
I am Xavier Sadoulet, and with my colleague Laurent
Couvidou we flew all the way from France to talk about the AI
of Dishonored 2.

1

Before getting started, we think a few thanks are in order.

First we’d like to thank this community: be it the members of
the guild, or people presenting over the years at places like
GDC.

What we will discuss today was inspired by what you guys
shared, so we’re happy to give some back today.

Then of course we want to mention all the guys that worked
on the AI for Dishonored 2, and supported us for the
preparation of this talk.

2

And lastly, a big shout out to all the team in Lyon, it is these
people work we’re representing today so they deserve proper
credits.

There, we’re done being emotional, let’s get to it.

3

Who already played the first Dishonored?

Dishonored 2?

4

Then let me talk about the game

Dishonored 2 is an action adventure game, played in first
person.

Like all Arkane games, it belongs to the immersive sim genre,
among titles like System shock, Deus Ex or the Thief series.

In this game you play an assassin that can use either stealth
or combat approach, and is given supernatural powers as tools
to achieve his goals.

But essentially the game is really about how the player
chooses to approach each mission, each situation.

5

Here is a short video, showing you a glimpse of what the
game looks like.

6

<intro video>

7

Now that you saw what the game is about, let’s talk about
some challenges we had to tackle during the production.

8

The first one was the scope.

Ok not like this sniper scope, more like… game scope.
<gesture: small / big>

Let’s say the AI had quite a few things to support.

9

Stealth

10

Combat!

11

Verticality

12

Dynamic relationships

13

Teleporting player

14

Teleporting NPCs

15

Ambush behavior

16

NPCs interacting with bloodflies

17

Time travel

18

Moving walls, and floors and roof!

19

Player clone

20

Time stop

21

Player taking control of NPCs

22

Fully interactable scripted scenes

23

And what about fully interactable scripted scenes, while the
player takes control of a participating NPC?

24

Basically we have all the problems of action/adventure games,
and much more

25

Thus we had to rely very heavily on simulation, because in
every feature review, there is always some guy in the team, to
ask something like this:

“Well this is cool, but: <enounce>”

Every. Time.

And the thing is that it’s totally possible to do that kind of
crazy stuff with our game. The bottom line being: there are
some corners that we simply cannot afford to cut. There are
many, many edge cases. We had to do many things the hard
way, to ensure all the systems worked together.

And in order to implement all those complicated systems, we
were starting from…

26

…nothing.

27

Beginning Dishonored 2 we chose to build a new engine,
starting from id tech 5, and reworking it to fit our kind of
games. We rewrote the AI part from scratch.

We also planned to take full advantage of the new generation
hardware, Dishonored 1 being initially last gen only.

And as the Arkane Austin guys went to another project (which
is a pretty cool game called Prey), there was only one AI
programmer remaining from Dishonored 1, so we basically
had to rebuild an AI team.

28

In that context, we decided to always try simple things first,
to avoid over complication at all cost.

We chose tried and true techniques, standard ways of
organizing our AI systems, known stuff with ample literature
available.

We tried to step away from unneeded new shiny things.

And very importantly we did our homework, spent time
writing technical documents, thinking on paper, writing unit
tests for our systems.

Speaking about systems…

29

.. and standard stuff, we’ve got it all, <enumerate>,
everything.

But guess what… those are not within the scope of this talk.

30

What we are going to discuss today, are 3 systems where we
did things a little differently.

Let’s see one of those.

31

<Laurent>

Hi everyone! I’m going to first present a few things about our
rule system.

32

So: why rules?

Very trivially making a next-gen Dishonored which such a
large scope meant more assets to present.

And we’re a very design-driven studio. Something our
designers expressed was their desire to have more control
over how voice recordings and animations are used by the
game. Having to make a code change each time an asset
needs to be integrated is very bad. And as we didn’t want to
turn them into programmers either, so we had to make sure
we’d come up with something user-friendly.

Also last but not least, we needed to find a solution with a
performance cost that fits the hardware of the current
generation of consoles.

33

So how do we track all the simulation state, to present these
assets in a varied and meaningful way?

This was an open question during pre-production. And
because we started our AI tech from scratch, we had the
complete freedom to try a new technique.

34

Well this is where this GDC talk by Elan Ruskin came to help:
he presented a rule system used notably in Left4Dead 1 & 2*.

It inspired us, and seemed like a good candidate to help us
overcome the challenges I just mentioned. Do yourself a favor
and go check it some day.

So just to make things clear from the beginning: we basically
stole all of his ideas

[*] AI-driven Dynamic Dialog through Fuzzy Pattern Matching. Empower
Your Writers!

http://www.gdcvault.com/play/1015317/AI-driven-Dynamic-Dialog-
through

35

Rules were something that met our requirements.

We went on and implemented a similar system in our new
engine, the Void Engine.

36

So that’s it for rules. Thank you for listening.

…

Nah just kidding!

I said a similar system, not identical. Like every team, we
have our own requirements so we did a few things differently.

So my goal here is to give you details on the specifics of our
system.

37

But first, let’s go over the terminology and basic principles of
our system.

We define a rule as the combination of two collections:

• a list of conditions,

• and a list of actions.

38

Conditions are predicates. We combine them in what is just a
glorified if-and-if conditional.

They poll the state of the simulation, in other words the
current game context.

39

Concretely, a condition is the comparizon between a named
variables and a constant value.

Here’s an example.

We can have a rule matching when an NPC barks because
they just busted the player. So we’re testing the
bark.trigger variable that tells us why we’re trying to bark

now.

And let’s test a few more variables:

• Is the current HP a bit low?

• Is the world is in high or very high chaos?

• And let’s match this only 5 times out of 6.

Note that we only have logical “ands”. This removes the need
to handle operator precedence. It also makes evaluating the
result trivial: a rule matches when every condition matches.

40

Now to actions: they can be virtually anything. As you saw
earlier, for us it’s mostly playing lines of speech or animations,
but it could be anything else.

When there are several actions, they’re picked one at a time.
Every time a rule matches, only one single action is executed.
When there’s enough assets, it’s a great tool to provide
variety in a an explicit way.

41

Finally, if you take a bunch of these rules and stick them
together, you get a rule handler.

This is just a set of rules, our editable resource.

42

So let’s talk about editing. One thing we made is an editor.

Elan: we followed your advice, and listened to our designers.
Their wish was a tool integrated into our in-house editor.

And I already told you about designers, right? They want
everything. So it had to come with all the handy features that
make such a tool usable: copy-paste, undo-redo, and so on.

So we created just that. Let’s see the rules editor in action
quickly.

43

<originally a video>

This is me creating a couple of NPC bark rules... Let’s say I
want to play some lines when an aristocrat notices
something… For example a flower pot or a tea pot.

I won’t give you a full tutorial, but what I want to show here is
the type of editor we have.

You can see that we have two rules: here and here. And that
we have sets of conditions and sets of actions.

So, a respectable editor. Maybe not totally mature, but this is
the actual tool we used for Dishonored 2.

44

Now what did we create with it?

I won’t detail everything but as you can see we use them not
only for NPCs, but also for the player. And mostly for speech
and animations. So this proved to be quite a versatile system.

One interesting extra use case is achievements. The rule
system was a very good fit for things like “check that X coins
were looted to grant achievement Y”.

And since we all love numbers: this is how many rules were
created for each category. The grand total is about six
thousand rules.

45

At runtime, rule handlers are instantiated and will be used for
evaluation.

This means evaluating all rules it contains one by one, in
order, and executing the first one that gets selected.

46

So here we evaluate the first rule: it doesn’t match so we
discard this.

47

Same for the second rule…

48

So we try yet another rule: this time all conditions match so
it’s picked for execution.

We never needed to match more rules than only one, so the
evaluation stops here. That’s some CPU time saved for other
stuff.

49

Now what do I mean by “execution”?

Every time a rule is selected, one action is executed. There
are several ways you can handle this.

One way is to go over the actions sequentially. The first time a
rule is selected we pick the first action and execute it…

50

… and then the next time this rule matches, we execute the
second action…

51

… until we run out of actions.

Things have been pretty straightforward until now, but please
bear with me because this is where things start to be
interesting.

52

At this point we can either start again from the first action.

Or we can simply say these actions are depleted and never
select this rule again.

We allow both, and we call these two options “execution
policies”.

53

… Sequential execution is handy, but sometimes what you
really want is random variations.

For instance for ambient barks, you don’t want NPCs to say
the same lines in the same order all the time.

This gives a “robot effect” pretty fast, and is distracting for
players.

54

The naïve approach to randomizing things, is to pick a random
outcome every time the rule is selected.

The problem with this kind of random is that it doesn’t prevent
repetitions, which is another annoying “robot effect”.

So we don’t do this.

55

What we do instead is that we shuffle the action list during
initialization, and then shuffle again every time we reach the
end.

Just like you would shuffle a deck of cards before playing a
game of poker.

This is called a shuffle bag. Given a list of possible options, it's
the most natural way to use them all while avoiding common
pitfalls.

Photo © Johnny Blood / CC BY-SA 2.0

https://commons.wikimedia.org/wiki/File:Riffle_shuffle.jpg

56

Beware though!

When shuffling, you should never put back the last action in
the first spot, otherwise you’ll get a nasty repetition.

One work around is to send it to any random spot but the first
one*.

[*] Details here:

http://gamedev.stackexchange.com/questions/29743/how-do-i-produce-
enjoyably-random-as-opposed-to-pseudo-random/29747#29747

57

So that’s a total of four execution policies that we use in the
final game.

Sequential or shuffled execution of actions works great to
prevent repetition for one entity.

58

But what about several entities?

We still wanted to prevent the same bark or attack from being
played twice in a row by different NPCs. We obtained this by
putting recently executed actions in a global list, forbidding
other NPCs to execute it until a cooldown depletes.

Actually, once we had this option to filter actions at runtime,
we found out other uses for it. We also ended up
implementing it for conditions. We didn’t plan for this initially
and this evolved a bit organically, but it’s probably something
interesting to explore further.

59

Earlier, I mentioned briefly that we instantiate our rule
handlers during initialization.

We actually say that we “compile” them.

That’s because we perform some significant data transforms
at this stage, mostly for performance reasons.

One interesting thing that we do is that we combine rule
handlers. This allows to add a custom set of rules for specific
NPCs.

60

For instance members of the Howlers gang have a bunch of
specific attacks.

We can take these attacks and combine them with the generic
attacks to create one single rule handler instance.

61

Since we combine rule handlers we need to determine how to
sort the resultant set of rules. We call this a compilation policy.

One solution is to simply not sort, and just concatenate
everything. This is actually a very sensible solution for small
rule sets: what you see in editor is what you get in game.
Clear and simple: we use this for most rules. But for us, barks
were the exception. We have too many of them and really
needed more levers to get to the desired results.

We first tried to sort rules per condition count as Elan Ruskin
advises in his talk, but it didn’t cut it for us. Our Lead
Narrative Designer Sachka often found herself adding new
empty conditions just to get the outcome she wanted.

So we changed our approach near the end of the production.
The solution we shipped with is that we give every bark a
priority and we use this as the first criteria for sorting, keeping
the condition count only as a second criteria.

62

Something else we do during compilation is that we share
identical action lists. Let me explain this with another
example.

Our fighting NPCs can kick or punch under different sets of
conditions. Offline, we have two rules: one to trigger close
combat attacks when back to the wall (literally), and another
one for a player blocking too much.

At runtime these two rules point to the same action list, so the
sequential execution shares the same counter. In other words
you won’t observe the same punch animation twice in a row
just because it was triggered under different conditions.

And yes, in case you wonder, that does give us a logical “or”
for the few cases where we actually need it.

63

Now let me come back to variables for a moment, and give
you more juicy details.

These variables have a unique path to keep things simple and
ordered in the editor.

Their role is to tell us how to get to the actual data.

64

So let me list some data bindings that we have.

A variable can give the value of a C++ class member… Or be
computed by a method (we call these “providers”)… It can
point directly at an NPC knowledge record… Or at a variable
created in data by level designers… And we also have a few
more bindings.

65

When do we resolve variables?

We resolve these variables on demand. Most of the times, we
only need a few variable to be actually resolved during
evaluation. For instance let’s say that the first rule of a set
matches. We won’t evaluate the remainder, so we don’t have
to pay the cost of resolving the variables we will never check.

Still, resolving a variable every time would be very
damageable for performance. We have variables that are
actually method pointers, and that do perform quite a bit of
computations before their return value. Since resolving twice
or more is useless in practice, we don’t want to pay that cost
each time a variable is tested during one evaluation.

So we cache the resolved values for the time of an evaluation.

66

Having this cache does shave about two thirds of the time
spent evaluating rules, so it’s a win.

Note that these figures are for a thousand rule handlers, but
we evaluate just a few of them per frame.

So our performance metrics are OK for this generation of
consoles and onwards.

67

Time to close this chapter with what we envision for the
future.

One thing that is a bit clumsy with our current system is that
some variables are only available for some type of rule, for no
particular reasons. For instance a variable exposed for barks
can be missing for attacks. If you are going to use rules in
many different contexts just like we do: make sure you take
this into account, and share your variables as much as
possible.

Of course you always need better debugging tools, and we
make no exception. Something we miss is a visualization tool
for the combined and sorted rules. Also at runtime, all we
have to debug an evaluation is a good old dump: we’ll try to
improve this in the future.

Finally we’ve talked about our cache system but we know
there’s more we can do on the performance side. So if we
expand our usage of rules, we know there’s room for it.

68

So to sum up, what makes rules so sexy?

Firstly they are very appropriate for simple and short-term
contextual decisions.

Secondly they’re a data-driven tool. In the end they made our
designers happy. I believe. Or at least mildly satisfied It
should be obvious to everybody: if you have to make a code
change for each and every new asset in a AAA game, well
you’re just never going to ship it.

And finally, you saw the metrics: we now have more than
enough hardware resources to afford such a system. So
there’s no reason not to do it.

Your turn to rule Xavier!

69

Thanks Laurent, you rule

OK now, let’s speak DSM.

70

I do realize that I’m not making things easy on myself by
starting a section of this talk with some obscure acronym.

Let’s try to explain a little bit.

Photo © Takashi Hososhima / CC BY-SA 2.0

https://commons.wikimedia.org/wiki/File:What_are_you_doing_here%3F_
(7046417743).jpg

71

Originally DSM meant Dynamic Space management, or maybe
Discrete Space Mapping.

But you could take any of those other meanings I came up
with while writing this part of the talk.

And yes, there is a pun ;)

The point here is that it’s not about what it means, it’s about
what it does.

DSM is our solution for spatial reasoning & influence mapping.

72

First let me show you what we use spatial reasoning for in our
game.

73

<originally a video>

There you can see Witches teleporting themselves and
summoning a vine, using dynamic positions.

Then we have the always funny case of civilians running away
in panic, and choosing destinations dynamically.

And lastly we have the player losing NPCs in combat, having
them decide where they should go to chase him.

74

Now to summarize all this, this is what the spatial reasoning is
about for us: scoring positions in the world.

And in order to do that, you have to have a finite number of
positions, and then to evaluate them.

DSM helps for both of those, so let’s start with the first part.

75

Let me introduce the main element of the DSM, the layout.

The whole point of the layout is discretizing the geometry of
the map

76

Or more precisely, discretizing the navmesh, which depends
on the map geometry

77

We do computation offline, going from each navmesh face…

78

… to a bunch of cells forming a layered grid…

79

Et voilà !

The grid resolution is 1m x 1m x 2m and its origin is the
minimum point of the navmesh bounding box.

80

There is ample literature around on how to build a grid from a
navmesh. We can recommend this talk* among other.

Thus I’m not going to detail those techniques.

[*] Spaces in the Sandbox: Tactical Awareness in Open World Games

http://gdcvault.com/play/1018136/Spaces-in-the-Sandbox-Tactical

81

The data representation of the DSM grid is a big array of cells.

We encode the array index on 2 bytes, which allows more than
sixty thousands cells in a map.

This is sufficient for us, as in average we have twenty
thousands cells.

82

Now let me talk real quick about the order of the cells in the
array.

They are naturally grouped by navmesh faces. This is an
interesting property:

• First it enhances data locality, cells close in the world tend
to be close in memory

• It’s also interesting when the navmesh is getting cut, we’ll
touch on that a little bit later

• Lastly it’s basically free, because it’s just a consequence of
the way we construct the layout, iterating over all navmesh
faces

83

Each cell is a data structure containing:

• The grid “coordinates” (X, Y, Level)

• The navmesh face id it was created from

• The vertical offset from their center to this navmesh face

84

Navmesh offset is important, because without it, we only have
a bunch of flat grid layers to play with, which is not an ideal
representation of the world, unless you’re making a game on
Apple II.

As you can see on the right, when taking navmesh offset into
account, our cells are far closer from what the world actually
looks like.

And as this is all about picking locations in the world, it’s
better if those locations actually make sense right ?

Using this offset, we can go from a cell to a real world
location, but what about doing it the other way around?

85

Let’s say you have a location in the world, and wants to find
which cell it belongs to.

Knowing the origin and the resolution of the DSM grid, we
know we can translate from world coordinates, to grid
coordinates.

Then from those coordinates we can construct a Key, that we
then feed to a hash table we call “Access table”, and get the
resulting cell index. Easy.

86

Sometime the access table is not fast enough, when you need
to access a lot of cells at once.

Thus we also had cell indexes stored in what we call the
access tree, which is in fact a k-d tree.

With this we can formulate queries like “give me the list of
cells that are within a 5 meter radius from this point in the
world”. Pretty handy.

OK, with those two ways of collecting cells, we’re pretty much
covered.

87

If we go back to our statement earlier, we saw that the world
discretization part is supported by the layout. Now let’s
discuss the evaluation part, that is supported by what we call
layers.

88

A layer is simply an array of values. The array is allocated in
one block, and is the same size as the layout cells array

89

Layers are the dynamic part of the DSM system, they are
equivalent to the classical influence map layers, for those
familiar with this concept.

Unlike the layout, layer data is allowed to change at runtime.

It can store any data type. Those values are typically
information on the game world, like danger rating of a cell or
proximity to the player, etc. Their main function is to support
scoring of each cell.

90

The nice thing is that you can add as many layers as you
need, and each layer memory cost is mainly dependent on the
type of data you choose to store in it.

91

Once you have one cell index, you can instantly access any
piece of data about that cell, in any layer, constant time.

Hence we can combine layer values easily for our scoring
need.

Let’s call this Vertical Traversal.

92

Another interesting things to do with layers, is traversing them
sequentially, until finding a cell that has the correct value.

Once we found one, then we have a cell index and thus we
can directly access data about that very cell, be it in the
layout or in another layer. Then we can carry on.

Let’s call this Horizontal Traversal, and please do note, good
friends, that this technique was awarded the totally unofficial
Cache Friendliness Seal of Quality. Traversing layers that way
is really, really fast. Provided you put reasonably-sized data in
them of course.

93

Ok we now can pick locations in the game world, and score
them, great.

We’re ready to take a look at a concrete example. But before
that, we need to discuss a particular problem we had to solve.

94

<originally a video>

Remember the moving floors and walls of clockwork mansion?

We obviously had many cases of navmesh being cut
dynamically. How did we manage that?

95

When the navmesh gets cut by any kind of object (like a door
or this piece of furniture), the DSM gets notified with the list
of the navmesh faces affected.

Remember how cells are grouped by face id in the layout
array?

This allows us to know which cells belong to the list of cut
navmesh faces, very rapidly.

From there it’s easy to test which cells are actually cut, and
disable them.

96

Disabling a cell is merely another information on it.

The access table, and the access tree do not return disabled
cells, by default. But in the end it really is up to client code to
decide if the disabled status is taken into account or not.

97

The disabled status itself is stored in a bit field containing as
many bits as the layout has cells.

We use vertical traversal to check if a cell is enabled or not.

98

<originally a video>

Alright, let’s talk about an actual example of DSM usage in the
game, which is search destination selection.

The basic principle of search is that NPCs choose one
destination, go to it, and then choose another one, rinse and
repeat until the end of a timer.

We use the DSM to decide which destination is selected.

99

We decided potential search destination would be the on-
navmesh position of a DSM cell.

Thus we just need to score each cell, and retrieve the best
one. Simple right?

To drive this scoring we use a specific data layer we call
Search influence layer.

Its value is used as the main factor for search destination
scoring (cells without influence are not even considered).

We also use other factors to ponder this one, so that for
instance NPCs are spread out enough, and choose cells that
are not too close or too far from them etc.

100

<originally a video>

Whenever something is perceived by a NPC, influence is
seeded on the layer, then propagated along neighboring cells,
in all directions.

The propagation speed is roughly the same as the player
speed.

In order to support propagation we keep connectivity
information between cells in the layout.

101

The influence value itself is stored on 8 bits, using 7 bits for
the value, and 1 for propagation. [0-127]

Please note, than when manipulating influence, it is converted
into a floating point number between 0.f and 1.f, it’s more
convenient for things like scoring.

We chose to have one search layer for everyone, so that the
data is actually shared.

When search is done, all search influence values are reset to
invalid.

102

NPCs “clean” influence from cell once inspected so that it
becomes less desirable.

Cleaning means setting the cell’s influence to 0.

However it regenerates over time up to a very low value: this
is to avoid the search being ever finished before the end of the
set timer.

103

<originally a video>

NPCs clean influence in two ways:

1. In a “cube” of cells we construct around the NPC location

2. Within their inner field of view: we rasterize the triangle on
the DSM grid.

We use the access table to retrieve the cells in each case. To
be sure the NPC actually “sees” the cell, we check there is a
straight line on navmesh from NPC to the cell center.

This is expensive! So we made sure to multithread all this
properly, and used time slicing as we don’t need instant
results in that case

To conclude on search, there is something I’d like to confess…

104

Some among you probably noticed this bug in the previous
video.

The influence is not cleaned properly on this cell. That’s clearly
a bug right?

No obviously I’m just kidding

105

<originally a video>

In fact we have smart objects affecting search. We call them
search spots and each one is linked to a cell.

On those we forbid search influence cleaning until the smart
object usage actually takes place. That way a NPC will
eventually go the smart object to use it.

Now we’re really done with the search part.

106

Now let’s talk about cold hard facts.

During runtime, counting the layout, our dozen layers, access
table, access tree, etc. What would the memory cost for the
whole DSM system be?

<Survey: less than 1 meg, more than 5 meg?, “All you guys
that did not raise your hand, you win.”>

107

DSM memory consumption was profiled around 4 megabytes

Some years ago, there was an interview from Naughty Dog
folks, stating that they were allowed 3 megs on Uncharted 2*
... for the whole game state.

But with current gen console, guess what… 4 meg is perfectly
reasonable.

[*] Climbing and Sneaking Behind UNCHARTED 2: AMONG THIEVES’s AI

https://aigamedev.com/premium/interview/uncharted2-among-thieves/

108

Before concluding, let’s talk about some things you want to
watch our for when using DSM.

First thing, the big performance consumer for us has been cell
accesses. This means you need to watch out for the
performance of your hashing function, make sure your kd-tree
implementation generates as few cache misses as possible,
and really think about the proper way to collect cells for each
use case.

Second thing, we can’t stress enough that you don’t want to
store a 4 bytes float in a layer when all you really need is one
byte. I guess Dave would agree <gesture towards M. Mark>.

109

To finish on this part, let me tell you why DSM is sexy.

For us, the system has been a breakthrough as far as spatial
reasoning is concerned, it unlocked selecting positions
dynamically when all we had was pre-placed points before
(which we had in Dishonored 1 for flee destinations or blood
vines summon positions)

The second thing is that there are a lot of use cases for this
system, far more than what we originally envisioned.

Finally, try it, it’s rather simple to implement, and provided
you’re reasonable, it’s affordable.

Now let’s talk about another affordable system, coordinated
by Laurent.

110

Now let’s talk about crews.

It’s our way of handling NPC coordination.

111

So where does this come from?

During pre-production we knew that were going to have
standard tech fitting for individual NPC behavior.

But our systems designers also had a strong desire to push
the envelope and implement some ambitious group behaviors.
Designers, right?

Well we knew from previous experiences that this one desire
was going to be hard to satisfy. You can get some basic things
working with inter-NPC communication, but it’s hard to get a
fully coordinated group behavior. There’s a point where you
need another approach to avoid getting trapped in a
monstrous plate of spaghetti code.

112

And even if there’s already lots of literature about NPC
coordination, we didn’t find the perfect match for our desires
so we had to venture into uncharted territory.

113

But once more, the light came from a GDC talk, this time from
Mika Vehkala*.

Among other things, he introduced the concept of “situations”,
a technique used in Hitman Absolution. So again, go check it if
you have any interest in this topic.

Thank you Mika! Our AI crews are largely inspired by your
ideas. But again, we feel that we did some interesting things
on our own.

[*] Creating the AI for the Living, Breathing World of Hitman: Absolution

http://www.gdcvault.com/play/1019353/Creating-the-AI-for-the

114

So what’s a crew? It’s a group of people working together
towards a common objective.

Take this crew, or that crew. Quite literally, they’re in the
same boat. Clearly, they will have to coordinate if they want to
go anywhere. They need to row together.

Photos © State Library of South Australia / CC BY 2.0

https://www.flickr.com/photos/state_library_south_australia/14595109718

https://www.flickr.com/photos/state_library_south_australia/4539666042

115

Although they can row together, these people are still
individuals.

Free them up, let the evening come, add some music and
beverages… And soon you end up with this absolute mess.

Agents making their own decisions, sometimes interacting,
sometimes not.

116

In practice, what does this mean?

Let me illustrate this with two videos of what we call the
“regular combat situation”. Don’t be afraid: that’s our jargon
for a bunch of guards directly fighting the player.

117

<originally a video>

So here you can see that the NPCs are fighting, but things are
a bit disorganized.

They’re struggling... They all try to reach the player at the
same time... Sometimes bumping into each other... There’s
even friendly fire going on.

Not very pretty.

118

<originally a video>

So this time the crew is enabled.

Guards are keeping their distances a bit more... The elite
guard in the background is shouting orders... He use his pistol
a little more effectively...

Things look a little more organized.

119

What makes things different in the second video? There’s a
combat crew working behind the scene to coordinate NPCs.

It assigns them a certain role in combat, for instance melee
fighter or ranged fighter.

For NPCs in melee, we have a bunch of slots that poll the
navmesh around the player. It’s the crews’ function to find a
proper distribution across these slots.

The crew also controls the attack rate through shared attack
cooldowns, as we don’t want the player to be completely
overwhelmed.

And so on.

120

Let’s step back a bit. I might be stating the obvious here but I
want to drive this home.

Two opposite paradigms exist, two approaches to group
behavior: top down or bottom-up.

121

The top down approach is to have a central coordinating entity
that takes decisions and gives directions. A ruling mastermind.

This allows for pre-determined group behavior.

122

The bottom up approach lets all individuals take their
decisions, and the occasional interactions create an emergent
group behavior.

The outcome is unpredictable.

123

I won’t tell you that one approach is better than the other.
There are pros and cons on both sides.

So my point is: you have to find a balance between the two
that fits the game you’re making.

124

So what about us, and Dishonored 2? In our case, we had
early designs such as this one.

This is the kind of group behavior our designers envisioned.
This one’s from our combat designer Jonathan. Don’t worry
about the details: just note that this represents evolving
situations, with NPCs dynamically taking different roles
depending on the environment and player actions. My point
here is that it’s very difficult to implement something along
those lines…

125

… When all you have is this mess. That is just impossible.

126

So we needed a top down approach to AI.

We first tried a prototype of a situation system, inspired by
the Hitman talk. But things were very hardcoded, and too
rigid.

Since what we needed was a mastermind taking its own
decisions, it became obvious that what we needed was an
actual AI.

Instead of reinventing the wheel, we figured we could simply
reuse our standard AI tech. Our mastermind was going to
have sensors, a knowledge blackboard, and a behavior tree.

So this is what we call a crew.

127

What’s the job of a crew?

It works like any AI, but it’s main interest is the members that
compose it. Just to give you an idea: typically, we’re talking
about two to ten members.

So when we update a crew, it first “senses”, which means that
is starts by collecting the knowledge of each member.

It then “thinks”, which means updating a behavior tree that
decides which role to assign to which member.

Finally, it “acts”. This mostly consists in writing directions in
the NPCs individual knowledge, so they play their role
correctly when it’s their turn to update.

128

That’s one important point: individual behaviors still exist.

NPCs use the knowledge coming from the crew as any other
source of knowledge (for example their sensors).

So if you disable the crews, NPCs just act as if they were
alone, but they’re not completely shut down.

129

So this is what I meant by finding a balance. If something
good came out of the early 2000s craze of object-oriented
programming, it’s the single responsibility principle.

On one side of the balance, crews should be responsible for
the coordination only. As soon as the coordination logic starts
to drive NPCs directly, things starts to smell.

On the other side of the balance, the individual behavior logic
should always work on a single NPC. As soon as it tries to
perform coordination, it becomes a mess.

Our rule of thumb is that we try to avoid using any crew logic
when a behavior involves one and only one NPC.

130

Now you might wonder: how do we group NPCs together?

We use a very basic request system. NPCs can emit a request
to join a crew directly from their behavior tree. We also have
crews controlled by the level designers, so they can create
crew requests from our in-house visual scripting tool.

This request is made of an objective and a target. For
instance, “fight the player”.

131

So just to show you what it looks like, this is a part of our
individual combat behavior tree.

The highlighted node at the tree root is what posts a request
to join a combat crew.

132

At any given time, we sort requests per priority, and all NPCs
sharing the same objective and target simply become
members of the same crew.

We allow an NPC to be part of only one crew.

This is both simple and dynamic, and avoids to put too much
complexity at a very high level.

Now that we grouped NPCs together, let’s see an illustration of
group behavior.

133

This is the crew behavior tree for regular combat. This is what
drives the coordinated combat video I’ve shown earlier.

It’s nothing fancy. You see two branches, one for the roles
assigned to NPCs currently engaging the player, another one
for the roles assigned to NPCs chasing the player. So this is
just a definition of what roles are available for this part of
combat.

But that’s only one part of the crew combat behavior.

134

Here’s what you get if you zoom out a bit: the big picture.

So as you can see there’s more than “regular combat”. Under
certain conditions, the crew behavior changes and roles are
assigned differently.

Now let me focus on the part labelled “far target”.

135

This is activated when one member of the crew notices that
their path to the player is way longer than the actual distance.
That means that there’s some piece of level that needs to be
bypassed to reach them.

So what the crew does in this situation is that it splits the
combat in two. A few members are sent to flank the player,
trying to reach the melee, while the others simply stay put,
taunting and using ranged attacks.

136

Note that we have two end conditions here, depending on
what happens to the flanking NPCs.

As soon as any of them manages to reach the player, the far
target tree is cancelled and the crew switches back to regular
combat, which means that more NPCs will join the melee.

But if too much time passes, or if any of the flankers gets
killed, the crew marks the area around the target as
unreachable. In this case it’s deemed too dangerous to try
flanking the player so we’ll just stick to ranged combat.

137

So let me show you these two outcomes in video.

138

<originally a video>

Here we have a few guards...

I’m setting up a trap, and I’ll try to lure them into it...

They busted me! The combat starts, and I get to a point
where they’ll have to navigate a long path to reach me...

Now one of them is trying to flank me... and gets killed.

But I didn’t set enough traps so another one reaches me and
they all come in melee...

139

<originally a video>

Apparently one trap wasn’t enough, let’s try with two of
them...

Same thing: I’m getting aggro, trying to lure them into these
traps....

Two of them are trying to flank me, but this time both get
killed.

So at this point, the remaining guards just decide it’s safer to
stay where they are and to pick me from a distance.

140

So that’s it for combat crews.

But we do use crews for more stuff.

141

Everything I’ve shown so far is level independent, it can
trigger anywhere in the game.

But we also wanted to try to use crews for ambushes, and to
let level designers set them up. There was a few cases in the
first Dishonored where scripted ambushes were messing up
with the systemic AI, so this was an attempt to fix this.

In Dishonored 2 level designers can create an ambush crew
from script, start and stop it as they want. On top of this they
manage the triggers and volumes that define the ambush
area, and place spots that NPCs use for positioning.

142

Yet another case of coordinated behavior is search.

First, we use the crew to limit the number of NPCs searching
actively, in some cases we even allow only one of them to
search.

There’s also more evolved coordinated behavior that might
trigger when guards discover a dead body. They first gather
around the corpse. One of them will shout a few orders, and
then they’ll split up in search for the culprit. If they fail in
finding anything, they’ll gather round again to debrief the
situation before falling back to patrol. These phases are also
handled by the crew behavior tree.

143

Before I close this, I just want to want you about two pitfalls
of this system. The first one is how to handle behavior tree
interactions.

I’m talking about how to control the execution flow between
individual and crew behavior trees.

For instance you often want to know if some part of an
individual behavior is done executing before you switch to a
new stage of group behavior. We needed some kind of
“notification” for that.

So we implemented a simple dictionary that is readable and
writable from both sides, and stored in crew knowledge. This
did the trick.

144

The second pitfall is how to organize the updates in the game
loop.

Crews depend on NPCs, and NPCs depend on their crew, so
there’s a bit of a chicken and egg problem. So it’s important to
keep a clean separation between the individual level and the
collective level.

Our solution isn’t very interesting since it’s implementation-
dependent and changed a lot over time, but please note that
is something that requires some thoughts to get right.

145

So clearly this is just the beginning, and we need to improve
our implementation.

I wish we exposed more things in the crew behavior tree. For
instance, the conditions for assigning a role to a given NPC
could be defined in it, but for now they’re all written directly in
C++ code. Same for the execution of roles.

Something else we didn’t implement is the gathering of crew
members using some kind of psychic/radio attraction. It could
be used notably for coordinated distractions in patrol, but this
remained at the idea level.

And last but not least, this almost goes without saying: NPC
coordination is something very abstract, and requires good
tools for debugging. Ours were pretty rough, so that’s
something we’ll have to improve in the future.

146

So here are my last words. Crews are sexy!

We us them as a machete to clear the uncharted territory of
NPC coordination.

They allow us to separate the coordination logic from the
individual behavior.

Using behavior trees gives a visual representation of the flow
of group behaviors, which is something very precious during
development.

I wish we will find more use cases for crews so we can refine
them even more.

So that was the last of our systems. Time to wrap up, Xavier!

147

Thanks Laurent, here are some parting thoughts before we
dissolve our crew.

148

Implementing Dishonored 2 AI was quite the ride. Even while
being very conservative and prudent, sometimes the good old
“keep it simple” principle just does not cut it in front of the
hoard of systems interacting together. That’s why we had to
commit to put muscular systems behind simulation.

149

It is interesting to observe that the systems we did the most
research on were the ones that needed fewer changes over
the course of the production. Whereas systems that grew
more organically tend to be the ones that really need
refactoring.

Obviously it is not possible to write technical document for
everything, sometimes you just don’t have enough visibility
upfront.

But when you get the chance, take the opportunity to stop
coding and start writing.

Photo © Michael Bentley / CC BY 2.0

https://www.flickr.com/photos/donhomer/12862432364

150

AI is really about pushing proper content toward the player
when it makes the most sense.

Given the amount of assets modern games have to manage, a
data driven way to select the moments and the content is
absolutely crucial to maintain a decent iteration rate.

That’s exactly what the rule system does for us.

151

Coordination is a hard topic. Hard to design and implement,
hard to debug and maintain, so more often that not games
choose to fake it.

Since the Left 4 Dead’s AI Director, there has been a general
trend of using some kind of master AI to drive something else
that just individual NPCs behavior.

Our experience with crews convinced us that a top level AI
making suggestions to individual NPCs strikes the correct
balance in order to achieve elaborate coordinated behaviors.
This looks like an exciting topic for the games to come.

152

And lastly, we used what would seems an astronomic amount
on memory in DSM. Likewise creating a domain specific
language like the rules system can be scary, in term of
hardware resources management. However costs that were
prohibitive on last generation consoles can now be totally
reasonable. But people habits might change slower than
hardware.

Which means that if you are working on current gen, you
really should try and have your lead allow you to use those
extra resources.

Please, use those megs, use those CPU cycles… Just use them
so we can play even cooler games with even cooler AI in it.

Photo © Blake Patterson / CC BY 2.0

https://www.flickr.com/photos/blakespot/6173837649

153

Thank you for listening.

By the way, we are recruiting*!

[*] job@arkane-studios.com

https://jobs.zenimax.com/locations/view/48

154

155

