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Introduction 

● Sebastian Aaltonen 
● Ex-Ubisoft senior lead programmer 
● 20 years of 3d programming experience 

● Second Order 
● Formed two years ago 
● Two employees (me and Sami) 
● We target PC and consoles 
● Claybook is our first game 

@SebAaltonen 



Topics 

● Claybook Overview 

● Signed Distance Fields (SDF) 

● Raytracing Signed Distance Fields 

● Clay and Fluid Simulation 

● Async Compute 

● Integration to Unreal Engine 4 

 



Claybook Overview 

● Clay simulation game 

● Fully destructible environment 

● User generated content 

● PC (Steam), Xbox One (X) and PS4 (Pro) 

● Steam Early Access & Xbox Game Preview 

 



Claybook Overview, cont 

● Clay modeled as signed distance fields (SDF) 
● Both world and characters are SDF based 

● Physics & fluid simulation running on GPU 

● No baked lighting, AO or shadows 
● Everything must be real time 



Claybook Trailer 

https://www.youtube.com/watch?v=Q8quiLN7n04 

 

https://www.youtube.com/watch?v=Q8quiLN7n04


Signed Distance Fields (SDF) 

● SDF(P) = signed distance to nearest surface at P 

● Analytic distance functions 
● Popular in demoscene productions 

● Huge shader. Lots of math. No data 

● Volume texture 
● Store distance function. Trilinear filter 

● We use volume texture with mip maps 



World SDF 

● Resolution = 1024x1024x512 

● Format = 8 bit signed 

● Size = 586 MB (5 mip levels) 

● Distance of [-4, +4] voxels 
● 256 values / 8 voxels  1/32 voxel precision 

● Max step distance (world space) doubled per mip level 



SDF Brushes 

● Brush = Small offline baked volume texture 
● Resolution [323, 1283] = [32 kB, 2 MB] 

● World SDF generated by combining N brushes 
● Each brush has translation, rotation and uniform scale 

● Smooth add/cut operations (exponential min/max) 

● Layering system (operation ordering) 

● Runtime performance not dependent on brush count 



Compute Shader Intro 

● SPMD = single program, multiple data 
● My slides are written from perspective of one thread 

● Unless line starts with: “Group“ 

● Thread groups 
● Compute dispatches are split to thread groups 

● Sync barrier + groupshared memory (GSM) 

 



World SDF Generation on GPU 

1. Generate SDF brush grid 

2. Generate dispatch coordinates and mip masks 

3. Generate level 0 in 8x8x8 tiles (sparse) 

4. Generate mips (sparse) 



Generate SDF Brush Grid 

64x64x32 dispatch. 4x4x4 groups 

1. Sample a brush volume at tile center T 
1. Cull if SDF > grid tile bounds + 4 voxels 
2. Accepted?  atomic add + store to GSM 

2. Loop through brushes in GSM 
1. Sample brushGSM[i] at cell center C 
2. Accepted?  store to grid (linear) 
3. Local + global atomic for compaction 



Generate Dispatch Coordinates 

64x64x32 dispatch. 4x4x4 groups 

1. Read a brush grid cell 

2. If not empty: 
1. Atomic add (L+G) to get write index 

2. Write cell coordinate to buffer 



Generate Mip Masks 

4x Dispatch (mips). 4x4x4 groups 

1. Group: Load 1 voxel wider grid L-1 neighborhood 
1. Downsample count!=0 mask and store to GSM 

2. Dilate mask by 1 voxel (3x3x3 GSM nbhood) 

3. Mask!=0  Write grid cell coords (prev slide) 



Generate Level 0 (sparse) 

Indirect Dispatch. 8x8x8 groups 

1. Group: Read grid cell coordinate (SV_GroupId) 

2. Read a brush from grid and store to GSM 

3. Loop through brushes in GSM 
1. Sample brushGSM[i]  
2. Do exp smooth min/max operation 

4. Write voxel to WorldSDF level 0 



Generate Mips (sparse) 

4x Indirect Dispatch (mips). 8x8x8 groups 

1. Group: Load 4 voxel wider L-1 neighborhood 
1. 2x2x2 downsample (avg) and store as 123 in GSM 
2. +-4 voxel band becomes +-2 voxel band 

2. Group: Run 3 steps of eikonal eq in GSM 
1. Expands band: 2 voxels  4 voxels 

3. Store 8x8x8 center of the neighborhood 



Eikonal Equation (Wikipedia) 





World Modification 

● GPU simulated clay shapes 
● Up to 16k particles each 

● Smooth cut for each particleworld collision 

● Shapes can also stamp copies of themselves (add) 

● Fluid erosion 
● Up to 64k fluid particles 

● Smooth cut for each particleworld collision 



World Modification, cont 

● SDF has infinite range 
● Local modifications are very expensive… 

● Our volume texture has limited range! 
● 8-bit multilevel SDF 

● Mip 0: +-4 voxel band around modification 

● Mip 1+: Dilate, but size = 12.5%, 1.6%, 0.2%... 

●  Efficient local modifications! 



World Modification, cont 

● Same world generation algorithm, except: 
● Build grid with modifications only 

● Sample previous volume data at start… 

● Must output to temporary buffer on PC 
● DirectX 11.1 (Win7) doesn’t support typed UAV load 

● In-place update of R8_unorm data can’t be done! 

● Workaround: Indirect dispatch to copy 8x8x8 tiles 



Future: Sparse Volume? 

● Only ~10% of mip0 8x8x8 tiles used 

● Software virtual texturing with 8x8x8 tiles 
● Low res 3d indirection texture + 3d tile atlas 

● Indirection texture read perf hit? 
● Our sphere tracing steps are fetch bound 

● Indirect = nearest (full rate) + trilinear (½ rate) 

● Measured cost = 13% slower 



Ray-Tracing Distance Fields 

● SDF(P) = distance to the closest surface at P 
● Radius of sphere at P (filled with empty space) 

● Sphere tracing algorithm 
1. D = SDF(P) 
2. P += ray * D 
3. D < epsilon  BREAK 



Multilevel Volume Texture Tracing 

Loop 
D = volume.SampleLevel(origin + ray*t, mip) 
t += worldDistance(D, mip) 

  D == 1.0  mip += 2 
 IF D <= 0.25  mip -= 2; D -= halfVoxel 
  D < pixelConeWidth * t  BREAK 

● Break if surface is inside pixel inner bounding cone 
●  Perfect LOD! 



Last Step 

● Sphere trace takes infinite steps to converge 

● Assume we hit a planar surface 
● Trilinear filter = piecewise linear surface 

● Geometric series 
● Use last 2 samples 
● Step = D/(1-(D-D-1)) 



SDF Sweeps 

● SDF can be swept by any bounded shape 
● Point sweep (ray): step by D 

● Sphere sweep: step by D – radius 

● SDF cone trace (spherical cap) 
● Analytic solution exists 

● Only one extra instruction in shader! 



Cone-Tracing Analytic Solution 
Pre-calculate (CPU):  
 C = sqrt(aperture^2 + 1)  
 A = C / (C - aperture) 
 
In shader:  
 t = (t + D) * A 

 



Coarse Cone-Trace Pre-Pass 

8x8 pixel (outer) bounding cones 







Future: Improving the ”Edge Case”  



Ray Tracing Results 

● Cone trace skips large areas of empty space 
● Huge step length reduction 

● Volume sampling more cache local 

● Mip maps improve cache locality 
● Log8 scaling of data: 100%, 12.5%, 1.6%, 0.2%... 

● Measurement (1080p render) 
● 8 MB data accessed (512 MB). 99.85% cache hit rate 



Failed Techniques: Overstepping 

● Idea: Take longer steps 
● dist(P1,P2) <= SDF(P1)+SDF(P2) 
● Fail  Rollback to previous sample 

● Problems: 
● Reduces sampling cache locality (random rollback) 

● SDF(P) more noisy with our mipmapped approach 

● Bloats VGPR count and adds ALU 



Failed Techniques: Load Balancing 

● Loop continues until all threads in wave exit 
● Some rays need significantly more steps than others 

● Idea: Use wave ballot to exit loop early 
● 50% rays finished  fill finished threads with new rays 

● Problems: 
● Ray setup code runs for unfinished rays (<50%)  
● Volume texture sampling is less cache local 

● Coarse cone-trace is simpler and does the job better 



Ambient Occlusion 

● Cast cone at surface normal direction 
● Add random variation + temporal accumulate 

● AO rays use low SDF mip 
● Better GPU cache locality and less bandwidth 

● Soft long distance AO 

● We also use UE4 SSAO 
● Small scale (near) ambient occlusion 



SSAO 



SSAO + RTAO 



Soft Shadow Sphere-Tracing 

● Soft penumbra widening shadows 

● Approximate max cone coverage 

by stepping SDF along light ray 

● Demoscene cone coverage 

approximation [1]: 
c = min(c, light_size * SDF(P) / time) 

[1] http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm 

http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm


Soft Shadow: Our Improvements 

● Triangulate closest distance 
● Demoscene = single sample (min) 
● Triangulate cur & prev samples 
●  Less banding 

● Jitter shadow rays 
● UE4 temporal accumulation 
● Hides remaining banding artifacts 
● Wider inner penumbra 









Ray-Tracing Timings 

Xbox One (base) @ 720p AMD Vega @ 4K 

Cone-trace pre-pass 0.2 ms 0.2 ms 

Primary & AO rays 1.5 ms 1.6 ms 

Shadow rays 1.7 ms 1.9 ms 

Material & g-buffer 0.8 ms 1.0 ms 

60 fps target on all consoles 



Clay Simulation 

● Position based dynamics (PBD) on GPU 

● SDF based clay shapes 
● 643 SDF converted to point cloud for physics & render 

● Up to 16384 particles per clay shape (surface) 

● Collisions to world SDF and between shapes 
● O(1) particle<->SDF collision detection! 

● Plastic deformation 



SDFMesh Conversion 

● Two pass approach 
● Multiple triangles refer to the same particle 

●  Need to generate the particles first 

● Output 
● Linear array of particles (surface) for PBD simulator 

● Index buffer for triangle rendering 

● All meshes drawn with a single indirect draw call  



SDFMesh Conversion (Particles) 

64x64x64 dispatch. 4x4x4 groups 

1. Group: Load 63 SDF neighborhood to GSM 

2. Read 23 GSM nbhood, if found in/out edge  
1. Move P to surface (gradient descent) 

2. Allocate particle id (L+G atomic) 

3. Write P to array[id] 

4. Write particle id to 643 grid 



SDFMesh Conversion (Triangles) 

64x64x64 dispatch. 4x4x4 groups 

1. Group: Load 63 SDF neighborhood to GSM 

2. Read 23 GSM nbhood, if found XYZ edge  
1. Allocate 2x triangle per XYZ edge (L+G atomic) 

2. Read 3x particle ids from 643 id grid 

3. Write triangle to index buffer (3x particle id) 



Shape Morphing 

● Linearly interpolate 

between two SDFs 

● Run SDFmesh 

generation every 

frame 



Ray-Traced SDF Meshes? 

● Render SDF mesh bounding box to g-buffer 
● Vertex shader outputs local ray start point and direction 
● Pixel shader sphere-traces mesh volume 

● Ray miss  discard pixel 

● Use conservative depth (SV_Depth_LessEqual) 
● Up to 6x faster than SV_Depth when high overdraw 

● Didn’t use this as our deform is particle based! 



Shape Matching Solver 

● 60 Hz fixed step length (16.6 ms) 
● One constraint solve per physics tick 

● Reductions: 
● Group per body (1024): 16x loop load + reduce in GSM 

● Reduce 3x3 covariance matrix 

● Solve 3x3 SVD/PD  rotation matrix 

● Ported SVD/PD solver CUDAHLSL  (MIT license) 



Failed Techniques: Verlet Integration 

● 1st order technique 

● Only position data 

● Problem: 
● Linear estimate of P+1 

● Projection damps rotation 

● Solution: 
● Use 2nd order integrator (BDF2) 

 



Failed Techniques: Gauss-Seidel 

● Graph colorization 
● Split constraints to 32 passes (independent) 

● Constraint passes solved in GSM 
● No memory traffic between passes 

● Performance and stability very good! 

● Problem: GSM limited to ~2000 particles/shape 



Failed Techniques: Jakobi 

● Sum constraint projections, divide by joint count 
● Parallelizes perfectly 

● No limits for constraints 

● Successive over relaxation (SOR) = 2x speed up 

● Problem: Required 4x more sub-steps vs GS 
● Converges too slowly…  



Fluid Simulation 

● Smoothed Particle Hydrodynamics (SPH) 
● Clay fluid = highly viscose + smooth surface 

● 64k fluid particles (25cm radius) 

● Fluid rendering 
● Generate fluid SDF every frame 

● Resolution = 2563 + 1 mip 

● Ray-traced (prim, AO, shadow) 



Recommended Physics Papers 

Collections of GPU simulation papers:  

● http://matthias-mueller-fischer.ch 

● http://mmacklin.com 
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Async Compute 

● Split frame to 3 async segments 
● Overlap UE4 g-buffer and shadow cascades 

● Overlap UE4 velocity render and depth decompress 

● Overlap UE4 lighting and post processing 

● Work submitted immediately 
● Compute queue waits for a fence to start (x3) 

● Main queue waits for fence to continue (x3) 



FPS increase = 19%+ 



Integration to UE4 renderer 

● G-buffer combine 
● Full screen PS to combine ray-traced data 

● Samples material map (custom gather4 filter) 

● Writes to UE4 g-buffer + depth buffer (SV_Depth) 

● Shadow mask combine 
● Full screen PS to sphere trace shadows 

● Writes to UE4 shadow mask buffer (with alpha blend) 





UE4 RHI Customizations 

● Set render target(s) without implicit sync 
● Can overlap depth/color decompress 
● Can overlap draws to multiple RTs (image) 

● Clear RT/buffer without implicit sync 

● Missing async compute features 
● Buffer/texture copy and clear 

● Compute shader index buffer write 



Thanks! 

● UE4 Rendering Team 

● Rys Sommefeldt (AMD) 

● Lou Kramer (AMD) 

● Adam Miles (Microsoft ATG) 

 
More questions? We have ID@Xbox station in South Hall Lobby Bar (Thu/Fri) 



Bonus Slides 

●UE4 Build Process 

●UE4 Merging 

●UE4 Customizations 

●UE4 Optimizations and Fixes 

●Implementation Notes 

 



Built on Top of Unreal Engine 4 

●UE4 = huge code base + lots of shaders 
● Needs fast development hardware 

●16-core AMD Threadripper workstations 
● UE4 build system scales well to 32 threads 

● Around 3x faster build time vs 4 GHz i7 quad 

●Large SSDs for checkouts 
● Gigabytes of symbol and .obj files 



Unreal Engine 4 Merging 

●Started with UE 4.8. Now UE 4.18 

●Merged most major UE4 versions 

●Created our own 3-way directory merge tool 
● UE4 console source code comes as zip package 

●Will merge UE 4.19 soon  
● New features = temporal upscaler + dynamic resolution 



Unreal Engine 4 Customizations 

●Early decision: Fully separate our tech 
● Our own UE4 module 

● C-header with function entry points 
● 1-line modifications around UE4 code to call our module 

●Separation not possible for all cases 
● UE4 RHI + low level changes (GPGPU features) 

● UE4 WorldCollision changes (SDF collision) 



UE4 RHI Customizations (Extra) 

●GPU->CPU buffer readback 
● UE4 only supports 2d texture readback without stall 

● Other readback APIs stall the whole GPU 

●Buffer can have both raw and typed view 
● Wide raw writes = fill narrow typed buffers efficiently 



UE4 optimizations 

●Allow overlap of indirect dispatches/draws 

●Allow overlap of clears and copy operations 

●Allow overlap of draws to different RTs 

●Reduced GPU cache flushes and stalls (image) 

●Optimized staging buffers 

●Fast clear improvements 



UE4 optimizations 

●Optimized barriers and fences 

●Optimized texture array sub-resource barriers 

●Better GPU tile modes for 3d textures 

●Improved partial 2d/3d texture updates 

●5x faster histogram + eye adaptation shaders 

●4x faster offline CPU SDF generator (cooking) 



Implementation Notes 

●Physics data stored in one big raw buffer 
● Wide Load4/Store4 instructions (16 byte), bit packed: 
● Particle positions: 16 bit norm 
● Particle velocities: fp16 
● Bitfield for particle flags (alive, collided, etc) 

● Benchmark tool: https://github.com/sebbbi/perftest 

●Groupshared mem was a big performance win 
● SDF generation, grid generation, physics 
● Use when doing repeated loads of same data 

https://github.com/sebbbi/perftest


Implementation Notes (2) 

●Scalar loads were a big performance win on AMD 
● Use case: Constant index raw buffer loads 

● Use case: SV_GroupID based raw buffer loads 

●  Load stored to SGPR  Better occupancy 

● More info: https://gpuopen.com/optimizing-gpu-

occupancy-resource-usage-large-thread-groups/ 
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