

The lighting technology of Detroit: Become Human

Guillaume Caurant

Thibault Lambert

Contents

- The road to PBR at Quantic Dream
 - From Heavy Rain to Detroit: Become Human
 - Photometrić Units
 - Material Calibration
- Direct Lighting
 - Analytical lights
 - Shadows
 - Volumetric lighting
- Indirect Lighting

- Heavy Rain (PS3)
 - Forward Shading
 - Gamma space
 - Blinn-Phong specular BRDF

- Beyond: Two Souls (PS3)
 - Deferred shading
 - Gamma space materials
 - Linear space lighting
 - Micro-facet BRDF approximation
 - Lit Shader: Normalized Blinn-Phong with constant visibility term
 - Skin Shader: Beckmann distribution with custom visibility term

- Detroit: Become Human (PS4)
 - Clustered Forward Shading
 - Full linear space
 - Micro-facet Specular BRDF (GGX)
 - Still use Lambertian diffuse (k/π)
 - Partial Energy conservation
 - Photometric units for lights and emissive materials

- Material Evaluation
 - Shading Tree
 - Lit, unlit, lambert, glass, skin, hair, eye, tooth, car paint, cloth
 - Powerful but hard to control coherency
 - Some materials can have multiple specular lobes

- BRDF layer stack
 - We split our BRDF in multiple layers and stack them
 - Up to 2 Specular lobes + 1 Diffuse + 1 subsurface/backscatter
 - Lit shader uses 1 specular GGX layer
 - Optional layer on metallic surface for rain

[LAN14]

- Energy conservation between BRDF layers
 - Each "layer" computes reflected and transmitted energy
 - Remaining energy is reused to compute next layer
 - Need to pre-compute energy transfer over BDRF
 - Multi-Scattering, Fresnel interfaces
 - Unfortunately we just take into account F0

[LAN14]

- Issues faced during production cycle:
 - Poor lighting coherency between scenes
 - Material coherency is also a problem
 - Hard to reuse props in different scenes
 - => We decided to move to Photometric units

- Lighting coherency was our main goal
 - Easier to compare with real life references
 - Artists can use real life input values
 - Prevents them from baking lighting information into albedo
 - Allows better scene contrast / range
 - [LAG14] "Moving Frostbite to Physically based rendering"

@Unknowr

- Luminous power (lm)
 - Total light amount emitted
- Luminous Intensity (cd)
 - Im per solid angle direction
- Illuminance (lux)
 - Light amount falling on surface
- Luminance (cd/m²)
 - Per unit area of cd in specific direction

- Directional light in Lux
- Other lights in lumen
- Mandatory quadratic attenuation
- •Illuminance is *really* high near punctual light

[LAG14]

- Emissive Surface
 - Emissive Intensity parameter (+ color) on all materials
 - Expressed in Exposure Value (EV)
 - cd/m² is a linear scale but not perceived as such by the human eye
 - EV is perceptually linear
 - +1 EV double the perceived light intensity

- Scene Exposure
 - Need to correctly expose our scene in our level editor
 - Auto exposure is not recommended
 - Use measured exposure for typical lighting condition
 - Our levels are split into "Scene Zone" (SZ)
 - Director of Photography provides exposure for each "SZ"
 - Fixed values, no transitions
 - Apply exposure when camera enters a "SZ"

- Scene Exposure
 - Exposures are expressed in EV100
 - Represents a combination of a camera's shutter speed and f-number
 - EV100 is the exposure value for ISO100 sensor sensibility
 - Gives us a framework to ensure coherent lighting range
 - Scene exposure is great to pre-expose accumulation buffer
 - Need more control for in-game exposure

- Camera Exposure
 - Exposure compensation over the scene exposure
 - Gives control to dynamically change exposure
 - Artists can choose between 4 camera exposure types
 - Auto exposures = gameplay phases (mainly)
 - Manual exposure = cut-scenes (mainly)

- Camera Exposure type:
 - Manual
 - Exposure value in EV100, can be controlled by animated curves
 - Camera
 - Computed from physical camera settings (f-stop, ISO, shutter time)
 - Auto-Average
 - Computed from Log average luminance of the scene
 - Auto-EVZone
 - Computed from exposure values provided in our "scene zone" + EV "decals" manually placed in the scene

Photometric Units (DEBUG)

- Virtual Spot Meter
 - Gives pixel absolute luminance in cd/m² and EV100
 - RGB and sRGB values
 - Really useful to
 - Tweak emissive surface
 - Debug high value in specular reflection

SRGB: 255, 255, 255

: 255, 255, 255

Photometric Units (DEBUG)

- False Color debug menu
 - Useful to check if a scene is well exposed
 - Green → Middle gray (18%)
 - Pink → Skin tone
 - Purple → Crushed blacks
 - Red → Burnt whites

Material Calibration

- Now we have a good framework for the lighting
 - real life references
 - coherent values
- Materials need the same treatment
- Impossible to scan all our materials

Material Calibration

- Capture some objects and materials samples
- Setup a room with controlled environment
- Built a black room with 3 incandescent bulbs
- Easy to reproduce in our engine
- Captured materials help us validate our lighting environment

Material Calibration

- Around this we built an "Icing Tool"
 - Provides some calibrated lighting environment
 - Contains our black room
 - And other full range IBL captured on various lighting environment [LAG16]
 - Material properties visualization
 - Comparison with object/materials references
- •All props can be validated with this tool

Material Calibration (DEBUG)

- Highlights values with out of range material properties
 - Red: Wrong Base Color
 - Dielectric materials must be inside [30-240] sRGB
 - Metallic materials must be inside [186-255] sRGB
 - Blue: Wrong Glass Shader reflectance
 - Fresnel reflectance must be inside [52-114] sRGB
 - Yellow: Wrong Metallic parameter
 - Metallic value should be near 0 or 1, in-between values are often an error

Calibration

Material properties error

• Ice and Snow are often too Bright. Base color for snow must be between 80%-90% for diffuse reflectance (Albedo)

Contents

- The road to PBR at Quantic Dream
 - From Heavy Rain to Detroit: Become Human
 - Photometric Units
 - Material Calibration
- Direct Lighting
 - Analytical lights
 - Shadows
 - Volumetric lighting
- Indirect Lighting

- All our light sources are punctual
 - Directional
 - Point Light
 - Spot Light
 - Projector Light
 - "Directional" light constrained in a box with attenuation

- Attenuation is quadratic by default
 - Artists can tweak the value from 0 to 2
 - Useful to fake bigger light by decreasing the attenuation
 - Combined with attenuation radius for performance reasons
 - Unfortunately it breaks energy conservation on the total energy emitted
 - Based on [KARIS13][LAG14]
- Punctual Light sources can produce really high intensity peak in the specular reflection

- Area Lights to the rescue (or not)
 - Implement area lights to fix this issue
 - Forward engine means all lights need to be area lights
 - Too late in the production cycle and the cost was not negligible
- •Finally we've slightly biased the material roughness to prevent the issue

- Custom Near Clip plane
 - Cheap and useful to help with light positioning without custom light geometry
 - Light can be behind a wall or inside an object without affecting it
- Light visibility flag
 - All "SZs", local "SZ", visible "SZs"
 - Useful to only lit a local Scene Zone

Close-up Lighting

- Story driven games with many close-up camera shots
- Want to lit each camera shot like on a movie set
- Scene lighting edited per shot
 - Light setup and object selection done on our movie editor
 - Can have camera, close-up lighting and exposure track

Close-up Lighting

- Set of lights used to replace regular lighting
- Can flag light in the scene as additional close-up light
- Use close-up shadow (explained later)
- Can affect indirect contribution (GI & IBL color multiplier)
- Have its own light cluster fitted to the bounding volume of the close-up selection
 - 11x11x4

Shadow

- Shadow map
 - PCF with 8 samples + temporal super sampling
 - Jittered using blue noise
 - 3px default blur radius, can go up to 15px
 - Automatic Shadow Bias computed from geometry normal
 - Customized [HOL11]
 - Tried PCSS, not practical due to heavy register pressure
 - Only used on our tooth shader

Shadow

- Shadow Atlas
 - Shadows are stored on 8192² atlas with 16bit precision
 - Split in 256x256 bloc
 - Artists can choose their resolution between 3 different sizes
 - 256,512,1024
 - Shadow are resized depending on the camera distance
 - Resolution can be halved at max
 - Decreasing resolution in 4 step to prevent pixel crawling
 - And repacked in the atlas when reaching multiple of 256px

Shadow

- Shadow Atlas
 - Updated only if something moves in the light frustum
 - Point light shadow faces can be individually excluded
 - Tweakable Shadow Near clip plane
 - Help with numerical precision and light positioning
 - Can be decorrelated from light near clip plane (without rotation)

Shadow

- Directional Cascaded Shadow map
 - PCF with temporal super sampling (8 samples)
 - Smooth transition between splits using jittering and TAA
 - Up to 4 splits of 1440px each and 16bit precision
 - Majority of our scenes use 2 or 3 splits
 - Automatic split distribution

Static Shadow

- Switch to static shadow depending on the camera distance
- Only 1 sample with bilinear comparison
- Static Shadow Atlas
 - Atlas size : 2048²
 - 64x64 per shadow
 - Up to 1024 shadows
- Directional Static Shadow
 - One big texture with all the static geometry of the level
 - Size: 8192²

- Add precision on contact and self shadow
- •Up to 2 additional shadows at 1536²px each
- Artists select relevant objects in the scene
 - ex: characters
- Only these objects receive close-up shadows

- Object selection:
 - All visible flagged objects inside 10m radius
 - Skinned object bounding volume computed from skinned point cloud
- Near/Far plane fitted to the bounding volume of close-up receivers selection

- Object selection:
 - All visible flagged objects inside 10m radius
 - Skinned object bounding volume computed from skinned point cloud
- Near/Far plane fitted to the bounding volume of close-up receivers selection
- Objects outside of the Frustum are projected on the near shadow plane

- Object selection:
 - All visible flagged objects inside 10m radius
 - Skinned object bounding volume computed from skinned point cloud
- Near/Far plane fitted to the bounding volume of close-up receivers selection
- Objects outside of the Frustum are projected on the near shadow plane

Shadow Memory Budget

- Shadow Atlas
 - 8192², 16bits
 - 10 to 1024 visible shadow
 - Point lights can be huge (6x1024)
- Static Shadow Atlas
 - 2048², 16bits
 - 1024 static shadows per level
- Directional Shadow
 - 1440² x 3, 16bits
- Directional Static Shadow
 - 8192², 16bits

- Static
 - 8MB + 128MB
- Dynamic
 - 128MB + 12MB
- Total Memory
 - 276MB

Shadow Performances

- 15-20 shadow updates on average per frame
 - No update quantity limit, can get wild in some cases
- •1.5ms to 3.5ms on previous video
- Close-up Shadow cost
 - Scene dependent
 - Fast if few re-projected objects on the near plane (< 1ms)
 - Slow if the light is in a tree (huge alpha test coverage)

Volumetric Lighting

- •Unified volumetric lighting [WRO14][HIL15]
 - Fitted on light cluster depth
 - Use checkerboard rendering
 - PS4 Base: 192x108x64
 - PS4 Pro : 240x135x64
 - TAA with blue noise jittering
 - Lit by direct light and diffuse probe grid
 - Fog contribution on GI baking
 - Fake Multi-Scattering

Volumetric Lighting

Volumetric light can leak through surfaces

Volumetric Lighting

- Fix leaking
 - Min/Max depth stored per tile
 - Use max depth to clamp voxel thickness at light evaluation
 - Apply Z bias on volumetric texture sampling
 - (TileDepthVariance > threshold)

Contents

- The road to PBR at Quantic Dream
 - From Heavy Rain to Detroit: Become Human
 - Photometric Units
 - Material Calibration
- Direct Lighting
 - Analytical lights
 - Shadows
 - Volumetric lighting
- Indirect Lighting

Indirect Lighting

- Beyond: Two Souls (PS3)
 - Use HL2 ambient cube
 - Vertex baking for static geometry
 - Light probe for dynamic geometry
 - Fake indirect specular lighting
- Need unified solution for static & dynamic

Probe based Lighting

- Probe based solution
 - Ideal for specular Image Based Lighting (IBL)
 - Capture scene cubemaps
 - Bake GGX NDF [WAL07][KARIS14]
 - •Filtered importance sampling to prevent fireflies.
 - Artist controlled [LAG12]:
 - Influence boxes
 - Parallax boxes

Probe Grid

- Diffuse Probe Grid flaws :
 - Light leaking
 - On-going research area
 - Interesting solutions: [MCG17], [IWA17]
 - Interpolation irregularities
 - Not often addressed but considered problematic for us

Probe Grid

- Rejecting probes based on occlusion often leads to interpolation artefacts
- Ended up never discarding a probe

Irradiance Sparse Octree

- •Irradiance volumes [TAT07]
- Adaptive Sparse Octree
- Automatically built with artist cues
 - Density Zones
 - Automatic scene Voxelization for finer resolution around objects/walls

Irradiance Sparse Octree

- One octree cell has 8 probes, one per corner
- Space point always surrounded by 8 probes
- Never discard any probe
- Virtually offset probes instead

Probes attractor

- Artist setup closed mesh that attracts all probes
 - Usually close to Volume Zone already used for visibility

Probes repulsor

Closed mesh that repulse probes inside volume

Probes offset

- Solves majority of cases
- Virtual offset during capture / baking
- Evaluation based on original grid positions
- Some cases are more difficult

Probes offset

- •If leaking on walls or obstacles, subdivide and offset
- Or try to minimize error
 - Bright leaks are more noticeable than dim leaks

No leaking

Probes color modifiers for (last resort) manual modifications

Octree level discontinuity

- Computed probes
- Interpolated probes

Volume texture Atlas

Volume texture Atlas

Store every leaves: 2 x 2 x 2

Lot of redundancy

Volume texture Atlas

Store leaves parent: 3 x 3 x 3

Better

Spherical Harmonics

- 2nd order SH
 - 4 coefficients
 - Using Geomerics reconstruction [GEOM15]
- •3 RGBA16F volume textures (R, G, B)
 - 24 055 probes \rightarrow (105x105x3) x 3 textures \sim = 3MB

GI Display

- Never discarding probes allows sampling volumetric texture
- •Simply use hardware (3D) bilinear filtering

GI Display

- Octree cell hash key is found from 3d position
 - Morton Key
 - O(1)
 - Restricted to 32 bits
- Use precomputed hash to texcoord buffer
 - X coord coded on 15 first bits
 - Y coord coded on following 15 bits
 - Z coord coded on last 2 bits

```
|uint Part1By2(uint n
      n = -----98-----7654-----3210 : After (2)
       n = -----98----76----54----32----10 : After (3)
    // n = ----9--8--7--6--5--4--3--2--1--0 : After (4)
        (m ^ (m << 16)) & 0xFF0000FF; // (1)
    m = (m \land (m << 8)) \& 0x0300F00F; // (2)
    m = (m \land (m << 4)) \& 0x030C30C3; // (3)
    m = (m \land (m << 2)) \& 0x09249249; // (4)
uint Morton3( uint x, uint y, uint z )
    // --x--x--x--x--x--x--x : Part1By2(x)
    return (Part1By2(z) \langle\langle 2 \rangle + (Part1By2(y) \langle\langle 1 \rangle + Part1By2(x);
uint ComputeHash( uint iValue, uint iHashSizeBits )
    return ((iValue)*2654435761) >> ( 32 - iHashSizeBits );
```

```
uint PackedTexCoords = GridSetup.OctreeTexCoords[iHashKey];
float xCoord = float(PackedTexCoords & 0x7fff); // 15 bits
float yCoord = float((PackedTexCoords & 0x3fffffff) >> 15); // 15 bits
float · zCoord · = · float(PackedTexCoords · >> · 30); · // · 2 · bits
```


GI Bonuses

- Trivial to blend multiple GI sets with Compute Shader
 - GI switch (interior light switch, lightning, ...)
 - GI transition (time of day, curtains opening/closing, ...)

GI transition

- Avoid hard GI transition between Scene Zones
 - Interior ←→ Exterior
 - Setup distance around portal
 - Dynamic objects passing through sample both Gls
 - Based on distance to portal & normal direction

GI transition

- Most static objects are in a unique scene zone
 - Interior walls vs Exterior walls
- What about doors, windows, window frames?
 - Assigned to a scene zone but also visible from others
 - Not assigned to a scene zone

GI transition

Manually tag objects to sample both GIs

Conclusion

Conclusion

- The road to PBR never ends
 - Need better energy conservation for lights and materials
 - Materials are not physically accurate enough
 - Being Physically based is good, but don't forget artists visions and needs
 - Photometric units provides a good framework to ensure coherent asset production
 - Always use reference environment to validate materials

Conclusion - What's next

- Area lights and soft shadows everywhere ▼
- Improve BRDF layer stack
- Better handling of energy conservation
- Add dynamic component to our GI
- Volumetric Lighting improvement

Acknowledgements

- Rendering Team
 - Christophe Bonnet
 - Bertrand Cavalié
 - Thibault Lambert
 - Gregory Lecot
 - Eric Lescop
 - Ronan Marchalot
 - Sylvain Meunier
 - Nicolas Vizerie

- Special Thanks
 - Jean-Charles Perrier
 - Antoine Galbrun
 - Julien Merceron

- Indirect Lighting Slides
 - Thibault Lambert

Questions?

Email: gcaurant@quanticdream.com

Twitter: @GCaurant

References

- •[GEOM15] Reconstructing Diffuse Lighting from Spherical Harmonic Data
- •[HIL15] Physically Based and Unified Volumetric Rendering in Frostbite
- •[HOL11] Saying "Goodbye" to Shadow Acne
- •[IWA17] Precomputed lighting in Call of Duty: Infinite Warfare
- •[KARIS13] Real Shading in Unreal Engine 4
- •[LAG12] Local Image based Lighting with parallax-corrected cubemap
- •[LAG14] Moving Frostbite to Physically based rendering
- •[LAG16] An Artist-Friendly Workflow for Panoramic HDRI
- •[LAN14] Physically Based Shader Design in Arnold
- •[MCG17] Real-Time Global Illumination using Precomputed Light Field Probes
- •[RAM01] An Efficient Representation for Irradiance Environment Maps
- •[TAT07] Irradiance Volumes
- •[WAL07] Microfacet models for refraction through rough surfaces
- •[WRO14] Volumetric Fog: Unified compute shader based solution to atmospheric scattering

