre-compilation provides opportunity for early
optimization

« Only copy descriptors/update constant buffers at the rate of
change

e Much simpler low level graphics state management

. i
UBM

« Summary:

- Abstracts underlying API details (like root signatures and descriptor
tables) but only in a very thin fashion

- Descriptors are updated at the approximate frequency they change

- Minimal overhead since the interfaces are closer to how a lot of the
HW behaves with pointers to tables instead of individual slots, we
also end up with a small amount of bind points (5-6), which means
very simple low level graphic state management code

- Internal knowledge of how descriptors are updated allows us to
generate more optimal root sig 1.1 to hint optimizations to the
driver and implement internal Tier limitations like null CBV/UAVs

75

GO o ovvmores covammce 1 rensrsason | vm sz s
Shader Input Groups: Notes

e Look out for issues with shader profile 5.1 (if you want to
use register spaces)
« FXC a bit unstable with this profile (although a lot of the
issues fixed by now)
« Different shader optimization restrictions (see fxc flag
“/all_resources_bound” [9])
o Handle root signature 1.1 to hint driver optimizations,
check OS support

. i
UBM

« Transition to shader profile 5.1 was more ‘painful’ than was anticipated by
us (we did it mostly to use register spaces for ease of management of
slots in root descriptor tables)

- We had many compiler issues and crashes (most have been
resolved by now), some still remain (like indexing arrays with
resources, for example)

- The different binding model also changes FXC optimization rules, so
look into using the “/all_resources_bound” options (see Marcelo’s
blog about this) to get very similar DXBC to profile 5.0

+ Root signature management a bit messy since 1.1 is only supported from
winl0 RS1, so be careful with managing it if you need to support systems
with older Win10 versions

Pipeline State Management

i
UBM

77

GO covconvcorseconsmce | rarmsanzon | svasaavazon soey
Pipeline State Objects

« Significant interface change in DX12

o Contains: Shaders + renders states + ...

« Expensive to compile on demand

o API provides a way of loading precompiled blobs

- i
UBM

« PSO’s are a significant interface change in DX12, most state is now bound
via a single blob

« Expensive to compile on demand (could take 100’s of ms) since this is
were shader compilation can happen

« We can load serialized blobs and drivers implements some internal
caching and derived state optimizations

« For us, the render state part of the PSOs was the most problematic one
due to the varied sources where they can come from in our engine:

- CPP code, materials, artist driven FX scripts, etc.

78

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Pipeline State Objects

« Blob only interface, would require us to port a
very large amount of rendering code

« Chose to expose both interfaces, blob based for
data driven material code path, existing one for
legacy code driven passes

- &b
uBM

« Precompiled render state + shaders is great when thinking about
performance and generating optimized shaders
- In practice most engines have had a pretty relaxed approach to
were render state changes come from, even allowing micro RS
changes in artist facing interfaces

« We do however have two very distinct rendering code paths in our
engine:
- Material based rendering, which is data driven, based on
precompiled shader permutations (which covers >90% of our

draws)
- Handcrafted HLSL based code for features like deferred lighting,
GPU culling, most post effects, etc.

« We chose to maintain the old interface along side the new blob based one,
in order to avoid having to port all of the code in one go

79

GO . ocvmcrmscoamce 1 resarnson | vsssson s
Legacy granular interface

N 5
Producer Producer
SetZWrite()

SetZTest()
SetBlend()

Large State Cache Late Compilation

State Blobs

Draw*()
Dispatch*()

1 [

SetShader®()

- In a similar fashion to shader parameters, producers issued a lot of very
granular state changes

- Internal state compilation was deferred until the last minute when we
issued the actual draws/dispatches.

- It was at this point that we searched for the appropriate pipeline
state blobs based on the hashes of the many render states,
shaders, etc. or created a new one, if needed, which would cause
hitches that would impact rendering threads and thus potentially
framerate

80

| FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

PSO Blob interface

e Require binding of precompiled groups of state

o Restrict independent state changes that the
users can do by using state presets

o Open the opportunity for load time/Offline blob
compile time optimizations

81

Draw*()
Dispatch*()

SetPipelineStateBlob()

Small Blob State Cache ‘

Blob Bvinding

State Blobs

+ With the blob approach:

- blobs of state are either compiled offline (material rendering code
path case), or at load time (in loading threads)

- we have a much simpler state setting interface: SetPipelineStateBlob
(+render target/viewport, other misc)

- this results into much simpler state caches (essentially managing a
couple of pointers to these blobs) and much lower overhead at
Draw/Dispatch time (no hitching in CMD list recording threads)

82

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

PSO Blob interface: Challenges

o Anvil Next materials are based on data-driven
graphs

» Provide a lot of flexibility for artists to develop
unique effects

« Many auto generated microcode permutations
for optimized shaders (deferred / forward /
depthonly / Vertex Formats / etc.)

- &b
uBMm

* Here we also had some initial challenges:

- Data shaders are based on data graphs that generate a lot of
permutations, to support vertex formats, mesh options (
instancing/clustering modes), optimized shaders for the several
render passes (GBuffer, Forward, depth only, etc.)

- We precompile all shader permutations upfront, at data baking time

83

GOC ocommormmcovemmc: 1 reamsaaszon | oo saars o ssses
PSO Blob interface: Challenges (2)

« AC:Syndicate Stats:
« Material Graphs: ~500 (mostly for unique FXs)
= Microcode permutations: ~130000!

= After running game for around ~10 mins:
» Loaded ~125 shader templates
« "RState+Shaders hash map” has ~650 entries

. i
UBM

« To give some perspective (stats from AC:Syndicate)
- we had ~500 material shader graphs

- most of these materials are for FXs shaders, used in very specific
cut scenes/missions

« We can see we had a lot of permutations that are very rarely used (or
actually never used during a game session)

« We rely on microcode pre-compilation:
- So we get a well defined set of data, no corner cases of needing a
permutation that wasn’t generated
- However as we can see, if left unchecked, the permutation count
can become difficult to manage ...

84

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

PSO Blob interface : Strategy

» Interface exposed to the artists too granular

 Require some compromises from the art side:
o Artists choose from presets of render states based on

render modes

e Cull shader features more aggressively: from

~130000 permutations to ~10000

e

The very first step we took, was to tackle the number of shader

permutations
Traditionally in Anvil Next artists Could:

- specify individual render states per material

- toggle render states on materials at runtime via the FXs system

Introduced restrictions:
- only allow use of preset groups of render states and permutation

features

- remove the ability to toggle individual render states at runtime,

allow them to swap materials instead

This helped reduce the number of permutations per material template

significantly

[
PSO Blob interface : strategy (2)

e At runtime we already have the ideal place to point to our
PSOs: Materials

SubMesh* — PSO

« Associate PSO in loading thread (disk load/compiled derived)
« Rendering just needs to index PSOs based on rendering mode

. i
UBM

« After getting the shader permutation side a bit more under control we
moved to precompiling the several pipeline states in a similar fashion to
how we did shader microcode

« In Material instances we previously stored references to shader
microcode, lists of render states, etc. which were applied individually via
the old granular interfaces, now we just need PSO references

« Because all of these permutations are known upfront we can pre-
associate them to the meshes at load time and at render time, do a
simple indirection based on the current render mode

« This effectively means we have a number of PSO databases, one for each
material graph, whose entries are indexed and cached at load time

86

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Pipeline state objects: Stats

Average per
frame value

Material PSO bind (fast 2000 Blobs cached in loading thread
path)

Non native PSO bind 200 Slowly porting remaining code to
(legacy path) native PSO path

CPU saving in ~40% Most of the code here was doing
Material::Bind() granular render state setting

i
uBMm

« Here are some stats related to PSOs:

- As you can see the bulk of our rendering uses the
precompiled PSO code path

- Still have a bit of use of the old code path, but it also uses a
PSO cache that can be warmed up to prevent hitching. We
are slowly porting some of these passes to using the blob
interfaces

« Finally you can see some good savings on material apply, since the
majority of work there was related to setting render state

87

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Pipeline State Objects: Summary

« Blobbing state can be quite restrictive

« Material batch rendering code path easier to
port to blob interfaces
o By adding some restrictions to data shaders

e Majority of our rendering (>90% of draws) / most of
the perf gain

. i
UBM

« Blobbing can be restrictive. Some of the more problematic cases:

- Using custom depth bias (in cut scenes there was a lot of tweaking
being done to get around self shadowing issues for example) -
chose to move it to being done in the testing shaders instead

- No more runtime toggle of render states by effects, they now have
to switch materials instead

- Debug modes (wireframe, picking, etc.) can also create a lot of PSO
permutations, but this is only a concern for non release builds

« The bulk of our CPU rendering related cost is in the Material+Mesh code
path, also the majority of the perf gains, the remaining code can be more
progressively ported to the new blob interfaces

« By having knowledge of which permutations are available we can even
compiled them offline in the users machines (at install time and when we
detect driver changes, etc. and regenerate our PSO caches)

88

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Pipeline State Objects: Summary(2)

» Rest of non-material rendering code not critical
- need to keep old interface around for a while

» Blob code path has very simple low level state
management:

« Just blob pointers, no hashing or shader compile
hitching in rendering threads

. i
UBM

« We end up with very simple low level state management, very close to
the ideal that DX12 interface requires

« However, imposing restrictions on users who have used the engine for
many years is generally not very popular

89

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Main lessons:

« Leverage high level render pass knowledge to
optimize your API use

« High level producer system saves a lot of
rendering engineer's debugging time

» Less granular, blob based rendering interface,
maximizes CPU perf gains, avoids repeat work

» Architectural work will benefit other platforms/APIs

- &b
uBM

« Main lessons from our experience:

- Invest in implementing systems that can leverage high level render
pass knowledge to optimize your API use

- These systems pay off in terms of rendering engineer’s time:
- by facilitating debugging with the aid of rich visualization tools

- decoupling your render passes and thus making them more
modular and making code cleaner, easier to understand,
debug and reuse

- A coarser rendering user interface goes in the direction of what the
new graphic APIs expect, forces pre-batching of state and results in
much more simplified runtime graphic state management

« Pre-compilation of states allows for early (offline/load time) optimizations
and avoid repeat work, also allows us to shift potentially expensive work
to loading threads

« Finally, a lot of this high level work will make it much easier to port to
other similar graphic APIs, and even benefit old ones, mainly because it
forced us to think about ways of minimizing and group state changes

90

_ ~
GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17 ‘/
DX12 Gains: GPU CPU
frame time aggregate renderer
(% of DX11) threads time
(% of DX11)
100 100
e GPU: ~59% 80 80 80
e CPU: 15%-30% °° o0
40 40
20 20
0 0

mDX11 mDX12

mDX11 mDX12

i

« Here are some high level stats from our current DX12 version vs the

DX11 one:
- Current GPU gains are small (~5% faster), matchin

g the DX11

b

UBM

driver was actually quite a bit of work, most gains here were mainly
due to async. compute on some IHVs. (I have to note that some
parts of our async. code done on consoles, like async. compute
instance and triangle culling, don’t port to PC very well due to the
lack of granular low overhead cross-queue synchronization
primitives. This results in still larger than ideal humber of barriers
within producers of the graphics queue. We are doing some work to
try to overcome this, by refactoring the code so it’s less dependent
on granular synchronization at the expense of using more memory).

* Regarding CPU, here is where DX12 shows better gains from: 15%-30%

on our render tasks

- these vary quite a bit depending on the ratio of the work we do in
the runtime draw pre-batching vs the number of API calls (the more

batching we do on our side, the less gains we see)

- I haven’t included here the performance we gain by not having

other UMD threads we have in DX11

91

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Conclusions:

e Achieving parity with DX11 perf. is hard work

« Don’t view performance as the end-all

» See effort as gateway to:
e Unlocking features like Async Compute, mGPU, SM6, etc.
o Closer than ever to feature parity with consoles

o Opportunity to improve engine architecture
o Porting to other equivalent APIs is much easier after

- &b
uBMm

* In conclusion:

- If you take the narrow view of only caring about raw performance,
you probably won’t be satisfied with the amount of resources and
effort it takes to get to even just performance parity with DX11

« I think you should look at it from a broader perspective, see it as gateway
to:

- Unlock access the new exposed features (async. compute, multi
GPU, shader model 6, etc.)

- More or less unify the feature set with consoles

- Opportunity to do some positive architectural changes in your
engine
- Do the bulk of the ground work to port to other APIs like Vulkan

92

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Acknowledgements

e Michel Bouchard (ubisoft Montreal)

e Ulrich Haar (ubisoft Montreal)

e Vincent Veilleux Gaboury (ubisoft Montreal)
e Andrei Tatarinov (nvioia)

e The whole 3D team at Ubi Montreal and the many others
that helped from the several Ubi studios (KIEV, QUE, SIN,
SOF)

- &b
uBMm

I would like to thank the following people who contributed to this
presentation or helped in the designh and implementation of the systems I
presented.

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
' ?
Questions:

« Contact: tiago.rodrigues@ubisoft.com

i

UBM

94

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Misc tools notes:

It pays to add your own tools for high level analysis (graphs to visualize
dependencies, resource transitions, etc.)

The DX12 Debug layer is also quite helpful for tracking transition issues, etc.
GPU validation mode also very useful.

If you loved PIX for XB1, you now have PIX for windows which is already
great and maturing very fast!

RenderDoc works great, open source, help make it better yourself!
IHV tools getting better on DX12 support

GPUView: we all love to hate it, but probably the only tool that can help
you with certain issues (ex: page fault tracking). Inject your own ETW for

extra help.

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17
References:
L}

[1] GDC2016 - “Practical DirectX 12" - Gareth Thomas & Alex Dunn
« [2] GDC2016 - "Right on Queue” - Stephan Hodes, Dan Baker, Dave Oldcorn
[3] GDC2016 - "D3D12 and Vulkan: Lessons learned - Matthaus G. Chajdas
« [4] GDC2015 - "DirectX 12: Improving Performance in your game” - Bennett Sorbo
] GDC2015 - "DirectX 12: Advanced Graphics and Performance” - Max McMullen
] GDC2015 - "Getting the best out of D3D12” - Evan Hart, Dave Oldcorn
] "D3D 12 - A new meaning for efficiency and performance - Dace Oldcorn, Stephan Hodes,
Max Mcmullen, Dan Baker
[8] https://developer.nvidia.com/dx12-dos-and-donts
e [9] https://blogs.msdn.microsoft.com/marcelolr/2016/08/19/understanding-
all_resources_bound-in-hlsl/
« [10] GDC2015 - GPU-Driven Rendering Pipelines - Ulrich Haar, Sebastian Aaltonen

[5
L] [6
[7

e

i

UBM

96

