
Dark Secrets of the RNG

Shay Pierce
Senior Gameplay Engineer,
Dire Wolf Digital, LLC

As an “indie”: At big studios:

Nowadays:

RNG Case Study: Connectrode

●  Spawns a piece each turn: one of six
colors, at random.

●  Bug: same color 9 times in a row!

●  Simple Solution: “Bagging!”

A Subtle But Important Distinction

“Sampling WITH Replacement” “Sampling WITHOUT Replacement”

Bagging & Edge Cases
●  Evens out distribution

●  Limits/eliminates “streaks”

●  Must handle edge cases (literally)!

●  If you shuffle three decks together (and reshuffle when empty)…
what’s the longest possible streak of repeats you can draw?

Dark Secret of RNG #1:
Every random edge case that can happen, will happen

to a live player (eventually!)

As the gameplay programmer, you are the last line of
defense for sniffing out and accounting for those edge cases

“Pity Timers”
● INTRODUCING: THE PITY TIMER

● (Because "random” means: “yes, Guildenstern, it is possible to lose 100 coin
flips in a row”!)

● “We added a system in the expansion that tracks the amount of time you
spend fighting creatures without finding a legendary and after a certain

period of time will slowly start increasing the legendary drop rate. Once a
legendary drops for you … we reset that timer.”

● …
● “If we want you to get a legendary every 2 hours, the system basically says

‘ok it’s been like double/triple that period of time, just help the guy out!’”

● Diablo 3 developer Travis Day, 2014

More Dark Secrets of RNG:
Secret #2: Human brains are terrible at randomness!

…So many games use tricks to emulate “fair” randomness
(i.e. the behavior players expect).

Secret #3: Players will still always complain that your RNG
is broken and unfair.

Seed Wisely, Or Thou May Fall Prey to Groove Theory!

The Dark Secret of
Gameplay Programming:

The designer(s) will ALWAYS change their minds about everything
possible!

...Your job is to plan for it, and enable it, by using good, flexible coding

approaches!

var rarityLootLookup = new LookupTable<LookupTable<ILootItemArchetype>>(
 new RNG(seed),

 new LookupItem<LookupTable<ILootItemArchetype>>(commonLootLookup, 1f),
 new LookupItem<LookupTable<ILootItemArchetype>>(uncommonLootLookup, .5f),
 new LookupItem<LookupTable<ILootItemArchetype>>(
 legendaryLookup,
 .01f,
 li => li.Weight = li.StartingWeight, // Reset weight whenever it's picked
 li => li.Weight += .01f // Grow weight each time not picked
)
);

var lootDrop = rarityLootLookup.Pick();
print("Loot dropped: " + lootDrop);

Example “Pity Timer” implementation

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

[dice roll]

Level 1-3 armor
(Rarity: Legendary)

Weight:
1.0

Weight:
0.5

Weight:
0.01

WalrusCopter
death loot?

Weight:
0.5

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Weight:
0.28

Based on server player
class distribution

Level 1-3
Legendary
armor for

Ninja class

Weight:
0.35

Level 1-3
Legendary
armor for

Wizard class

Weight:
0.37

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.01

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.02

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.03

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.04

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.04

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.04

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.5

Weight:
0.04

Weight:
0.28

Weight:
0.35

Weight:
0.37

WalrusCopter
death loot?

Weight:
0.5

[dice roll]

Level 1-3 armor
(Rarity: Common)

[dice roll]

Level 1-3 armor
(Rarity: Uncommon)

Level 1-3
Legendary
armor for

Ninja class

Level 1-3
Legendary
armor for

Wizard class

Level 1-3
Legendary
armor for

Knight class

[dice
roll]

[dice
roll]

[dice
roll]

Weight:
1.0

Weight:
0.01

Weight:
0.28

Weight:
0.35

Weight:
0.37

See Squirrel’s earlier talk (“SquirrelNoise”).

…Let’s see how Random Hashing can be
used to solve a deep dark problem: “Deep

Echoes”.

Dark Secret of RNG #3: Random Hashing

A Tale of Two Cities
Each Procedural City in your world is generated from a seed.
So they’re unique… right?

ZombieUniverse
Seed: 42

Galaxy
Index: 0
Seed: 62

Galaxy
Index: 1
Seed: 47

Galaxy
Index: 2
Seed: 31

Solar System
Index: 0
Seed: 2

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 16

Solar System
Index: 0
Seed: 30

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 40

ZombieUniverse
Seed: 42

Galaxy
Index: 0
Seed: 62

Galaxy
Index: 1
Seed: 47

Galaxy
Index: 2
Seed: 31

Solar System
Index: 0
Seed: 2

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 16

Solar System
Index: 0
Seed: 30

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 40

Planet
Index: 0
Seed: 28

Planet
Index: 1
Seed: 3

Planet
Index: 2
Seed: 16

City
Index: 0
Seed: 54

City
Index: 1
Seed: 43

City
Index: 2
Seed: 33

Planet
Index: 0
Seed: 28

Planet
Index: 1
Seed: 3

Planet
Index: 2
Seed: 16

City
Index: 0
Seed: 54

City
Index: 1
Seed: 43

City
Index: 2
Seed: 33

Solving Deep Echoes:
●  Generate element content (e.g. name) based on

element.Seed
●  Generate child elements using some other seed…

●  Should be unique to that element
●  Should not be a function of its parentage
●  In our example we use its N-dimensional “address”

based on hierarchy indices, which we then hash.

public int GetSeedByIndexAddress(
 Type type,
 IEnumerator<UniverseLayer> layers
)
{
 return SquirrelNoise.Hash(

 ZombieUniverse.Instance.Seed,
 layers.Select(l => l.Index).ToArray()

);
}

void InitializeChildren() {
 var rng = new RNG(
 ZombieUniverse.Instance.GetSeedByIndexAddress(this.GetType(), GetHierarchy())
);

 int numChildren = rng.Next(3, 5);

 var usedChildSeeds = new HashSet<int>();
 for (int i = 0; i < numChildren; i++)
 {
 int childSeed;
 do
 childSeed = rng.NextInRange(ZombieUniverse.GlobalSeedRange);
 while (usedChildSeeds.Contains(childSeed));
 usedChildSeeds.Add(childSeed);

 TChild child = ZombieUniverse.Generate<TChild>(this, i, childSeed, transform);
 }
}

ZombieUniverse
Seed: 42

Galaxy
Index: 0
Seed: 62

Galaxy
Index: 1
Seed: 47

Galaxy
Index: 2
Seed: 31

Solar System
Index: 0
Seed: 2

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 16

Solar System
Index: 0
Seed: 30

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 40

Planet
Index: 0
Seed: 52

Planet
Index: 1
Seed: 33

Planet
Index: 2
Seed: 21

City
Index: 0
Seed: 28

City
Index: 1
Seed: 3

City
Index: 2
Seed: 16

Planet
Index: 0
Seed: 55

Planet
Index: 1
Seed: 3

Planet
Index: 2
Seed: 12

City
Index: 0
Seed: 28

City
Index: 1
Seed: 3

City
Index: 2
Seed: 16

But What About “Broad Echoes”?

ZombieUniverse
Seed: 42

Galaxy
Index: 0
Seed: 62

Galaxy
Index: 1
Seed: 47

Galaxy
Index: 2
Seed: 31

Solar System
Index: 0
Seed: 2

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 16

Solar System
Index: 0
Seed: 30

Solar System
Index: 1
Seed: 61

Solar System
Index: 2
Seed: 40

Planet
Index: 0
Seed: 52

Planet
Index: 1
Seed: 33

Planet
Index: 2
Seed: 21

City
Index: 0
Seed: 28

City
Index: 1
Seed: 3

City
Index: 2
Seed: 16

Planet
Index: 0
Seed: 52

Planet
Index: 1
Seed: 33

Planet
Index: 2
Seed: 21

City
Index: 0
Seed: 28

City
Index: 1
Seed: 3

City
Index: 2
Seed: 16

Solving “Broad Echoes”:
●  I let the solution as an exercise for the viewer.

●  …By which I mean, I ran out of time .

●  At some point the Pigeonhole Problem makes collisions
and repetition inevitable.

Recommended Reading
Dan Cook on Loot Tables:
http://www.lostgarden.com/2014/12/loot-drop-tables.html

Unity Blog on Repeatable Random Numbers (by “runevision”):
https://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/

Image attributions:
Photo of die: By Ana - Flickr: Luck., CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=12530733

Deck of cards image:

By Christian Gidlöf – Photo taken by Christian Gidlöf, Public Domain, https://commons.wikimedia.org/w/index.php?curid=597083

