

2

‘DESTINY 2’ AND BEYOND

BUNGIE’S ASSET PIPELINE

BRANDON MORO

Engineering Lead

3

OVERVIEW

• Destiny Asset Pipeline

• Big Changes for Destiny 2

• Additional Iteration Improvements

• Conclusion

4

DESTINY

5

DESTINY

6

DESTINY ASSET PIPELINE

7

DESTINY ASSET PIPELINE

Photoshop

Maya

Max

Bungie
Editors

Files

Files

Files

Files

Asset
Pipeline

Packages

8

DESTINY ASSET PIPELINE

~55,000 user imports = ~340 days

~2,500 farm imports = ~220 days

9

THE DETAILS…

10

DEPENDENCY GRAPH

Source
File

Task Data Game
Packages

Data

Task Data

Data Task Data

11

DEPENDENCY GRAPH

• Tasks (data transforms) are C++ functions

• Tasks read inputs, bind data to outputs

• Tasks can schedule additional tasks
• Defines data dependencies between tasks

• Tasks are executed in parallel

• Task results are cached by hash of inputs

• System manages IO asynchronously

12

OUTPUTS

• Game data package files
• Can be patches of previous packages

• Game data is directly addressable by 32 bit id
• Pro: No runtime fixup required

• Con: All data that can reference each other must be processed together

• Content error inspection information

13

ORIGINAL DESTINY ASSET PIPELINE FLOW

Stale Detection

Work Loop

Build game-ready patch Build complete error logs

Import Session

Task/data cache

Task execution

import c:\depot\missions\example.mission

14

CORE ISSUES

15

CORE ISSUES

Massive task and data counts

• Destiny 1 Earth – 9.1M tasks, 19.3M data elements

• Tracking structures are massive

• Difficult to inspect/understand

• Granularity stresses caching mechanisms

16

CORE ISSUES

Extremely over connected graphs

• Destiny 1 Earth, average piece of data:
• Referenced by ~20 tasks (up to ~150k)

• References ~10 other data (up to ~50k)

• High graph operation overhead

• Many tasks must run even for small source changes

17

CORE ISSUES - EXAMPLE

Stale Detection
(1M tasks)

Work Loop
(4 tasks)

Build game-ready patch
(2 / 250k changed)

Build complete error logs
(1M tasks)

import c:\depot\missions\example.mission

Import Session

18

HOW DID WE END UP HERE?

• System built in parallel with task code

• Scale ended up much larger than initially expected
• In production, graph size and complexity approx. doubled every 2-3

weeks!

19

HOW DID WE END UP HERE?

• Too easy to add data dependencies without understanding
impact

• Data dependency granularity

Geometry Task

s_mesh_struct
• m_materials[]
• m_vertices[]
• m_indices[]

Material Tasks

Triangles Tasks

Geometry Task

s_mesh_materials
• m_materials[] Material Tasks

Triangles Taskss_mesh_geometry
• m_vertices[]
• m_indices[]

20

HOW DID WE END UP HERE?

Strong focus on producing optimal game data
• Wide range of target hardware (PS3, PS4, Xbox 360, Xbox One)

• Focused on writing optimal engine code

Source Object A
• Ammo
• Shield
• Health

Source Shader X

Object A
• Health

Shader X
(Health = ObjectA[0])

Object A
• Shield
• Health

Shader X
(Shield = ObjectA[0])
(Health = ObjectA[1])

21

HOW DID WE END UP HERE?

For more details, check out:

“Asset Systems and Scalability” from HandmadeCon 2016

(on YouTube)

22

DESTINY 2

23

DESTINY 2

#1 Workflow Goal - Produce more content, much faster

• Now was our chance for a more drastic change

• But, we still would need
• Backwards compatibility for source content

• Minimal production wake

24

DESTINY 2 ASSET PIPELINE – BIG CHANGES

• Break up the graph into many smaller per-Asset graphs
• Scope-of-context work is faster as task count drops
• Run Asset graph operations in parallel
• Easier to inspect and understand a smaller, single-Asset graph
• More reasonable caching granularity

• Make it more difficult to introduce data dependencies between
Assets and easier to understand workflow impact

• Allow Asset references to be fixed up at load time

25

DESTINY 2 ASSET PIPELINE FLOW

Asset A

Stale Check

Work Loop

Build Result Error Logs

Asset B

Stale Check

Work Loop

Build Result Error Logs

Asset C

Stale Check

Work Loop

Build Result Error Logs

Build game-ready patch Build game-ready patch

26

User Machine

DESTINY 2 ASSET PIPELINE - PARALLELISM

Controller
• Asset Graph
• Cache Interface

Master
• Asset Execution
• Packaging

Workers
• Task Execution

Remote
Cache

Local
Cache

27

Farm Machine Farm Machine

DESTINY 2 ASSET PIPELINE - PARALLELISM

Controller
• Asset Graph
• Cache Interface

Local
Cache

Remote
Cache

Follower
• Cache Interface

Master
• Asset Execution
• Packaging

Workers
• Task Execution

Local
Cache

28

WHAT WAS THE IMPACT?

29

WHAT WAS THE IMPACT?

Constraint: Backwards Compatibility / Minimal Production Wake

Task

Task

Task

Task

Task

Asset

New Asset

Task

Task

Task

30

WHAT WAS THE IMPACT?

Issue: Difficult to understand / inspect

• Asset-level graph is much smaller, focused

• Build a report with details of all referenced Assets
• Did it succeed?

• Does it contain errors/warnings?

• Was it re-used from a cache?
• If not, why? “File rocket.definition changed”

• Create a understandable story of what occurred and why

31

WHAT WAS THE IMPACT?

Issue: Too granular to cache efficiently at massive scale

• Assets are more reasonable caching granularity than tasks

• Enabled always-on networked caches for everyone

TaskTask

Asset

TaskTask

Asset Resultvs

32

WHAT WAS THE IMPACT?

Issue: Over-connected graphs

• Asset-level dependencies are explicitly declared

• Easier to understand impact of Asset-level dependencies

• Asset caching reduces impact of overly connected task graphs

33

WHAT WAS THE IMPACT?

Issue: Must Import Full Context

• Load-time resolved Asset references
• Import and package only the Asset you are editing

• Download packages from content build farm
• See your changes in real shipping maps for ~free

Farm
Packages

Local
Asset

Package

34

BENDING RULES FOR ITERATION SPEED

35

BENDING RULES FOR ITERATION SPEED

• Typical dependency graph processing guarantees all inputs
reflected in output

• Can speed up local iteration by bending this rule

• Asset boundaries enable interesting options for local iteration
speed

36

BENDING RULES FOR ITERATION SPEED

“Free” Audio

User option enables:

• Audio Asset cache compatibility checks ignore file references

• Still check major versions, etc

• No match = Fake “Missing” Asset result
• Game already gracefully handles failed/missing audio

37

BENDING RULES FOR ITERATION SPEED

“Stale” Ambient Occlusion

• Split Ambient Occlusion into 2 Assets:

• ‘AO Compute’ can use modified Asset cache compatibility check

AO Compute

AO FinalizeWorld

38

SUMMARY

39

SUMMARY

• Scaling issues with single, massive dependency graph

• Introduced Asset-level granularity

• Introduced Asset References with load-time fixup

40

SUMMARY

• These new tools enable building efficient workflows

• Continuing to work through and upgrade/optimize existing
workflows
• Remove/reduce costly data dependencies

• Define new Assets

• Adjust Asset boundaries

41

CONCLUSION

• Can combine major benefits of per-Asset and dependency
graph based data pipelines

• Critical to understand impact before adding data dependencies

42

THANK YOU

bmoro@bungie.com

