
Welcome to Translating Art into Technology: Physically Inspired Shading in Destiny 2
My name is Alexis Haraux, I've been at Bungie since 2012 working as a Graphics Engineer on
both the original Destiny and Destiny 2.
Before I go into further technical detail, let's take a look at some Destiny 2 visuals.

1

Destiny 2 is a fast paced action shooter with a wide variety of environments to explore,
familiar, futuristic, alien robot worlds, covered with vegetation.
There are many kinds of enemies to fight for which you have a large collection of armor and
weapons that you can earn.

At a higher level, Destiny 2 is magic, sci-fi and fantasy - which we call “Space Magic”
embedded in realism.

2

The talk is entitled translating art into technology, what did that mean to us?
A general approach is to start with a visual goal, which goes through art direction, technical
direction, feature implementation, and finally arriving at content production that provides the
final visual result.
Going from art concepts to engineering, back to art while preserving and refining the original
goal is what we call translation.

3

To explain how we did this, the talk will be split into two parts.
In the first part I will go over the engineering side of the process, starting with a quick
overview of our engine and its gameplay requirements, then I will cover the material model
and lighting features we added for Destiny 2. After that I will hand it off to Nate who will talk
about how we authored, modified, and validated materials, closing with how we further
adapted the engine to our gameplay needs.

4

Let’s start with an overview of the Destiny 2 engine.

5

For some context, let's look at our gameplay and content authoring requirements:

Dynamic time of day
Lots of moving objects
Open World, long view distances and streaming requirements

We author our content as polygon soup: triangles intersect in arbitrary ways
Content is not aligned with any axis or regular grid
Interiors and exteriors not well defined, we like to make buildings with lots of holes and half
broken walls

6

We have a large number of unique shaders and they are all complex node graphs
We support up to 50 AI
9 players in combat, 26 in social spaces, all with full customization

7

Rendering engine wise, let's take a look at a high level breakdown of a frame, like this one for
example

8

Our engine is deferred
Objects/materials rendered to the gbuffer
Deferred decals rendered as projection volumes modifying the gbuffer
Light sources using part of the gbuffer applied as stenciled volumes, render to diffuse and
specular lighting buffers
One thing to note is that we do not use a tiled renderer because most of our lights are unique
shader nodegraphs.

9

10

Combine lighting information with materials in shading pass, apply atmosphere, to create the
opaque shaded frame

Transparents and volumetrics forward rendered and blended on top to create the base HDR
frame
Postprocess pipeline: with FX such as bloom, DOF, color correction that all create the final
frame
Shader system TFX (GDC17) is used for all shaders and fixed function render passes

(Note that render pass GPU budgets are for a 30FPS target)

11

12

13

14

Today we will be covering those highlighted sections.

15

Our journey started with materials

16

Starting with art direction defining our visual goals

17

For Destiny 2, we wanted to improve our material definition, specifically for terrestrial, real
world materials.
We build worlds, so we need things like stone, foliage, snow.
We are a game about weapons and armor made of metal, wood or plastic.
Our characters also wear lots of capes and robes made of cloth that show both fuzzy and
translucent properties.
All those real world materials can get wet, which is something Nate will develop more later in
this talk.

18

For the purpose of this talk I will group stone metal wood and plastic as one category that we
will call common materials.

19

20

We also need the ability to express magic as well as alien and futuristic materials which are at
the core of the Destiny franchise look:
Iridescent surfaces like beetles,
Light sources like LEDs and neon lights,
And just... magic in general?

21

And this is our line up of materials as visual goals!

22

And now that our goals are clear, we need to look at technology, let’s begin with our starting
point
Which is the original Destiny engine.

23

In the original Destiny our shading model was mostly content driven:
Common albedo smoothness
Texture driven specular highlight shape
Specular color parameterized by N.V (glancing angle) defined by a color ramp
Stored as look up tables, indexed by material ID
We would branch based on specific material IDs to repurpose smoothness as glow intensity

If you want to know more about this shading model it was presented by Natalya Tatarchuk at
SIGGRAPH in 2013 and 2014

24

Advantages:
Compact (single material index), efficient (memory and perf)
Scalable to two generations of consoles (original Destiny also shipped on ps3 and xbox 360)
Express wide variety of materials

25

26

Biased towards exotic and alien looking surfaces

If we look at our goals lineup:
Glow could be used for magic, lights, also used to approximate snow scattering
Texture based specular gave us iridescence and view based Fresnel effect for cloth
We didn't have any concept of translucency for foliage
What about more common materials?

27

That’s where we hit our bottleneck.
Back during the original Destiny development I tried to help an artist make a mud shader.
Picking the correct material ID was tedious (for mud we gave up and found a workaround with
an albedo cubemap)

28

You had to choose one of those sphere labelled with technical terms (diffuse tinted 10% or
white overcoat 20%) that don’t relate to known materials

29

If you couldn’t find what you needed, creating a new one required more technical knowledge
High dimensional problem solved with content
Non-energy conservative materials
No real world standards to follow as template
Too many controls to create a known material

Because of the material index, the shading model was non-blendable, creating complicated
workflows and workarounds that often didn't scale or underutilized the feature set

Some people might think: isn't more control good?
Let me show you a quick example illustrating where this strategy fails

30

In the game QWOP, your goal is to run forward for 100m, and for this your have to control each
leg muscle independently with the keys Q,W,O,P.
Even with a simple goal, which could be achieved with a single key control, the run forward
key, the task can be made near impossible by just having too many parameters exposed.

31

So what about style? You don’t always want the same boring run.
If you wanted to make the game easy, first guarantee that you can move forward and not fall,
then add style controls.

32

In a way we applied this same concept to our material parameters.
We prioritized our goals and lowered complexity required to make most common and
important things.

33

From there we knew we wanted an intuitive material model, capable of recreating all desired
materials in order of priority.
Most used materials should be easy to make and variety should not break simplicity.

Some artists were worried to lose control if we focused on realistic materials, but the goal was
to actually give them more room to express magic and make it look naturally distinct from
familiar objects.

Blendable per pixel was a strong workflow desire, allows layering and combinations of all
materials so natural force multiplier.

34

Luckily, a large part of the industry was already switching their content pipeline to Physically
Based Rendering and specifically its material workflow. We were interested in the Disney
metalness gloss workflow described by Brent Burley in 2012.
This talk will not go over the basics of PBR, but I’d like to mention a few properties that we
liked:
Safety Hard to break, energy conservation
Simplicity Expressive with only a few parameters, quick decision making
Guidance Measured parameters, standards for artists to follow, education easier

Those pillars are at the core of how we extended our model to add material variety while
keeping an intuitive workflow.

35

36

We started with a now fairly standard Metalness, Albedo, Smoothness model that is really
good at representing common materials.
We also switched from a texture driven lobe to GGX, using the Smith visibility function as
described in Sebastien Lagarde’s PBR talk at SIGGRAPH 2014, and added retro-reflection from
the Disney model I referenced earlier.

37

Common materials (metals, plastics, concrete) are the majority of the surfaces you are seeing
in this hangar.

38

And this is what each parameter looks like in our gbuffer.

39

This model answers the common questions: is a surface metal or not? what color is it? how
smooth is it?
The top row of spheres shows the in game render, bottom row shows our gbuffer debug
visualization.
Now we can make common materials

40

We switched to GGX and noticed that negative smoothness inverts GGX lobe and looks fuzzy.
So we added a control for making smoothness negative.
In some cases adding a separate parameter makes things simpler: artists control it as fuzz
amount separate from smoothness instead of dealing with negative values

41

Notice that the smoothness visualization is now colored to show fuzzy surfaces

42

Again here the row of spheres shows what the parameter looks like with a linear progression
from 0 to 1
Now we can make fuzzy cloth

43

Models both sub surface scattering and translucency
Wrapped diffuse + inverted diffuse lobe with view dependence
Low range brightens SSAO to prevent it from over darkening snow creases

44

With transmission off, snow looks like plaster and SSAO overdarkens terrain in the distance

45

With transmission off, snow looks like plaster and SSAO overdarkens terrain in the distance

46

Thin nylon fabric

47

We use it for tents, tarps, curtains but also foliage, fur

48

Single parameter + table of standardized values
Now we can make foliage and snow

49

Update original Destiny texture based specular color, make it more PBR friendly
Lookup texture (N.V, index) that redefines specular color
Attenuate diffuse color by average specular energy for energy conservation
Presets: thin film interference, photonic crystals

50

Here is an armor set showing a subtle iridescent quality

51

And our gbuffer debug mode that displays the iridescent material index (0 is no iridescence)

52

Here is another example showing 3 different types of iridescence on a single armor set

53

And you can see the numbers 6, 44, 45 used here

54

We have a lot more presets that let us achieve all kinds of exotic / space magic looks

55

Lineup doesn’t show the full range because we have more
Every even index is a metal, odd is dieletric, we need to support both since we override the
specular color
Only non-blendable parameter, restricted mostly to armor and weapons which don't need as
much blending support
Now we can make iridescent materials

56

Emissive intensity is a scaler multiplied with albedo and added on top of lighting
Exposed to artists As monochrome intensity 0-64
Simplified workflow: HDR RGB color blended with albedo

57

We use it for glowy plants and mushrooms, light fixtures, or illuminated billboards

58

This is the range we get by changing the emissive intensity from 0 to 64
Now we can make lights and magic

59

We came up with a material model inspired by Physically Based Rendering and extended it
with parameters, that even if not based on physics, give plausible results for a wide variety of
real world materials. This model also allows us to express space magic, at the proper level of
abstraction.
I like to call it MASTIFE.

60

Single material index used for lobe/tint tables lookup
Branching based on index for emissive materials
Smoothness encoded in the normal length

61

Iridescence stored as an integer 0-255
Emissive encoded as an exponential curve [0-1] -> [0-64]
Packed in the range [0.5-1] with texture AO (range [0-0.5] remapped linearly to [0-1])
All non-blendable parameters in alpha channels because hardware can’t alpha blend alpha
channels.

62

Fitting those parameters into a limited set of render targets is an optimization problem
Range and precision: can create banding
Space (linear, gamma, exponential)
Lifetime and consumption: which gbuffer is sampled by what and when?
Allocation/deallocation
Blendability: alpha channels are not blendable
Memory footprint: some platforms have hard memory requirements
Performance: encoding/decoding costs, bandwidth

63

Compression / encoding
Packing
Mutual exclusivity / repurposing
Index / raw bits for texture lookup or branching

We went through a lot of different experiments
Worth re-optimizing the entire gbuffer even when adding a single new parameter

64

Now that we have materials, we need to light them.

65

Our visual goals are connected to our material goals
Support our material model, specifically metals and wet materials
Extremely smooth surfaces for a more pronounced science fiction look

66

We got our goals, let’s talk about tech, starting with the original Destiny engine!

67

Deferred lights: point, line, directional
Direct lighting is not enough to fully express metals and wet surfaces
Specular quality lost in shadows and wherever local lights are out of range

Cubemap baked in the shader albedo (LDR)
Fresnel as N.V glancing tint

Only source of ambient lighting was a global up/down two color lobe applied to the entire
world

68

Texture based highlight wasn’t sharp enough for high gloss.
Albedo cubemap doesn't reflect surroundings and is low contrast.
N.V Fresnel makes silhouettes of objects glow in the dark

Global ambient represents one lighting situation at a time for the entire world

69

70

Let’s talk about the lighting features we added for Destiny 2

71

Smith-GGX BRDF: tighter specular highlight

72

Area lights: broader highlight without sacrificing sharpness

73

Replaced N.V fresnel with Light direction Fresnel

74

Replaced N.V fresnel with Light direction Fresnel

75

We now have higher quality analytic specular, now we need IBL
Let's start with the most global light source
Render sky and clouds into hemispherical projection
Dynamic (amortized over 2 frames)
Blur and calculate mip chain to simulate smoothness (gaussian blur, cheaper than importance
sampling)
Apply as deferred full screen pass to specular IBL buffer

76

Early prototype video, clouds lit and moving in the helmet reflection

77

Let’s go more local!
Scaled/rotated cube volumes hand placed by artists in editor
Fade distance per cube face to feather lighting contribution
Roundness parameter to match less regular, more curved environment

78

Distribution of cubemap volumes in the tower social space

79

More natural environment, European Dead Zone, cubes are less aligned and rotated more
arbitrarily

80

Capture offline in engine
Override game settings
Disable features (particles)
Neutral ambient lighting (for relighting later)
Apply GGX filter on the GPU
Encode smoothness in mip chain
Encode sky mask in alpha channel when outside

81

Texture compression modes depending on where the cubemap is captured
Most used are BC6H and BC7

82

Applied as stenciled deferred volume, same as lights
Tint with sun and average sky color to approximate time of day
Blends on top of sky lighting with alpha mask

83

Let’s look at an example, our character is standing on a crate inside of this half broken building.
An artist placed a cubemap volume there

84

We apply sky lighting first

85

Then blend our local cubemap on top, which only leaves sky reflections where it is visible in
the cubemap.

86

So we were happy with the results but started seeing things like this.
In this example this character has a silver visor that looks red while his painted armor doesn’t.
This drawing shows you what the scene looked like from a different angle.
In front of the character there is a wall that looks bright red because of a spot light but the
character is out of range of the light. This wall gets captured in the cubemap, then reflected by
the visor but not visible on low specular surfaces like the yellow armor.

We realized we decoupled specular from diffuse lighting because we localized ambient
specular through cubemaps but our ambient diffuse was still global.

87

Render last mip level of local cubemaps and sky hemisphere as diffuse lighting

88

89

90

91

And now that guy is happier 

92

Comparison from an early prototype showing the difference between our global ambient from
the original Destiny engine, and our new features: sky blended with local cubemaps

93

Comparison from an early prototype showing the difference between our global ambient from
the original Destiny engine, and our new features: sky blended with local cubemaps

94

When we add direct lighting on top, notice shadows go from blue everywhere to a more
natural bounce color

95

When we add direct lighting on top, notice shadows go from blue everywhere to a more
natural bounce color

96

Now that we are applying cubemap volumes to diffuse, we have a new problem.
Boundaries between interiors and exteriors are a lot more obvious in diffuse than specular
because it’s not view dependent.
We went back to drawing board and added another feature.

97

Diffuse probes:
Subdivide cubemap volumes into voxels
Capture cubemap at every voxel location
Store average of last MIP from all directions into volume texture
Use the alpha channel sky mask as diffuse sky visibility
Average voxel resolution 6x6x3

98

With diffuse probes a single cubemap volume can now represent more localized bounce
lighting.
Sky visibility allows light from the outside to bleed in.

99

To summarize lighting, we updated our deferred lights with area specular, and added an image
based lighting pipeline, from global to local, sky hemisphere, local cubemaps, diffuse probes.

100

To fully summarize our Destiny 2 shading technology, we implemented a new material model
and lighting solutions supporting that new model, this feature set fulfills the requirements and
goals of our art direction.
Are we done? Now we have to make art.

101

Hello, my name is Nate Hawbaker. I joined Bungie in 2011 and currently act as the Graphics
Technical Art Lead.

Today I’m going to talk about how we integrated the mentioned changes to our technology,
into an already-moving production environment, and some of the challenges we encountered
along the way.

102

Earlier we saw these constraints, but there is a crucial entry missing from this list that informs
our day-to-day in Graphics…
Evolution. Even after our game has shipped, it must be able to constantly change. Evolving with
regular experience updates through patches and expansions.

103

By the end of the Original Destiny, our game had added locations in snowy mountain tops
inhabited by wolves
miles-long Alien ships nestled in the rings of Saturn
these were then inhabited by enemies with their own lighting model
and naturally, we made a racing game.

Since we don't want our renderer to get in the way of the creative desires that produce the
Live game of Destiny, our graphics must be able to SAFELY scale to experiences we haven't
made yet.

104

A large part of that is feature parity. Every one of the features Alexis described earlier is
developed with support for all of its relevant feature-renderers.
Terrain must support iridescence, foliage has to be able to support cloth fuzz, even decals are
built to support things like transmission. You get the idea.

To simplify context switching, content creation and modularity, every authoring interface for
these features is unified into a single system.

105

That system is a node graph. At a high level this is where artists author all shader content in
Destiny.
Each component contains CPU bytecode and HLSL functions, and all bytecode parameters can
be updated in realtime to a running instance of the game
We went into technical detail about some of the inner workings of it at last year's GDC, and I’ll
have links at the end of this talk.

The reason that I wanted to start with the shader editor is because for many artists, this is the
earliest point in their pipeline that we can provide measurable improvements in guidance.

106

So to pick up where we left off with Alexis, we were just starting to roll PBR out to artists.

One of the things that can catch an artist off guard is that now there are both *right* and
wrong choices when authoring surfaces. So how can we guide our artists towards making
safe choices?
We start with a simple question: What order are parameters seen in? This may seem
inconsequential, but done poorly and your artists may often find themselves revisiting
parameters they’ve already authored.
Things like alpha test and ambient occlusion are fairly agnostic of your material. But a
parameter like Metalness can create restrictions on what colours are valid, so it comes first.
Before this we found artists authoring half-metal surfaces at a fairly alarming rate.
Simply considering the order that you expose parameters to your artists, can lead to better art.

107

To help with education, each shader component and parameter can provide their own inline
documentation. Anytime that an artist sees a blue question mark, something has been written
by their coworkers.
If the question mark is grey, no information is available, and instead they’re invited to help
contribute to the effort.
Every ToolTip supports RichText, images, videos, and links to additional internal documentation
resources.
This an example of a ToolTip for a Sphere Warp transform. You can see the video not only
shows what it looks like, but provides feedback for what values are being used in the example.

108

And to help with choosing the right inputs that are both safe and standardized, our Colorpicker
contains known PBR values for both colour and smoothness, as well as reminders of project
guidelines for color brightness/metalness relationships.

But most inputs aren’t constant colours, complex variation is still commonly provided by
textures – and this begins our next section.

109

Let’s talk about textures!
As material models grow more sophisticated, so must our optimization strategies. As Alexis
mentioned earlier, sometimes this can be Gbuffer encoding optimization process, but other
times the optimization is within the scope of the textures in your content.

110

Sometimes this means revisiting compression schemes and reducing resolution. In an effort to
reduce the streaming memory footprint of environment normal maps, we reduce to half-
resolution on the longest axis, and compress in BC1.

111

More commonly this is stacking parameters across each channel of an texture, and opting for a
friendlier, data-focused compression like BC7.

112

But sometimes you need more than four channels. If your parameters are mutually-exclusive
you can encode and decode them from a single channel.

In this example we’re considering everything above 128 to be a color change mask, and
everything below it to be transparency.
Since a texel can’t be both transparent and color changing, we have parameter mutual
exclusivity.

113

But why am I even talking texture storage in a talk about PBR?
Though PBR is about simplifying the job of an artist, it often requires more inputs to be defined
than before. Sébastien Lagarde began conversations about future scalability challenges during
his SIGGRAPH talk last year. As we look forward to the future of extending PBR models, there’s
a lot of awesome things on the horizon!
But all of these need inputs – and we, as an industry, are faced with tackling the challenges
associating with storing them… … but you don’t get points for using more non-blendable look
up textures 

114

So let’s look at a situation like this that we were already faced with.

Imagine you have a fixed function shader at texture sampler limits, and it can’t change due to
performance and scalability reasons.
Even consider that may have just switched to a PBR model, creating the previously-mentioned
need for an expanded set of material inputs.

This shader happened to be the one that applies to all player customized gear in our game… a
game about getting exciting and *diverse* gear.

115

All characters

116

All weapons

117

All the ships, vehicles, player Ghost companions – it’s a lot of content.

118

We went into detail about the player Gear system in a SIGGRAPH 2014 talk. Please check it out
if you’re interested in seeing how this texture fits in our ecosystem.
For now, let’s review the Constraints of the problem space

We have to fit 7 parameters into 4 channels. This implies parameter encoding into individual
channels, with considerations for both mutual exclusivity and MIPing. MIPing can cause
premature parameter boundaries to be crossed based on angle or distance, so you also have
to be conscious of the order that things are encoded, especially for concepts like emissive.

119

It’s worth mentioning that all of the encoding and channel storage that we’re about to talk
about is done automatically, artists paint simple 0-1 masks and click Export

120

So let’s start out with the status quo. Ambient occlusion is attenuating HDR lighting, it gets the
full 255 range.

121

Smoothness can make or break your HDR specular highlights, it gets all 255 values too!

122

Now we can get creative. Some of our capes need alpha test to provide fringing on the
bottom. We gave this 32 values so that we could animate across gradients for specific effects.

123

We pad by eight values and then give emissive 40 to 255. If something was alpha tested out, it
can’t be emissive, so we have mutual exclusivity.

124

In the alpha channel we give metalness 32 values.
We agreed with artists that we could avoid large dielectric to conductive material transitions
where stepping would be more apparent.

An important distinction is that this is actually something we call the “un-dyed” metalness.
Dying is the term we use to describe areas that can be changed at runtime by player
customization. These 32 values describe the metalness properties of the areas that players
cannot customize.

125

To define the area that the player can customize with dying at runtime, we apply a step
function to this channel and consider anything above 40 to be customizable, once again using
8 values of padding.

126

And last but not least, we store something called a wear mask between 48 and 255. Wear is a
property of a dye.
If a player puts an awesome copper shader on their armor, we want it to wear or patina with
oxidization in a physical plausible fashion.
Thankfully wear will only scuff away at the player customized areas, so we are able to get away
with parameter mutual exclusivity again, packing our final 7th parameter.

127

This is what it looks like once it’s all packed together.
And again, artists never have to interact with this. they author SIMPLIFIED 0-1 masks in
Photoshop, and we composite everything for them on Export.

128

We used BC7 compression on this texture we didn’t encounter that many issues. The biggest
change I would make if I had a time machine be to give Metalness more range and swap with
emissive.
We were concerned about the HDR-nature of emissive showing obvious banding, but content
adds so much high frequency noise to the signal that it effectively dithers for us. Metalness is
shifting HDR lighting ratios heavily and should have been provided more room to breathe.

If you find yourself in similar constraints as us, know that it *is possible* to sustain this path of
parameter storage. It just requires a bit of creativity and collaboration with your artists – and a
working agreement can go a long way.

129

Now that we’ve fed all of our parameters and rendered our Gbuffer, let’s talk about ways to
change it!
The first pathway of doing that is decals.

130

Decals in Destiny 2 are rendered as projection volumes. They're placed with our world editor.
Each placement instance contains a shader reference. Pretty straight forward stuff.

But let’s look at an example from Destiny 2.

131

This is a destination called Nessus. We’re going to be looking more closely at the area in the
center of the screen.

132

If I toggle decals on and off you will notice that our artists use them not just to place signs, but
to actually paint features into the frame. Often this is to provide localized entropy without
needing to create bespoke assets. However, this creates a demand for a wide range of content
types that the shader system has to support.

133

134

This is a debug view artists use to identify overdraw. In a few hot spots you can see we're
hitting up to 3-6x overdraw! With layer compositing to that degree, it was crucial for us to
extensively iterate on the decal material ecosystem for both usability and safety.

Though we also support flavours of additive and alpha blended transparent decals, today I’ll
only be talking about deferred Gbuffer assets.

135

Making decal shaders is pretty straight forward. You have the familiar node graph setup with a
material definition input.
But with an additional parameter called 'Modify' that sets a hardware write mask. This is the
basic job of a Gbuffer decal. After everything has been rendered, how can you selectively
blend different channels of your Gbuffer to produce new materials.

And this is where we start our next journey through production…
How do you describe a write mask to an artist, while still fulfilling our mandates of being both
Simple and Safe?

136

Our first attempt at this problem was to create a series of Gbuffer write mask combinations
that could be used to make any type of content we (Graphics and Tech Art) could imagine.
Creating slightly esoteric options for albedo only, and even smoothness only decals.
I wanted to briefly mention and poke fun at some of our first notes on different Modify modes
we should create. Some of the ways we described these goals were… novel?
With some plausible things like oxidized dents, very specific things like a bedroom wall poster,
and some more … … ambiguous things like “exotic stuff”.

137

As missing combinations were encountered, we further filled them out based on requests,
seeking to empower artists.

What we didn't realize was that we were creating an even bigger challenge for ourselves. The
interface and code were growing even more unmaintainable. But worst of all, we realized we
were hardly fulfilling our mandates of a SIMPLE system.
How did we get here?

138

First, we asked artists to directly interact with something they don’t, and shouldn’t care about.
A Gbuffer layout… … I promise this list is entirely comprehensive.
And yet, we were asking our artists to directly interface with it through this, and make the
right choices, this was neither safe nor simple
… … and even more importantly, we broke our QWOP metaphor about giving too much
control, we were faceplanting.

Exposing artists to these ala carte channel writing concepts had an unexpected result, not only
was it confusing, it encouraged them to make decisions backwards.
Deciding what they want to change, rather than what they want to preserve.

Let me show you an example of what I mean because this is getting pretty abstract.

139

An artist wants to cover part of this wall with red paint.
Noting that they want the surface to be slightly smooth and red, they logically select Albedo
and Smoothness from the Modify parameter list.
It looks good, done!
But then later, someone else adds metal elements to the original wall shader.
But because we didn’t write to (and by extension preserve) the metalness buffer, we now have
incoherent distributions of metallic paint poking through.
Correctly done, the paint decal should have provided an entire material definition in its
writemask, including a metalness of zero.

140

So let’s take a moment to consider, what are we trying to achieve? Every technical possibility
(apparently) didn’t turn out to be our goal.
In fact, categorically things break down much simpler.
Thin things: Paint over concrete flooring and even *actual* 'decals'. The key is that these all
preserve the underlying geometric representation while only changing material
representation.
Total coverage: These are features like metal signage. These are decals that replace both the
material AND geometric representation of the underlying surface.

141

So we simplified and abstracted. 15 Gbuffer write masks became 2 choices. "Thin" and
"Standard" materials.
This provided both a safe and simple decal system through a layer of abstraction. It was now
effectively impossible to forget to write to supporting Gbuffer channels that are so crucial to
maintaining a healthy PBR ecosystem. Now, all our red paint example needs to do is use Thin
Material.

This also provided a more subtle benefit of providing artists with learnable terms that can
enter their vocabulary, making it simpler to provide accurate feedback and direction to each
other.

142

And to bring it all together, this is what it looks like in practice. Multiple decal passes are
defined on the root node, intra-pass material layers are defined in the next node, and the
greatly-simplified Modify parameter can be found at the top.

There were a few edge cases we opted to support by the end of the project. Geometric only
changes for denting, and albedo darkening for puddles… Interestingly… if you make it easy for
artists to create puddle decals, you may find yourself coming across puddle decals the size of a
room.

143

That told us that our artists clearly had a desire to make surfaces feel convincingly wet on a
large scale, but PBR inputs alone aren’t not enough to simplify this.
Because the current generation of hardware provides more ALU breathing room, we built a
simple wetness parameterization into a new shader component.

144

In the component, parameters are kept simplified and self-sanitize out of range values.
Wetness amount is fairly straight forward. From 0-1 how much water is present on the surface.

Normal smoothing is a lerp to the geometric normal based on water saturation covering micro
surface detail.

Albedo change is for modeling total internal reflection

And to SIMPLIFY, porosity is implicit. We assume that metallic and smooth materials are largely
'sealed' surfaces and thus are non-porous.
Porosity will be at its highest on partially-retroreflective rough surfaces like clay.

145

This an example of a wet gradient passing over a surface. You can notice that the gold metal
behaves as a non-porous surface.
And the porous surfaces remain darkened for slightly longer than when the initial water
evaporates from the surface.

146

And this is a side by side comparison of the Simple and Standard options for total internal
reflection.
The more spectrally faithful version on the right is our current default behavior, and a simpler
attenuate-only option can be seen on the left.

This turned out to be really successful. Artists no longer had to learn and memorize the
idiosyncrasies of authoring a behaviorally convincing wet surface, with most content only
opting to author the wetness amount parameter.

147

It was such successful example of safely simplifying complex behavior, that we built much of
the game’s opening mission with it!
So at this stage we’ve gone from simple texture inputs, sometimes fed through complex and
unrestricted shader node graphs, and postprocessed and modified with deferred decals and
systems like wetness. But so many layers of transformation and so much work goes into a
single pixel
how do we make sure each pixel output is still safe to a PBR ecosystem?

148

Validation is our answer to this.
This is one of the foundational elements that allows us some form of standardization and
predictability of both the artist inputs we must be able to develop and extend graphics systems
to, as well as the quality and behavior of our final rendered frame.

149

The lion’s share of our validation is done at runtime. Runtime is really important as our assets
are a mixture of texture AND gameplay-driven visuals.
Ingame debug modes can be triggered at anytime from within the shader node graph itself.
The goal here was to provide validation at the layer of content creation that the artist is likely
already working.

In this video you can see the different options and validation modes made available to artists,
with rich ToolTips continuing to be prevalent.
Clicking on any of these will send a networked message to a running instance of the game and
change things accordingly, this made validation less inconvenient for artists to follow through
with.

150

The first of those validation modes was for Color Brightness, based on PBR-legal ranges
corresponding to metalness.
This is fairly business as usual. Treat the metalness input as the claim to what the material-type
is, and adjust valid ranges accordingly. Then, highlight using a colour that is unique to how the
validation may fail.

Let’s look at an example.

151

This is a final render pass from our game, and if I enable color validation

152

We can see offending areas being highlighted by color, with artist-reminders found on the
upper left.
This helped to avoid sending them to an external resources for clarification of what each
colour means.

We chose to use simple, learnable colour schemes, and *binary* highlights. Binary is a key
word here, as it has the utility of simplifying interpretation that can vary from artist-to-artist,
and day-to-day, on how 'wrong' something is OK to be.

When you're a Technical Artist at someone's desk asking them to change their artwork, using a
neutral party like this can help to reduce some of the cultural friction or pushback you may
encounter.

153

For smoothness, things are a bit different. A few distinct factors make this challenging for an
artist that wants to make the right choice.
A person’s understanding of surface properties is easily biased with image cues.

154

In this example, these two cylinders use identical normal and smoothness inputs, the only
difference is a red vs white albedo.
Despite this, the white version appears significantly rougher.
In the jewelry industry you would describe the white version as having very little luster. This is
the apparent contrast between the reflected colour and the underlying surface colour working
to push and pull mental models of what a surface is. Though the visual cues like the specular
highlight are still present on the right example, there’s very little contrast to appreciate it.

155

And this is something called the Cornsweet illusion. It starts with a solid fill grey colour. On the
left you can see only small gradients being added, but on the right you can see the observed
color deviates drastically from the true intensity.

Identifying absolute values that aren't neighboring can be nearly impossible.

156

Yet it isn’t uncommon to still ask artists to use this type of unintuitive, data debugging mode to
confirm whether or not their art is authored correctly. This is not guiding them towards
success.

157

Our approach attempts to take these biases out of the equation. Values are divided into five
discreet categories and abstracted into a heat map, using terms inspired by the paint
manufacturing industry.

We found it helpful to actively establish clear language for abstractions like this; providing a
more precise shared language between artists and directors.

158

This is an example of it running in our game. Again we embed artist reminders of relatable
materials found into the upper left.

We did have a few more emergent benefits of these validation modes. Because they’re so
heavy handed in their visuals, we were able to do Technical Art audits of large areas and look
for obvious issues. Even when you’re looking through a space quickly, seeing red in a primarily
natural art palette easily stands out to investigate.
(in this image example, the red is actually glass windows)

159

We also run nightly captures of specific content in validation modes to catch emergent issues.
This was actually implemented by our resourceful test team, using automation and debug
hooks we had already developed for artists.

In this example you can see an image we generate that showcases a shader item the player can
use to customize their Gear, and ensure that assets are within guidelines.

This helped to provide enough guidance to empower test resources to report Art bugs

160

In addition to runtime validation, we also built this into Substance.

In this example we have a character loaded up in Substance Painter, with various in-game IBL
captures being used to light the scene and different validation modes being enabled.

If you haven't already done this in your development, please take another look. It takes very
little work to move your HLSL to a place where your artists are likely creating their content
already.

And that’s closes our validation section. Ultimately we found that we can provide guidance
that doesn’t require memorizing magic numbers and parameter co-dependencies, it can be
simple colors with plain English descriptions. And the closer you can move these checks to the
decision making itself, the more successful you’ll see the adoption of them.

161

Now that we have physical materials, we’re nearly done. The last thing we have to do is
support our gameplay needs that begin to stress the usage of the words Physically Inspired.
Needs that require systemic solutions that can peacefully co-exist with the rest of our PBR
ecosystem.

162

The first wasn’t all together surprising once it surfaced.

PBR is often looked at as a way to get a coherent frame where things seamlessly blend with
realistic lighting.
However, this can create your own worst enemy if you value quick identification of enemies
onscreen.
If you hadn’t realized already, there’s actually an enemy in the direct center of the screen, but
sometimes even lens flares can’t solve this problem

163

So we knew that we would have to start cheating PBR here, if we’re going to bias PBR, we
might as well standardize the bias too!

Creatively named, “Character Lighting”

It has minimal artist-facing parameters by design, and it effectively causes all characters to
automatically become emissive when seen at a distance.

164

And now we can see our enemy-
Since our Gbuffer only stores a single Emissive scalar that multiplies the albedo, it caused
characters with a brighter luminance to glow faster than others, so we do a slight inverse-
luminance compensation from the source, then further attenuate over distance and an object
space gradient, to avoid having glowing feet making it look like our characters were floating.

165

The next was a desire to make emissive content feel more “Hollywood”. What that translated
to was explosions and muzzle flashes more pronounced in bright conditions, but not blinding
in dark conditions. Initially artists pre-translated this as a request for per-shader exposure
control. After talking it through, we opted for a more systemic approach.

We apply a biased-slope to the exposure calculation for emissive transparents
I know I just used the dreaded word bias. There is likely future opportunity here that involves
revisiting our quadratic bloom curve, tonemapping, and content intensity standardization.
For Destiny 2 we opted to scale the target exposure stop by 0.33, allowing us to undershoot or
overshoot exposure depending on conditions.

166

In bright contexts where your target exposure stop is -3, our exposure scaler increases from
0.125 to 0.5.
Making muzzle flashes more noticeable

167

168

In darker contexts where your target exposure stop is positive 3, our exposure scaler decreases
from 8.0 to 1.98
Making muzzle flashes retain their detail, and allowing the player to see what they’re shooting
without blinding them.
-
Technically this did expose us… … to the risk of auto-exposure oscillations due to the feedback
loop of the bias, but in practice the affected content doesn't spend much time on screen so it
didn't significantly affect us.

169

170

The next was a desire to provide greater colour variation to lights for gameplay purposes, but it
clearly wasn’t practical to double our light count.

So we allow artists to provide a secondary radiance colour that we lerp to over the squared
falloff.

To try to rein this closer to the plausible side of things, the outer colour is limited to the
luminance of the inner colour.
In this example you can see the colour represented in the volumetrics as well.

171

When combined with several volumetric lights and particles rendering to volumetric buffers,
you can fairly quickly create compelling imagery, as demonstrated by my test level that is
sporting an ambitiously black sky and grey floor. Like any other leaf feature for special
situations, this ended up being used in nearly every lit scene and dynamic light… …

But that’s just a sign of a good feature, right? 

172

So for the last thing we’ll cover today, I wanted to briefly mention the last part of wrapping up
our PBR implementation

We have a combatant race in Destiny called The Taken, the art direction is that they look Other
Worldly. As it turns out, Other Worldly isn’t a parameter that you can find in the original
Disney Brent Burley PBR papers.
Translated, Other Worldly just means, “turn off all lighting and add emissive content”… …

173

So, we ended up reclaiming one of our Iridescent IDs to dynamically branch in our shading
pass. When this is enabled within a node graph, the surface opts out of all incoming diffuse
and specular irradiance.
Current hardware handles coherent branches like this very well, and it’s encouraging towards
future shading model divergences with the other remaining utility bits.

174

And with our unlit characters, we close out a successful transition to PBR, while still
maintaining our art diversity, and most importantly… our space magic.

175

So to close things out, here are some takeaways we learned while developing for Destiny 2’s
unique constraints and direction.

Safety and simplicity are affordable. Current hardware can afford extra cycles needed to build
simpler interfaces, protecting artists against divide by 0s and other unsafe problems that were
previously their burden.

More control is rarely better due to added complexity. Exposing every parameter requested by
art can provide short term benefits, but left unchecked can lead to a degradation of standards,
artist confidence, and can deprive everyone solutions to the real problems being faced.

176

Even implementing a standard system like PBR will require solutions that are unique to your
game, and this is only half the work.
The second half of rolling things out is just as important. Have a plan for artist education and
documentation. Hold theatre presentations, classroom sessions, identify people that can help
evangelize and champion changes within your studio.

And lastly, consider developing code closer to your content.

177

In the past, we would sometimes find the lines between Art and Engineering to be well
defined, leading to sometimes cumbersome interfaces, and technology that wasn’t as well
aligned with our actual project’s goals, due to the signal loss introduced between each stage.

178

But by blurring these lines during Destiny 2, we found that Technical Artists can write
production code if you give them a safe environment like TFX does.

This blurred area in-between is Technical Art at Bungie, and I think that we as an industry as
just now starting to realize what it means for Engineering to deliver a technology, that still
requires molding and adapting to be well leveraged for your game’s content, we improved this
just by moving development even closer to production artwork.

179

… and this is now how we develop all of our graphics features at Bungie
With Alexis’ help, I was able to pitch in to implement some of the features we talked about
today, and I’m just a TA!

180

And thank you of course to the Graphics and Art teams back at Bungie, and the people beyond
Bungie that helped steer us along the way.

… and now I’ll turn it over to questions

181

182

• We’re hiring, including positions on our specific team!
• Fill out the evaluation survey for the talk
• If you want to talk more about graphics in Destiny 2, or feel passionate about developing a

TA org, we’ll be hanging out near one of the Wrap Up rooms

183

184

