Significantly Improving your Skill System with TrueSkill® Through Time

Dr. Josh Menke Lead Engagement Designer 343 Industries

UBM

Joint work between The Coalition, Microsoft Research Cambridge, and 343 Industries.

Outline

- I. Skill Rating System Review
- II. Common Extensions and their Problems
- III. TrueSkill® Through Time

What is skill?

• Dictionary:

The ability to do something well

• For this talk:

The ability to do well at consistently winning matches

What is a skill system? Matches to Ratings

Popular Skill Rating Systems

• Elo

- Pioneering work, probably most popular
- Requires more matches to converge, requires tight matchmaking

Glicko

- Requires less matches to converge than Elo, doesn't require tight MM
- not naturally adapted to teams or draws

TrueSkill

- Requires even less matches than both Elo and Glicko to converge
- Designed for teams and draws

Good Skill Rating Systems

- 1. Accurate: Higher-skilled wins more often
- **2. Fast:** How many matches? Win% of a new player?

UBM

3. Extensible: Can it handle needed extensions?

Extension Evaluation Process

- 1. Identify a shortcoming of the skill system.
 - E.g.: Playing in premade parties isn't handled.
- 2. Consider what data could help improve the shortcoming
 - E.g.: Are they in a premade party? What size of party? Etc.
- 3. Verify the data is relevant *before* implementing.
 - E.g.: Do premade parties actually have a higher win% than predicted?
- 4. Decide the best way to incorporate the new data
 - E.g.: Change the skill rating based on the party size.

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Game Modes

- 1. Shortcoming: Players have different skills per mode, class, platform
 - Motivations: Ranking, Cross-play, not afraid to try new modes, classes, etc.
- 2. Data: Set of players who each play multiple modes
- 3. Verify:
 - Win % lower than predicted between modes
 - OR win % lower than predicted for the first game on a new mode
- 4. Implementation: Have a separate rating per mode
 - Shortcoming: need more matches to converge if not sharing between
 - Moving target problem if sharing is done with an external model

Party Size

- 1. Shortcoming: Players perform better in parties
 - OR players get defeated unfairly by parties
 - Games limit party size, or restrict MM based on it
- 2. Data: Matches with party sizes and who won
- 3. Verify: Win% higher than predicted in larger parties

Party Size Example

Party Size	Prediction %	Win %
1	49	49
2	50	50
3	49	48
4	53	58

UBM

Party Size: 4. Implementation

- Fit external model to learned skill ratings to find party advantages
 - Forces external changes to skill ratings: **Moving Target Problem**
- OR: add a party size offset to the skill system as an extra player per party
 - Have to update a global extra player after match: tricky to engineer (contention)

- Separate ratings for every party or party size
 - More parameters, per game mode, grows fast, requires more matches to converge
 - Throws out known base skill of the player

New Players

1. Shortcoming: new players are worse than average

New player drop-off:

1. Data: win% given # of games a player has played

2. Verify: New players win less than expected

New Players 3: Verifying

Games Played	Predicted win%	Actual win%
(first game)	49	44
1	49	45
2	49	46
3	49	47
4	49	47
5	49	47
6	49	48
7	49	48
8	50	48
≥9	50	51

New Players: 4. Implementation

- Need to match against lower-skilled opponents
- Matchmake them lower without changing skill rating
 - How much lower? Find in the data.
 - How fast should you move them back up? Not linear. Per mode.
 - Wrong skill update for the opponents
- Start new players with a lower skill rating to fix that
 - Bad moving target problem
 - Shifts population down as you go

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Moving Target with New Players

Kills, Deaths, Spend, XP, Mana ...

- 1. Shortcoming: Should use post-match metrics like kills
 - 1. For Ranking: Due recognition in team games
 - 2. For Matchmaking: Smurfs placed faster
- 2. Data: The stat in question, per player, per match
- 3. Verify:
 - Can't compare stats in current game to win% (cheating)
 - Compare previous game or pre-game average to win%

Kills 3: Verify

- Use the same approach for:
 - RTS: Resource spend per minute
 - MOBA: Gold / XP earned per minute
 - CCG: Average Board Mana Advantage
 - Any countable stat after a match

Pre-match Kills per 10 minutes	Predicted win%	Actual win%
0	52	39
5	51	46
10	50	51
15	51	57
20	53	63

UBM

Kills 3: Verify

- Relationship linear
- Linear models will work well

UBM

Kills 4: Implementation

Temptation given linear relationship:

- 1. Fit model to **predict skill rating from kills**
- 2. Use new prediction to influence skill rating
- \rightarrow Moving target:
 - Changes skills which changes the model
 - Devolves to kills defining skill, changing incentives.
 - Common for games to try this and then back off.
 - Inaccuracy makes it worse and worse

TrueSkill® Through Time (TTT)

- The Coalition dissatisfied with common solutions
- Approached Microsoft Research Cambridge
- 2+ year collaboration to significantly improve TrueSkill
- Running in Gears of War 4 since launch
- 343 industries integrating into Halo 5

TrueSkill® Through Time (TTT)

- Microsoft Research: Tom Minka, Yordan Zaykov, et. al
- The Coalition: Ryan Cleven
- Fits skills and (hyper)parameters over all matches jointly
- High accuracy on **already MM** data: 70% vs. ~50%

Game Modes with TTT

- Tracks a skill per game mode, class, platforms, etc.
- Shares skill information between game modes
 - Knows your skill in a new mode before playing that mode

UBM

• No Moving Target Problem: part of the same system

Party Skill TTT

- A skill offset per party size. Few matches required to learn.
- Part of the same model as player skill: not external
 - Partying up? OK, harder matches, but solo skill still estimated right
 - Solo? Ok, easier matches, solo skill estimated right.
 - Skill update accounts for opponents being in parties as well
- Learned per game mode: organization doesn't always matter

Party Size Example

Party Size	Original Prediction %	win%	TTT prediction%
1	49	49	48
2	50	50	51
3	49	48	48
4	53	58	60

UBM

New Players: TTT

- Learns **best** initial rating, using other modes, classes, etc.
- Finds how fast players catch-up: Learning Curve per Mode
- Learned **simultaneously** WITH skill: no external model
- New player experience is fair, should result in less churn

Strongholds Learning Curve

New Players with TTT

Games Played	old prediction%	win%	TTT prediction
first game	49	44	44
1	49	45	45
2	49	46	46
3	49	47	46
4	49	47	47
5	49	47	47
6	49	48	47
7	49	48	48
8	50	48	48
≥9	50	51	51

UBM

New Players In Gears of War 4

Games Played	Win% Before	Win% After
First Game	40	50
1	42	50
2	43	49
3	43	50
4	44	49
5	45	49
6	45	49
7	45	50
8	46	49
≥9	48	49

UBM

Kills and Other Counts with TTT

- Don't have a match's kills before a match
- Instead, put kills on the *output* as something we predict
 - Knowing what happened after improves skill estimate
- Update a single skill rating based on predicting both:
 - Win %
 - Kills per minute

Kills with TrueSkill Through Time

- Still enforces that the winning team overall did better (incentives)
- Losing players can outperform winners
- Still just ONE skill rating per player
- Halo 5: |avg(kills) avg(predicted)| < 0.02

Kills with TrueSkill Through Time

Pre-Match Kills per 10 minutes	Predicted win%	Actual win%	TTT Prediction%
0	52	39	39
5	51	46	45
10	50	51	53
15	51	57	58
20	53	63	62

Use for Any Event Count

- Event count examples to verify:
 - **RTS**: Resource spend per minute
 - **MOBA**: XP or Gold per minute
 - CCG: Average board mana advantage
 - **Soccer**: Field Coverage per game, avg. distance from goals
- Per Class:
 - Verify correlated with existing skill ratings
 - E.g. prefix event names with the hero: (Rogue_Kills, Tank_Kills, ...)

Other TTT Benefits

- Smurf Detection:
 - Throws anomalies if players kill, die, heal, resource too much

UBM

- Handles **bot** skill correctly
 - Use them to accurately find new player skills
 - GoW 4 uses skill with their bots

Gears 4 Improvement Over Time

Apply Steps to Your Game

- 1. Brainstorm with your Developers
 - Designers, Engineers, Producers, anyone might have a good idea
 - Came up with 5 metrics in 5 minutes
- 2. Slice on those features and metrics
 - Just like we did in the examples
 - Check for cases where predicted win% is different than actual win%
- 3. Integrate ones that you should
 - Ideally using something like TrueSkill Through Time
 - Learn everything simultaneously

TrueSkill Through Time in the Cloud

- TTT uses data from ALL our matches from the beginning
- Runs in parallel in the cloud on many machines
- Heavily optimized by Microsoft Research
- Should we add as a service from the cloud gaming team?

Questions? Also References.

- Elo: <u>wikipedia.com/wiki/Elo_rating_system</u>
- Glicko: <u>glicko.net/glicko.html</u>
- Trueskill: <u>https://www.microsoft.com/en-us/research/publication/trueskilltm-a-bayesian-skill-rating-system/</u>
- TrueSkill2: <u>https://www.microsoft.com/en-us/research/publication/trueskill-2-improved-bayesian-skill-rating-system/</u>
- Contact for links (I'll also tweet them out):
 - twitter.com/joshua_menke, reddit: ZaedynFel
- Further Discussion: Overlook 3022

