
GPU-based clay simulation and

ray-tracing tech in Claybook

Sebastian Aaltonen

Co-founder of Second Order

Introduction

● Sebastian Aaltonen
● Ex-Ubisoft senior lead programmer
● 20 years of 3d programming experience

● Second Order
● Formed two years ago
● Two employees (me and Sami)
● We target PC and consoles
● Claybook is our first game

@SebAaltonen

Topics

● Claybook Overview

● Signed Distance Fields (SDF)

● Raytracing Signed Distance Fields

● Clay and Fluid Simulation

● Async Compute

● Integration to Unreal Engine 4

Claybook Overview

● Clay simulation game

● Fully destructible environment

● User generated content

● PC (Steam), Xbox One (X) and PS4 (Pro)

● Steam Early Access & Xbox Game Preview

Claybook Overview, cont

● Clay modeled as signed distance fields (SDF)
● Both world and characters are SDF based

● Physics & fluid simulation running on GPU

● No baked lighting, AO or shadows
● Everything must be real time

Claybook Trailer

https://www.youtube.com/watch?v=Q8quiLN7n04

https://www.youtube.com/watch?v=Q8quiLN7n04

Signed Distance Fields (SDF)

● SDF(P) = signed distance to nearest surface at P

● Analytic distance functions
● Popular in demoscene productions

● Huge shader. Lots of math. No data

● Volume texture
● Store distance function. Trilinear filter

● We use volume texture with mip maps

World SDF

● Resolution = 1024x1024x512

● Format = 8 bit signed

● Size = 586 MB (5 mip levels)

● Distance of [-4, +4] voxels
● 256 values / 8 voxels  1/32 voxel precision

● Max step distance (world space) doubled per mip level

SDF Brushes

● Brush = Small offline baked volume texture
● Resolution [323, 1283] = [32 kB, 2 MB]

● World SDF generated by combining N brushes
● Each brush has translation, rotation and uniform scale

● Smooth add/cut operations (exponential min/max)

● Layering system (operation ordering)

● Runtime performance not dependent on brush count

Compute Shader Intro

● SPMD = single program, multiple data
● My slides are written from perspective of one thread

● Unless line starts with: “Group“

● Thread groups
● Compute dispatches are split to thread groups

● Sync barrier + groupshared memory (GSM)

World SDF Generation on GPU

1. Generate SDF brush grid

2. Generate dispatch coordinates and mip masks

3. Generate level 0 in 8x8x8 tiles (sparse)

4. Generate mips (sparse)

Generate SDF Brush Grid

64x64x32 dispatch. 4x4x4 groups

1. Sample a brush volume at tile center T
1. Cull if SDF > grid tile bounds + 4 voxels
2. Accepted?  atomic add + store to GSM

2. Loop through brushes in GSM
1. Sample brushGSM[i] at cell center C
2. Accepted?  store to grid (linear)
3. Local + global atomic for compaction

Generate Dispatch Coordinates

64x64x32 dispatch. 4x4x4 groups

1. Read a brush grid cell

2. If not empty:
1. Atomic add (L+G) to get write index

2. Write cell coordinate to buffer

Generate Mip Masks

4x Dispatch (mips). 4x4x4 groups

1. Group: Load 1 voxel wider grid L-1 neighborhood
1. Downsample count!=0 mask and store to GSM

2. Dilate mask by 1 voxel (3x3x3 GSM nbhood)

3. Mask!=0  Write grid cell coords (prev slide)

Generate Level 0 (sparse)

Indirect Dispatch. 8x8x8 groups

1. Group: Read grid cell coordinate (SV_GroupId)

2. Read a brush from grid and store to GSM

3. Loop through brushes in GSM
1. Sample brushGSM[i]
2. Do exp smooth min/max operation

4. Write voxel to WorldSDF level 0

Generate Mips (sparse)

4x Indirect Dispatch (mips). 8x8x8 groups

1. Group: Load 4 voxel wider L-1 neighborhood
1. 2x2x2 downsample (avg) and store as 123 in GSM
2. +-4 voxel band becomes +-2 voxel band

2. Group: Run 3 steps of eikonal eq in GSM
1. Expands band: 2 voxels  4 voxels

3. Store 8x8x8 center of the neighborhood

Eikonal Equation (Wikipedia)

World Modification

● GPU simulated clay shapes
● Up to 16k particles each

● Smooth cut for each particleworld collision

● Shapes can also stamp copies of themselves (add)

● Fluid erosion
● Up to 64k fluid particles

● Smooth cut for each particleworld collision

World Modification, cont

● SDF has infinite range
● Local modifications are very expensive…

● Our volume texture has limited range!
● 8-bit multilevel SDF

● Mip 0: +-4 voxel band around modification

● Mip 1+: Dilate, but size = 12.5%, 1.6%, 0.2%...

●  Efficient local modifications!

World Modification, cont

● Same world generation algorithm, except:
● Build grid with modifications only

● Sample previous volume data at start…

● Must output to temporary buffer on PC
● DirectX 11.1 (Win7) doesn’t support typed UAV load

● In-place update of R8_unorm data can’t be done!

● Workaround: Indirect dispatch to copy 8x8x8 tiles

Future: Sparse Volume?

● Only ~10% of mip0 8x8x8 tiles used

● Software virtual texturing with 8x8x8 tiles
● Low res 3d indirection texture + 3d tile atlas

● Indirection texture read perf hit?
● Our sphere tracing steps are fetch bound

● Indirect = nearest (full rate) + trilinear (½ rate)

● Measured cost = 13% slower

Ray-Tracing Distance Fields

● SDF(P) = distance to the closest surface at P
● Radius of sphere at P (filled with empty space)

● Sphere tracing algorithm
1. D = SDF(P)
2. P += ray * D
3. D < epsilon  BREAK

Multilevel Volume Texture Tracing

Loop
D = volume.SampleLevel(origin + ray*t, mip)
t += worldDistance(D, mip)

 D == 1.0  mip += 2
 IF D <= 0.25  mip -= 2; D -= halfVoxel
 D < pixelConeWidth * t  BREAK

● Break if surface is inside pixel inner bounding cone
●  Perfect LOD!

Last Step

● Sphere trace takes infinite steps to converge

● Assume we hit a planar surface
● Trilinear filter = piecewise linear surface

● Geometric series
● Use last 2 samples
● Step = D/(1-(D-D-1))

SDF Sweeps

● SDF can be swept by any bounded shape
● Point sweep (ray): step by D

● Sphere sweep: step by D – radius

● SDF cone trace (spherical cap)
● Analytic solution exists

● Only one extra instruction in shader!

Cone-Tracing Analytic Solution
Pre-calculate (CPU):
 C = sqrt(aperture^2 + 1)
 A = C / (C - aperture)

In shader:
 t = (t + D) * A

Coarse Cone-Trace Pre-Pass

8x8 pixel (outer) bounding cones

Future: Improving the ”Edge Case”

Ray Tracing Results

● Cone trace skips large areas of empty space
● Huge step length reduction

● Volume sampling more cache local

● Mip maps improve cache locality
● Log8 scaling of data: 100%, 12.5%, 1.6%, 0.2%...

● Measurement (1080p render)
● 8 MB data accessed (512 MB). 99.85% cache hit rate

Failed Techniques: Overstepping

● Idea: Take longer steps
● dist(P1,P2) <= SDF(P1)+SDF(P2)
● Fail  Rollback to previous sample

● Problems:
● Reduces sampling cache locality (random rollback)

● SDF(P) more noisy with our mipmapped approach

● Bloats VGPR count and adds ALU

Failed Techniques: Load Balancing

● Loop continues until all threads in wave exit
● Some rays need significantly more steps than others

● Idea: Use wave ballot to exit loop early
● 50% rays finished  fill finished threads with new rays

● Problems:
● Ray setup code runs for unfinished rays (<50%)
● Volume texture sampling is less cache local

● Coarse cone-trace is simpler and does the job better

Ambient Occlusion

● Cast cone at surface normal direction
● Add random variation + temporal accumulate

● AO rays use low SDF mip
● Better GPU cache locality and less bandwidth

● Soft long distance AO

● We also use UE4 SSAO
● Small scale (near) ambient occlusion

SSAO

SSAO + RTAO

Soft Shadow Sphere-Tracing

● Soft penumbra widening shadows

● Approximate max cone coverage

by stepping SDF along light ray

● Demoscene cone coverage

approximation [1]:
c = min(c, light_size * SDF(P) / time)

[1] http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm

http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm

Soft Shadow: Our Improvements

● Triangulate closest distance
● Demoscene = single sample (min)
● Triangulate cur & prev samples
●  Less banding

● Jitter shadow rays
● UE4 temporal accumulation
● Hides remaining banding artifacts
● Wider inner penumbra

Ray-Tracing Timings

Xbox One (base) @ 720p AMD Vega @ 4K

Cone-trace pre-pass 0.2 ms 0.2 ms

Primary & AO rays 1.5 ms 1.6 ms

Shadow rays 1.7 ms 1.9 ms

Material & g-buffer 0.8 ms 1.0 ms

60 fps target on all consoles

Clay Simulation

● Position based dynamics (PBD) on GPU

● SDF based clay shapes
● 643 SDF converted to point cloud for physics & render

● Up to 16384 particles per clay shape (surface)

● Collisions to world SDF and between shapes
● O(1) particle<->SDF collision detection!

● Plastic deformation

SDFMesh Conversion

● Two pass approach
● Multiple triangles refer to the same particle

●  Need to generate the particles first

● Output
● Linear array of particles (surface) for PBD simulator

● Index buffer for triangle rendering

● All meshes drawn with a single indirect draw call

SDFMesh Conversion (Particles)

64x64x64 dispatch. 4x4x4 groups

1. Group: Load 63 SDF neighborhood to GSM

2. Read 23 GSM nbhood, if found in/out edge 
1. Move P to surface (gradient descent)

2. Allocate particle id (L+G atomic)

3. Write P to array[id]

4. Write particle id to 643 grid

SDFMesh Conversion (Triangles)

64x64x64 dispatch. 4x4x4 groups

1. Group: Load 63 SDF neighborhood to GSM

2. Read 23 GSM nbhood, if found XYZ edge 
1. Allocate 2x triangle per XYZ edge (L+G atomic)

2. Read 3x particle ids from 643 id grid

3. Write triangle to index buffer (3x particle id)

Shape Morphing

● Linearly interpolate

between two SDFs

● Run SDFmesh

generation every

frame

Ray-Traced SDF Meshes?

● Render SDF mesh bounding box to g-buffer
● Vertex shader outputs local ray start point and direction
● Pixel shader sphere-traces mesh volume

● Ray miss  discard pixel

● Use conservative depth (SV_Depth_LessEqual)
● Up to 6x faster than SV_Depth when high overdraw

● Didn’t use this as our deform is particle based!

Shape Matching Solver

● 60 Hz fixed step length (16.6 ms)
● One constraint solve per physics tick

● Reductions:
● Group per body (1024): 16x loop load + reduce in GSM

● Reduce 3x3 covariance matrix

● Solve 3x3 SVD/PD  rotation matrix

● Ported SVD/PD solver CUDAHLSL (MIT license)

Failed Techniques: Verlet Integration

● 1st order technique

● Only position data

● Problem:
● Linear estimate of P+1

● Projection damps rotation

● Solution:
● Use 2nd order integrator (BDF2)

Failed Techniques: Gauss-Seidel

● Graph colorization
● Split constraints to 32 passes (independent)

● Constraint passes solved in GSM
● No memory traffic between passes

● Performance and stability very good!

● Problem: GSM limited to ~2000 particles/shape

Failed Techniques: Jakobi

● Sum constraint projections, divide by joint count
● Parallelizes perfectly

● No limits for constraints

● Successive over relaxation (SOR) = 2x speed up

● Problem: Required 4x more sub-steps vs GS
● Converges too slowly…

Fluid Simulation

● Smoothed Particle Hydrodynamics (SPH)
● Clay fluid = highly viscose + smooth surface

● 64k fluid particles (25cm radius)

● Fluid rendering
● Generate fluid SDF every frame

● Resolution = 2563 + 1 mip

● Ray-traced (prim, AO, shadow)

Recommended Physics Papers

Collections of GPU simulation papers:

● http://matthias-mueller-fischer.ch

● http://mmacklin.com

http://matthias-mueller-fischer.ch/
http://matthias-mueller-fischer.ch/
http://matthias-mueller-fischer.ch/
http://matthias-mueller-fischer.ch/
http://matthias-mueller-fischer.ch/
http://matthias-mueller-fischer.ch/
http://mmacklin.com/

Async Compute

● Split frame to 3 async segments
● Overlap UE4 g-buffer and shadow cascades

● Overlap UE4 velocity render and depth decompress

● Overlap UE4 lighting and post processing

● Work submitted immediately
● Compute queue waits for a fence to start (x3)

● Main queue waits for fence to continue (x3)

FPS increase = 19%+

Integration to UE4 renderer

● G-buffer combine
● Full screen PS to combine ray-traced data

● Samples material map (custom gather4 filter)

● Writes to UE4 g-buffer + depth buffer (SV_Depth)

● Shadow mask combine
● Full screen PS to sphere trace shadows

● Writes to UE4 shadow mask buffer (with alpha blend)

UE4 RHI Customizations

● Set render target(s) without implicit sync
● Can overlap depth/color decompress
● Can overlap draws to multiple RTs (image)

● Clear RT/buffer without implicit sync

● Missing async compute features
● Buffer/texture copy and clear

● Compute shader index buffer write

Thanks!

● UE4 Rendering Team

● Rys Sommefeldt (AMD)

● Lou Kramer (AMD)

● Adam Miles (Microsoft ATG)

More questions? We have ID@Xbox station in South Hall Lobby Bar (Thu/Fri)

Bonus Slides

●UE4 Build Process

●UE4 Merging

●UE4 Customizations

●UE4 Optimizations and Fixes

●Implementation Notes

Built on Top of Unreal Engine 4

●UE4 = huge code base + lots of shaders
● Needs fast development hardware

●16-core AMD Threadripper workstations
● UE4 build system scales well to 32 threads

● Around 3x faster build time vs 4 GHz i7 quad

●Large SSDs for checkouts
● Gigabytes of symbol and .obj files

Unreal Engine 4 Merging

●Started with UE 4.8. Now UE 4.18

●Merged most major UE4 versions

●Created our own 3-way directory merge tool
● UE4 console source code comes as zip package

●Will merge UE 4.19 soon
● New features = temporal upscaler + dynamic resolution

Unreal Engine 4 Customizations

●Early decision: Fully separate our tech
● Our own UE4 module

● C-header with function entry points
● 1-line modifications around UE4 code to call our module

●Separation not possible for all cases
● UE4 RHI + low level changes (GPGPU features)

● UE4 WorldCollision changes (SDF collision)

UE4 RHI Customizations (Extra)

●GPU->CPU buffer readback
● UE4 only supports 2d texture readback without stall

● Other readback APIs stall the whole GPU

●Buffer can have both raw and typed view
● Wide raw writes = fill narrow typed buffers efficiently

UE4 optimizations

●Allow overlap of indirect dispatches/draws

●Allow overlap of clears and copy operations

●Allow overlap of draws to different RTs

●Reduced GPU cache flushes and stalls (image)

●Optimized staging buffers

●Fast clear improvements

UE4 optimizations

●Optimized barriers and fences

●Optimized texture array sub-resource barriers

●Better GPU tile modes for 3d textures

●Improved partial 2d/3d texture updates

●5x faster histogram + eye adaptation shaders

●4x faster offline CPU SDF generator (cooking)

Implementation Notes

●Physics data stored in one big raw buffer
● Wide Load4/Store4 instructions (16 byte), bit packed:
● Particle positions: 16 bit norm
● Particle velocities: fp16
● Bitfield for particle flags (alive, collided, etc)

● Benchmark tool: https://github.com/sebbbi/perftest

●Groupshared mem was a big performance win
● SDF generation, grid generation, physics
● Use when doing repeated loads of same data

https://github.com/sebbbi/perftest

Implementation Notes (2)

●Scalar loads were a big performance win on AMD
● Use case: Constant index raw buffer loads

● Use case: SV_GroupID based raw buffer loads

●  Load stored to SGPR  Better occupancy

● More info: https://gpuopen.com/optimizing-gpu-

occupancy-resource-usage-large-thread-groups/

https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/
https://gpuopen.com/optimizing-gpu-occupancy-resource-usage-large-thread-groups/

