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• For ACU we did a significant upgrade, which we call “Anvil Next”. You can 
see examples of the most recent ACs that have shipped with this version.
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• We did a lot of work for AC:Unity related to draw call batching and ‘GPU 
submission’ (using the GPU to cull draws/instances/triangle 
clusters/triangles), you can get some more details on this topic from 
Ulrich’s GDC15 presentation on the subject.

• We also had console specific optimizations on the rendering pipeline, since 
certain features weren’t available on PC (like using async. compute for the 
GPU culling dispatches and multidrawindirect), DX12 enables the use of 
these features on PC.
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• Started with a very basic port, where the DX12 API details were hidden 
behind the old renderer interfaces

• As expected we had extreme bad performance (GPU time was ~200% of 
DX11). It was simply too hard to implement some of common API usage 
advice, mainly due to very low level and narrow view of resource states in 
the hardware abstraction layer
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• Barrier abuse:

- We did a lot of individual barrier calls, even when batching between 
commits

- I was quite hard to manage barriers with multithreaded CMD list 
recording, without spreading forced initial states everywhere (leading us 
to do  a lot of intermediate unnecessary transitions)

• Regarding Memory:

- We were significantly overcommitted (due to the lack of aliasing, tiled 
resources/mip streaming)

- We also had issues with CMD list management and reuse

• PSO and descriptor management:

- Hitching in rendering threads due to PSO compilations

- Due to using a common root signature to handle all use cases, we had a 
lot of descriptor copying
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• Minimizing and batching resource barriers is very important:

- Otherwise you’ll end up hurting GPU performance by serializing your 
work or flushing caching unnecessarily.

- DX11 drivers have had many years to optimize this under the hood. 
DX12 still provides you with a bit of help here: if you batch barriers 
in a single call, it will produce the minimal set of barrier actions for 
all transitions in that call

• DX12 also provides fully functional, low overhead parallel CMD list 
recording, using it is essential to obtain good CPU perf.

- There are some caveats to have in mind, like not having too many 
tiny CMD lists, or calling ExecuteCommandlLists too often, else you’ll 
hurt CPU perf

• We also now have access to copy engines and async. compute queues, if 
you want to match the DX11 driver you’ll probably have to use them

- Also, for console developers, feature set wise, we are now pretty 
close to feature parity on PC, which is great from an engine design 
perspective
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• Using precompiled render state effectively to minimize runtime work is 
also quite important for CPU perf.

- The API has a heavy focus on precompiled state blobs, allowing us to 
do some expensive work once, cache it, and then have minimal 
overhead at bind time

• Memory management is a large topic, I’ll only touch on some aspects of it 
that relate to the systems I’ll introduce

- The API now enables users much control over how memory is 
allocated and managed (enabling for example implementing memory 
aliasing)
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• At the end of the development of AC:Unity, we started to really feel the 
limitations of our rendering pass architecture as the complexity of the 
rendering pipeline continued to grow. 

• At the same time, we felt that the new graphic APIs coming in the near 
future, would really allow a different level of control on all platforms that 
should be addressed on a architectural and cross-platform level to get the 
full range of benefits.

• This new level of control does mean that managing of resource memory 
and state is now an API user concern. We want to efficiently drive the API, 
while at the same time avoiding imposing a large burden on the engine 
users.
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• Example diagram of a rendering pipeline:

- You can see a number Producers (squares in the diagram), these 
are essentially writers and readers of GPU resources

- Then you have dependencies between these that define the GPU 
execution order

- you also have several GPU queues, which add another layer of 
complexity in terms of synchronization, resource lifetime 
management, etc.

• Just looking at the static configuration of this graph it’s already quite 
complex, however you’ll have to add another layer of permutations to 
support different sets of enabled features (for example, for performance 
scaling on lower end machines)

• Reconfiguring the pipeline to the several use cases, has many knock-on 
effects which make manual/explicit scheduling somewhat impractical.

• We needed some level of automation that would not sacrifice 
performance, but allow us to capture enough high level information to 
then drive the low level API efficiently
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• One of the key design aspects of this system was to make resource 
dependencies explicit
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• In this example you can see a set of producers and how they specify their 
relationship to resources when executing on the GPU
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• Based on these dependencies we can then automatically derive the 
lifetime of each GPU resource: 
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• Using placed resources and the derived resource lifetimes we can reuse 
memory throughout the frame and reduce GPU memory footprint
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• Memory aliasing is automatically derived based on resource lifetime and 
following cross-queue synch points.  In the diagram, you can see an 
example of two GPU resources that share the same memory since their 
usage does not overlap in the GPU execution lifetime
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• One aspect the producer system automates is: Resource Access 
synchronization

• Every producer specifies a GPU queue that it wants to execute it’s 
command lists on: graphics/async. compute/copy (which can change at 
runtime for debugging or other configuration purposes).

• Based on the explicitly specified resource dependencies for each producer, 
we can then derive necessary cross-queue synchronization (fencing) to 
guarantee the correct execution order of CMDs lists on the GPU

• We still support explicit synchronization via fence resources so users have 
control over execution windows (for example to better match GPU 
workloads running in different queues)
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• Here is an example of a simple necessary cross queue synchronization:

- You can see the SSAO producer (in red) running in the compute 
queue, it depends on the G-Buffer depth, produced in the GFX by the 
GBuffer producer (in blue)
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• The first necessary synchronization is before the SSAO producer as it 
cannot start before the GBuffer pass has finished writing to the scene 
depth.
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• Conversely, we also need fencing between the SSAO producer in the 
compute queue and the first consumer of the SSAO mask, which in this 
case is the deferred lighting producer in the GFX queue (which you can 
see in green in the diagram)

• This example is quite simple, in a real frame schedule there could be 
many more producers that could, for example, write to the scene depth 
after the G-Buffer. If one of these producers where to move, and 
synchronization was done manually by the user, it could introduce timing 
dependent glitches that are sometimes hard to spot and debug
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• To better match GPU workloads on different queues the user might want 
to explicitly define a window in which the async. compute workload will 
run

- For example, over the vertex heavy shadow map producer (in black 
in the diagram)

- A manual sync is simply done by depending on a fence resource 
(fences are a producer resource just like any other)

- Because explicit fencing is a resource, we can easily cope with 
alternative configurations (for example load time/lazy updated static 
shadow maps on some levels, where the system automatically adds 
automatic syncing when the shadow producer isn’t scheduled every 
frame)

• Since the remaining fencing was automatically derived, it can take into 
account the user fencing and eliminate any extra synching due to the GFX 
workload execution order (as you can see in the diagram by the absence 
of automatic sync between the GBuffer producer and the SSAO)

• One alternative to manual fencing for this purpose, would be to tag 
producers at a high level to indicate if they are Vertex heavy/Bandwidth 
heavy/ALU heavy and then let the producer scheduling attempt to match 
them automatically
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• Resource Transitions are another aspect our system automatic manages

• In the API these are specified via barriers, which manage operations like 
resource decompression, cache flushes, waits for idle, etc.

• As I mentioned before, it’s easy to get suboptimal GPU performance by 
having a very narrow view of resources, which can lead to doing too many
individual barrier calls, transitioning to generic or unnecessary 
intermediate states, etc.
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• Using resource dependencies:

- Batch barriers at producer boundaries to minimize the work that is 
actually performed by the driver

- We avoid doing unneeded intermediate state changes, because 
knowing the resource dependency graph, we can know upfront the 
best set of state(s) to transition to

- Having knowledge of when you finish producing a resource and 
when it’s actually needed to be used for the first time, allows us to 
split the barriers and potentially hide some internal driver work
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• In this example you can see a number of producers (in purple), and a 
couple of “depth write” to “pixel shader resource” barriers (the red arrow 
heads), which can trigger a depth decompression

• As I mentioned before, we issue barriers at the end producers, and since 
we know what is the next required state in the graph, we can make the 
transition to the next required state early
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• Instead of an instant barrier, we can use split barriers which define a 
window where we guarantee we won’t access that resource, to hint to the 
driver it can ‘hide’ some potentially expensive internal operations in that 
window
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- As mentioned before, we have a list of transitions so we batch them in a 
single call to reduce the number of internal driver side-effects to the 
minimum set
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• Identifiers are used to logically address a specific resource from different 
producers

• Due to using resource IDs, producers don’t need to depend on each other 
at compile time allowing us to implement resource memory aliasing, as I 
showed before, where different IDs point to the same memory at different 
times during the GPU execution timeline

• At static initialization time, we ‘bake’ these identifiers into an index that 
we can them use in the producer system to efficiently obtain it’s 
associated resource view 

• These IDs are also strongly typed in order to provide meaningful compile 
time error checking and allow function overloading
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• Examples of resource IDs:

1) Depth surfaces

Render targets

Structured buffers

2) Explicit Fence resources

3) Callbacks:

Render callbacks (that we can use to call functions form other producers

Input callbacks (that group several other input dependencies together)
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• At its core the producer interface is quite simple, only two main entry 
points:

- Gathering of input/outputs 

- Recording of commands
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• In GatherResources():

- The user specifies resource dependencies (and the required access 
type: read, write, depth test, etc.)

- Also, this is where new resources are specified (defining initial state 
parameters)

- Any required manual synchronization

- Resource identifier aliasing (essentially pointing a resource ID to 
another after a producer is scheduled)
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• Examples:

1) At the top you can see examples of specifying resource dependencies and 
the required access type

2) Manual synchronization (in the middle)

3) Resource identifier aliasing at the bottom
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• Examples:

1) Creating new resources:

- Where we pass the initial configuration

2) Input callback example: where we can provide a shortcut to depend on a 
number of resources at the same time
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• During the Record step, the requested resources can then be accessed via 
a producer specific resource context using the resource IDs. 

• This resource context is unique to every producer, and contains the 
assigned resource views for the point in time where this producer’s CMD 
lists execute on the GPU
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• Here are some examples of obtaining resource views using the IDs…

1) Setting a render target view

2) Shader resource views

3) A callback into another producer (that might issue it’s own set of 
commands)
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• We could theoretically construct the whole GPU schedule just based on 
the desired final outputs and producer dependencies

• To have more control on the actual execution order we decided to support 
a partial explicit skeleton

- Here we add at least a few key producers (where relative execution 
order needs to be set more precisely)

- It’s also easier to add platform/configuration specific producers (ex: 
explicit transfer memory between memory pools [ESRAM/DRAM] on 
console

- This is also where we would generally add producers that define the 
bounds of executing windows to match workload across queues, etc.

- Producers of required resources, that are not specified in this 
skeleton are pulled in automatically by resource dependencies from 
other producers
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• On the CPU, producers record their CMD lists in parallel, maximizing CPU 
utilization across available work threads (this also forces us to remove 
CPU dependencies between producers. We have a shader parameter 
system, that allows a producer to fill a set of parameters to be used by 
other producers)

• The order of execution on the GPU is based on the skeleton schedule 
ordering and cross-queue derived and explicit synchronization
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• The first step in building the schedule is to perform dependency discovery
(This is essentially obtaining all of the inputs and outputs for each 
producer)

• During this process we also pull any producers for resources that have not 
yet been scheduled and build reference counts for each resource to later 
drive resource memory allocations

• We also keep track of resource, write->read and read->write transitions 
across producer boundaries and produce a list of necessary GPU 
synchronization across queues, as resources output from a producer 
running on one queue, are requested as inputs to a producer on another 
queue
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• We then have enough information to do another pass and allocate and 
free the resources at the appropriate producer, filling its resource context 
with the correct views.

• Finally, we can generate the barrier list based on resource types and the 
high level resource transitions
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• One of the key advantages of this kind of system is that it enables us to 
develop very rich debugging tools, that exploit the data we get from the 
explicitly defined dependencies and automatic scheduling:

- The first tool we developed is a graph of the generated schedule 
including a lot useful information (you can see an example of this 
graph on the next slide)

- We also generate a number of other graphs for easy visualization of 
memory aliasing

- Another tool we have is an in game resource viewer, where we can 
inspect the contents of a resource at producer boundaries (by 
injecting a resource copy in the schedule to capture the resource 
state)

• Finally, we have a number of validation tools that can help detect user 
induced deadlocks or circular dependencies
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• Here you can see a diagram of one configuration of our rendering pipeline

- GPU execution order is from top to bottom

- GPU queues are represented in Blue (graphics on the left, compute 
in the middle, and copy on the right)

- Producers are shown in orange

• The graph is quite information dense since it exposes a lot of details

• On the right side you can see a window of the schedule, centered around 
some async. compute work
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• Zooming further…
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• On the left, you can see resource lifetimes bars (from top to bottom), 
color coded by memory pool
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• Some producers running on the async. compute queue in orange…
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• Dependencies from producers to resources, represented by the many 
horizontal lines linking them to the resource lifetime bars on the left
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• Cross-queue fencing, represented by the thick arrows
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• Each of these elements has tooltips that show useful information when we 
hover over them, for example:

- List of resources a producer creates and depends on

- Parameters of resource state transitions

- Fencing parameters

- etc.
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• We have a lot of producers (~50 on an average frame), but a lot of them 
record a small amount of work so we ‘merge’ their CMD lists (that is, we 
end up record them into the same DX12 command list)

• The ratio of barrier to producers is still high, the reason behind this is 
mainly UAV barriers within producers for our GPU culling and indirect 
parameter buffer filling dispatches

- We tackled these on console with async. compute, but on PC, fence
granularity is not good enough for this kind of synching, we are 
doing some further work to reduce these, at the expense of some 
higher memory usage

• Fence count is quite small since most of the memory related lifetime 
management is done with frame fencing

• For a 1080p frame (not counting persistent or tiled resources) we have 
almost 50% memory saving vs not using memory aliasing (memory 
aliasing still has a few caveats, tier1 heap restrictions relating to resource 
type segregation and some rather high alignment requirements for some 
resource types)

- As you would expected, the bulk of our resource memory footprint is 
for RO textures (we do not track these in the producer system) which 
we tackle with mip streaming. 
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• Simple user interface: producers, which queues they execute on, which 
inputs they depend on, and which new outputs they produce. This 
interface relieves users from API responsibilities like issuing barriers and 
doing cross-queue synchronization, by doing them automatically
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• Shields users from configuration specific features (like disabling certain 
passes for performance scaling on lower end machines) by reconfiguring 
the execution graph dynamically, taking care of all the side effects that it 
might entail in terms of synchronization, barriers, etc.
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• Enables us to maximize CPU utilization by distributing CMD recording over 
the available worker threads, while at the same time hiding some details 
like cost of frequent exec calls, by batching and coalescing small 
producers into the same CMD list
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• We had some challenges going in, mainly due to:

- Our existing shader input binding interface was very granular, still 
based on explicit slots

- We also had a significant amount of hand-crafted shaders that 
would have to be ported (we had many more generated from 
shader graphs, but for these we could easily patch the code 
generator)
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• Here you can see a diagram exemplifying setting shader parameters with 
the previous granular interfaces:

- Producers record command lists in parallel and issue a lot of very 
granular input resource changes

- Work is done at Draw/Dispatch time, converting the cached data into 
the required shader inputs (a lot of this work is also repeated if any of 
the parameters change due to the slot based interface)
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• In order to transition to a precompiled blob of parameters approach we 
developed an offline compiler that parses what we call “Shader Input 
Group” definitions and generates headers files that abstract the 
setting/getting of parameters in CPP and HLSL respectively

• At blob compile time we can (for DX12):

- Fill descriptor heaps and build descriptor tables

- We can also hide how constant memory is copied, for example by 
using the upload heap directly or batch updates to reduce copy 
queue related transitions

• Parameter binding points are represented in what we call a “Shader Input 
Layout”, which you can see an example of in the next slide
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• Here is an example of a layout definition

• We already grouped constants by frequency of update with segregated 
constant buffers, now we extend this concept to all shader input 
parameters

• For DX12, this layout will generate a root signature(s), based on the max 
required resource counts from the Shader Input Groups that bind to the 
same entry
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• Here you can see examples of those bind points (segregated by update 
frequency)

• In DX12, each layout bindpoint entry, essential defines a set of descriptor 
tables (ex; a CBV/SRT/UAV table and a SAMPLER one if needed)

• We also support handling of static samplers automatically across APIs by 
generating the required CPP side code for platforms that don’t support it
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• For a layout, the SIG compiler:

- Generates several versions of the root signature for each stage 
combination with the required visibility flags

- Generates rootsig 1.1 versions with the appropriate static flags for 
runtime hinting to the driver so it can optimize parameter 
management

- Handles tier restrictions and implementing other optimizations to 
reduce root table count, placing parameters directly at the root, 
etc.
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• “Shader Input group” definitions have pretty much HLSL syntax, plus 
some annotation support
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• Here we can specify constants and a full set of resources and samplers

• We support a wide range of annotations (for example: for specific bind 
points [allow building of the descriptor tables], defining resource defaults, 
generating debug code [ex: GPU debug print code], etc.)

• We can also specify nested types (ex: Test2), in order to manage 
segregated groups of parameters more easily
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• At runtime, we use the auto generated setter interface (these provide 
provide a layer of validation based on type information and annotations)
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• We use the Set methods to fill the required shader parameters

• Before being able to bind these, we require compiling them into an 
immutable blob (it is at this point that we issue descriptor copying)

- Once we have a blob, we can then reuse it multiple times, 
effectively just passing around descriptor table handles
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• In terms of shader interface, it’s also quite simple:

- We use the auto generated get methods to access resources and 
constants

- The use of nested SIG types, allows us to write shader code headers 
that can be easily reused without depending on global parameters 
or passing a long large lists of individual parameters

- We also support auto-generating loader functions for loading 
structures of parameters from buffers, which we use in draw 
instancing code 

- We can also have auto generated GPU debug tracing code based on 
annotations
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• Here are some stats related to this system:

- As you can see, most of the shader input parameters are static 
(these come from material SIGs, whose associated descriptors and 
constants are copied once during asset load)

- Most of the transient descriptor copying is not between individual 
draw calls, but at the start of producers

- The unique SIG instances actually end up matching up roughly 
between themselves in term of descriptor table sizes, so we don’t 
have many unique layouts, mostly for very specific rendering like 
terrain, water, etc.
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• Summary:
- Abstracts underlying API details (like root signatures and descriptor

tables) but only in a very thin fashion
- Descriptors are updated at the approximate frequency they change
- Minimal overhead since the interfaces are closer to how a lot of the 

HW behaves with pointers to tables instead of individual slots, we 
also end up with a small amount of bind points (5-6), which means 
very simple low level graphic state management code

- Internal knowledge of how descriptors are updated allows us to 
generate more optimal root sig 1.1 to hint optimizations to the 
driver and implement internal Tier limitations like null CBV/UAVs
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• Transition to shader profile 5.1 was more ‘painful’ than was anticipated by 
us (we did it mostly to use register spaces for ease of management of 
slots in root descriptor tables) 

- We had many compiler issues and crashes (most have been 
resolved by now), some still remain (like indexing arrays with 
resources, for example)

- The different binding model also changes FXC optimization rules, so 
look into using the “/all_resources_bound” options (see Marcelo’s 
blog about this) to get very similar DXBC to profile 5.0

• Root signature management a bit messy since 1.1 is only supported from 
win10 RS1, so be careful with managing it if you need to support systems 
with older Win10 versions
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• PSO’s are a significant interface change in DX12, most state is now bound
via a single blob

• Expensive to compile on demand (could take 100’s of ms) since this is 
were shader compilation can happen

• We can load serialized blobs and drivers implements some internal 
caching and derived state optimizations

• For us, the  render state part of the PSOs was the most problematic one 
due to the varied sources where they can come from in our engine: 

- CPP code, materials, artist driven FX scripts, etc.
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• Precompiled render state + shaders is great when thinking about 
performance and generating optimized shaders

- In practice most engines have had a pretty relaxed approach to 
were render state changes come from, even allowing micro RS 
changes in artist facing interfaces

• We do however have two very distinct rendering code paths in our 
engine:

- Material based rendering, which is data driven, based on 
precompiled shader permutations (which covers >90% of our 
draws)

- Handcrafted HLSL based code for features like deferred lighting, 
GPU culling, most post effects, etc.

• We chose to maintain the old interface along side the new blob based one, 
in order to avoid having to port all of the code in one go
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• In a similar fashion to shader parameters, producers issued a lot of very 
granular state changes 

• Internal state compilation was deferred until the last minute when we 
issued the actual draws/dispatches.

- It was at this point that we searched for the appropriate pipeline 
state blobs based on the hashes of the many render states, 
shaders, etc. or created a new one, if needed, which would cause 
hitches that would impact rendering threads and thus potentially 
framerate
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• With the blob approach:

- blobs of state are either compiled offline (material rendering code 
path case), or at load time (in loading threads)

- we have a much simpler state setting interface: SetPipelineStateBlob
(+render target/viewport, other misc)

- this results into much simpler state caches (essentially managing a 
couple of pointers to these blobs) and much lower overhead at 
Draw/Dispatch time (no hitching in CMD list recording threads)
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• Here we also had some initial challenges:

- Data shaders are based on data graphs that generate a lot of 
permutations, to support vertex formats, mesh options ( 
instancing/clustering modes), optimized shaders for the several 
render passes (GBuffer, Forward, depth only, etc.)

- We precompile all shader permutations upfront, at data baking time
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• To give some perspective (stats from AC:Syndicate)

- we had ~500 material shader graphs

- most of these materials are for FXs shaders, used in very specific 
cut scenes/missions

• We can see we had a lot of permutations that are very rarely used (or 
actually never used during a game session)

• We rely on microcode pre-compilation:
- So we get a well defined set of data, no corner cases of needing a 

permutation that wasn’t generated
- However as we can see, if left unchecked, the permutation count 

can become difficult to manage …
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• The very first step we took, was to tackle the number of shader
permutations

• Traditionally in Anvil Next artists Could:

- specify individual render states per material

- toggle render states on materials at runtime via the FXs system

• Introduced restrictions: 

- only allow use of preset groups of render states and permutation 
features

- remove the ability to toggle individual render states at runtime,  
allow them to swap materials instead

• This helped reduce the number of permutations per material template 
significantly
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• After getting the shader permutation side a bit more under control we 
moved to precompiling the several pipeline states in a similar fashion to 
how we did shader microcode

• In Material instances we previously stored references to shader 
microcode, lists of render states, etc. which were applied individually via 
the old granular interfaces, now we just need PSO references

• Because all of these permutations are known upfront we can pre-
associate them to the meshes at load time and at render time, do a 
simple indirection based on the current render mode

• This effectively means we have a number of PSO databases, one for each 
material graph, whose entries are indexed and cached at load time
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• Here are some stats related to PSOs:

- As you can see the bulk of our rendering uses the 
precompiled PSO code path

- Still have a bit of use of the old code path, but it also uses a 
PSO cache that can be warmed up to prevent hitching. We 
are slowly porting some of these passes to using the blob 
interfaces

• Finally you can see some good savings on material apply, since the 
majority of work there was related to setting render state
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• Blobbing can be restrictive. Some of the more problematic cases:
- Using custom depth bias (in cut scenes there was a lot of tweaking 

being done to get around self shadowing issues for example) –
chose to move it to being done in the testing shaders instead

- No more runtime toggle of render states by effects, they now have 
to switch materials instead

- Debug modes (wireframe, picking, etc.) can also create a lot of PSO 
permutations, but this is only a concern for non release builds

• The bulk of our CPU rendering related cost is in the Material+Mesh code 
path, also the majority of the perf gains, the remaining code can be more 
progressively ported to the new blob interfaces

• By having knowledge of which permutations are available we can even 
compiled them offline in the users machines (at install time and when we 
detect driver changes, etc. and regenerate our PSO caches)
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• We end up with very simple low level state management, very close to 
the ideal that DX12 interface requires

• However, imposing restrictions on users who have used the engine for 
many years is generally not very popular
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• Main lessons from our experience:

- Invest in implementing systems that can leverage high level render 
pass knowledge to optimize your API use

- These systems pay off in terms of rendering engineer’s time:

- by facilitating debugging with the aid of rich visualization tools

- decoupling your render passes and thus making them more 
modular and making code cleaner, easier to understand, 
debug and reuse

- A coarser rendering user interface goes in the direction of what the 
new graphic APIs expect, forces pre-batching of state and results in 
much more simplified runtime graphic state management

• Pre-compilation of states allows for early (offline/load time) optimizations 
and avoid repeat work, also allows us to shift potentially expensive work 
to loading threads

• Finally, a lot of this high level work will make it much easier to port to 
other similar graphic APIs, and even benefit old ones, mainly because it 
forced us to think about ways of minimizing and group state changes
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• Here are some high level stats from our current DX12 version vs the 
DX11 one:

- Current GPU gains are small (~5% faster), matching the DX11 
driver was actually quite a bit of work, most gains here were mainly 
due to async. compute on some IHVs. (I have to note that some 
parts of our async. code done on consoles, like async. compute 
instance and triangle culling, don’t port to PC very well due to the 
lack of granular low overhead cross-queue synchronization 
primitives. This results in still larger than ideal number of barriers 
within producers of the graphics queue. We are doing some work to 
try to overcome this, by refactoring the code so it’s less dependent 
on granular synchronization at the expense of using more memory).

• Regarding CPU, here is where DX12 shows better gains from: 15%-30% 
on our render tasks

- these vary quite a bit depending on the ratio of the work we do in 
the runtime draw pre-batching vs the number of API calls (the more 
batching we do on our side, the less gains we see)

- I haven’t included here the performance we gain by not having 
other UMD threads we have in DX11
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• In conclusion:

- If you take the narrow view of only caring about raw performance, 
you probably won’t be satisfied with the amount of resources and 
effort it takes to get to even just performance parity with DX11

• I think you should look at it from a broader perspective, see it as gateway 
to:

- Unlock access the new exposed features (async. compute, multi 
GPU, shader model 6, etc.)

- More or less unify the feature set with consoles

- Opportunity to do some positive architectural changes in your 
engine

- Do the bulk of the ground work to port to other APIs like Vulkan
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