
Engine Architect – Far Cry
Ubisoft Montréal

@azagoth

Rémi QUENIN

THE ASSET BUILD SYSTEM OF

THE FARCRY PROJECT

 About 1000 people at peak
Across 5 studios

 Over 3 Years
Started after FC4

 Gigantic open world, 2x FC4/Primal
80 km2 playable

THE FARCRY PIPELINE

 1 nightly build = 560 GB
3 Platforms, Official + Test Maps

 Over 4.5 TB of I/O to produce a build
Read+Write, 3 platforms

 Over 20 Millions node in dep. graph
Spread in more than 120 asset types

DATA FLOW IN THE FARCRY PIPELINE

BINARIZING

1 THE PIPELINE

2 THE ASSET BUILD SYSTEM

3 FEATURES

Assets

THE PIPELINE
Runtime & Tool Separation

1

FC4 PIPELINE

 Fair amount of C++ tools code
Mixed C++/C# with CLI

 Strong tools/runtime coupling
Edition code “sneak” into engine / final game

 Big monolithic editor
Long load time

FC5 PIPELINE

 Modular specialized tools
Few dependencies, fast loading

 Clean data separation
Tools data != RunTime data

 No direct dependencies on engine
Focus on user experience

HOW ?

Engine as Service

HTTP

HTTP

HTTP

API

HTTP

INSPIRATION

API

RPC

Engine

RPC

Tools

ENGINE AS SERVICE

BENEFITS

 Separation of concerns
Proper dependencies

 Use the right technologies
C++ for engine, C# for tools

 Fast dev. and iteration
Key for quality

RPC

FEEDING DATA TO THE ENGINE

 Engine only consume binarized data
No code path for “tool” data

 Binarization delegated to the AssetBuildSystem
Separation of concerns

 Just in Time “JIT” compilation
Only if necessary

EXAMPLE
var engine = new Engine();
var particle = engine.Create<IParticleSystem>();
particle.Spawn(“Rock.Destruction”);

Tool.cs

EXAMPLE
var engine = new Engine();
var particle = engine.Create<IParticleSystem>();
particle.Spawn(“Rock.Destruction”);

FarCry.exe

Tool.exe

AssetBuild.exe

ParticleDesc* desc = FileSystem::Stream(“Rock.Destruction”);
ParticleSystem* particle = new ParticleSystem();

particle->Spawn(desc);

• Particle
• Sounds
• Textures
• …etc.

USING ENGINE AS A SERVICE
 Asset Preview

 Asset Editor

 Augmented debugging

 Automated testing

 Tech. prototyping

 …and More

3
POINTS

RUNTIME USED AS SERVICE
No « tool » code shipped

INDEPENDENT MODULAR TOOLS
Fast iteration

ASSET BUILD SYSTEM
Junction between both

FC5 PIPELINE

THE ASSET BUILD SYSTEM
Fast and scalable

2

WHAT IS THE PURPOSE OF A BUILD ?

 Source asset to RunTime optimized asset
Binary format, strip useless info

 Faster load, platform specific
Best possible result at runtime

WHAT IS A BUILD ?

PARTICLE

PARAMETERS

VERTICES

PARAMETERS (Txt)

VERTICES (Platform)

GEOMETRY (Generic)

WHAT IS A BUILD ?

 A set of independent build actions
Has dependencies, can produce output

 Graph of build actions
Dependencies needs to satisfied before processing node

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

WHAT IS A BUILD ?

 Want to Build asset “A”

 List dependencies

 Build dependencies

 Build

 Notify dependencies

A

B C

BUILD DEPENDENCIES: PARALLELIZATION

A

B C

D

E FSTEP 1

STEP 2

BUILD DEPENDENCIES: PARALLELIZATION

A

B C F

D

ESTEP 1

STEP 2

STEP 3

STEP 4

BUILD DEPENDENCIES: INCREMENTAL

A

B C

D

E FSTEP 1

STEP 2

2 BUILDS

BUILD DEPENDENCIES: INCREMENTAL

A

B C

D

E

STEP 1

STEP 2

STEP 3

STEP 4
4 BUILDS

F

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

DEPENDENCIES MAKE IT FAST

1. Parallelization
For non-dependent rules

2. Incrementality
Just do what’s need to be done

DEPENDENCIES

DEPENDENCIES

DEPENDENCIES

2
TYPES

COMPILE DEP
Required to build

RUNTIME DEP
Required to Run

DEPENDENCIES

COMPILE DEPENDENCIES

 Static
Can be listed upfront

 Dynamic
Needs analysis of the static deps

1

COMPILE DEPENDENCIES: EXAMPLES

 Static
cpp file

 Dynamic
Header files included

Code object file (.obj)

1

 Static
Definition file

 Dynamic
Vertex buffer

Particle

COMPILE DEPENDENCIES: EXAMPLES

 Static
.png file

 Dynamic
Texture profile

Texture

1

 Static
Anim. source file

 Dynamic
Skeleton

Animation

RUNTIME DEPENDENCIES

 Required to run, not to build: “Reference”
Discovered during build

 Emitted during the build
Weak link: does not block emitting graph

2

RUNTIME DEPENDENCIES : EXAMPLES

 Material
=> Textures

 Geometry
=> Materials

 Dialog
=> Sounds, facial animations

2

 Animation
=> Particles, sounds

 Particles
=> Textures, sounds

PPD

Prepare Platform Data

FC5 ASSET BUILD SYSTEM

PPD: PREPARE PLATFORM DATA

 Dependency graph
Static/Dynamic compile dep., Runtime dep.

 Everything is a node
Physical or virtual: asset file, src file, file list…

 Each node is access only once
Only one I/O op. per file

PPD: MODULARITY

 “Nodes” bound to “Processor”
”Data” separated form “Processing”

 User only write the “compilation”
…and callback to extract dependencies

 Framework does the graph evaluation
…and invoke user callbacks when necessary

 Easiness of implementation
Users are not afraid to add processors

 “Build this asset”
ie. : Build this node

 Don’t need to know the asset
User just invoke ppd.exe on target

 Unroll dependencies
From target to sources

PPD: REVERSE « USER API »

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

EXAMPLE: PARTICLE

 <particle>.bin: parameters + vertex buffer
Lifetime, spawn rate, emitting direction & speed…

 Static dep: <particle>.def
Particle definition

 Dynamic dep: A “trimmed” geometry
Needs to be built from a full “fat” geometry

 Runtime dep
Textures and sounds

EXAMPLE: PARTICLE

particle.bin

particle.geom.trim

particle.def

particle.geom

texture_diff.bin

texture_norm.bin

texture_disto.bin

texture_displ.bin

sound_start.bin

Static dep

Dynamic dep

Runtime dep

sound_end.bin

Inject static

Inject Dynamic

Build

Idle

Waiting dep

Built

Legend:

1

2

3

EXAMPLE: SETTINGS

 Set of parameters, edited through a Property Grid
Typically, the fields of a C++ struct/class instance

 Fields exposed through C++ Reflection
Lots of online material on the subject

 Can automate serialization
Many more usage

EXAMPLE: SETTINGS
struct Paramaters
{
int iVal = 0;
float fVal = 10.f;

};

<DuniaObject ClassType="Parameters">
<Member Name="iVal" Type="int" DefaultVal="0"/>
<Member Name="fVal" Type="float" DefaultVal="10.f"/>

</DuniaObject>

EXAMPLE: SETTINGS

FarCry.exe

Tool.exe PPD.exe

EXAMPLE: SETTINGS

Static dep

Dynamic dep

FarCry.exe

Tool « instance »

Definition file

Static dep

PPD: VERSIONING

 Each processor has a version number
Defined in code, saved in state

 At state-load time, discard any changed processors
Version number, or settings

 Discard all nodes attached to this proc.
…and recursively discard users of discarded nodes

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

PPD: MULTITHREADING

 Every stage is a task: all parallelized
Static dep, Dynamic dep, Build

 Notification driven
New task spawned upon completion of last dependent one

PPD: MULTITHREADING

Parameters.txt

particle.bin

Static Dep. Injection

ppd.exe particle.bin

Dyn. Dep. Injection

particle.bin

Build

particle.bin

Static Dep. Injection

<trimmed>.geom

<fat>.geom

Build

<trimmed>.geom

PPD: MULTITHREADING
48 cores, 256GB RAM, 2x 8GB VRAM, 2x RAID0 NVMe SSDs

PPD: BLAZING FAST NO-OP
 Graph is parsed by all the threads

Multithreaded logic

 Written in highly optimized native code
No script or external exec. => 1 exec. all in C++

 Cache friendly, low alloc. count
State loaded in single alloc., pooled Node

 Hammering file system
Local disk IOPS bound

3
POINTS

DEPENDENCY GRAPH
Compile dependencies

STAGED PARALLEL EVALUATION
Dependencies injection, Build

MINIMAL INCREMENTAL BUILDS
Primary speed factor

FC5 BUILD SYSTEM

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

FEATURES
Faster

3

PPD: FEATURES

 99% of build time spent in build
Further optim. needs to focus on build

 Features are just alternatives to ::Build()
No impact on graph parsing logic

PPD

1 PROCESS ISOLATION

2 DISTRIBUTION

3 CACHING

Features

4 FILE SYSTEM HOOKING

5 BUILD SYSTEM AS AS SERVICE

PPD: PROCESS ISOLATION

 Run the code in another process
Separate memory space

 Execute non thread safe code
Only one build per isolated process

 Execute non-trusted code
Crash tolerancy

1

PPD: PROCESS ISOLATION

 Start a sub-process in “worker” mode
ppd.exe -worker

 Send relevant information by RPC
Processor settings, node data

 Gather results
Logs, emitted runtime deps

1

PPD: DISTRIBUTION

 Virtualize RPC transport
TCP/IP instead of MMAP

 Contextualize file accesses
Virtualized file system (see GDC 2015)

 Worker management
Binaries transport, thread reservation. …etc

2

PPD+: DISTRIBUTION+ISOLATION2
Builder Worker

ppd.exe ppd.exe -worker

PPD: CACHING3

 Snapshot of “sources”: MD5 Hash
Everything that can affect result

 Save result on shared network location
Asset store – see GDC 2015

 Try to download prior to build
If not found, build locally

 Not always interesting
Only when build time > build key + download time

PPD: CACHING3

• Key: MD5 of several information
• Node (file) name

• Version of processor

• Setting of processor

• CRC of source file content

 Contains output(s) and emitted RT dep
Packed in a single buffer

 Sandboxing
Redirect outputs

 Distribution of 3rd party tools
Havok binarization

FILESYSTEM HOOKING: GOAL4

DETOURING4

&::CreateFile

0x0000

0x0100

0x0120

0x0120

0x0050

0x0121

jmp 0x0121

jmp <hook>

void HookFileSystem()
{
Original_CreateFile =

HookManager::Hook(&::CreateFile, &Hacked_CreateFile);
}

HOOKING REMOTE PROCESS4

void Hacked_CreateFile(const char* path)
{
const char* newPath = DoSomething(path);
Original_CreateFile(newPath);

}

HOOKING REMOTE PROCESS4

LoadDLL("hooking.dll");
FuncProto f = FindProcAdress("HookFileSystem");
f();

ASM

HOOKING REMOTE PROCESS4

ASM

void CreateProcessWithHooking()
{
CreateProcess(CREATE_SUSPENDED);

VirtualAllocEX();

WriteProcessMemory();

CreateRemoteThread();
Wait();

VirtualFreeEx();
ResumeThread();

}

PPD AS A SERVICE: JIT COMPILATION5

ppd.exe -service

PPD AS A SERVICE: LIVE EDITING5

ppd.exe -service

dst 1 dst 2

src

CONCLUSION
Figures

4

3
POINTS

PIPELINE TRINITY
Tools, Engine, Build System

DEPENDENCY GRAPH
Parallelisation & Incrementality

ADDITIONAL FEATURES
In replacement of ::Build()

THE FC5 PIPELINE

NUMBERS: TYPICAL NIGHTLY

116 editor exports, 20 at a time
20 millions nodes evaluated

309 world bigfiles (8 languages)

18 FarCry Arcade asset packs

Shaders for the 3 platforms

(10 min incremental)
Fc4: 3h00, 13 machines, 1/3 of the work (1h00 incremental)

4.5 TiB of I/O, 560 GiB of outputs

1 machine, 2 h 00

No-Op build(1.5M nodes): 28s (654k timestamps, 267 dirlist)

THANKS & CREDITS

 Jessy Gosselin-Grant / Engine as service, code hooking, pipeline architecture

 Philippe Gagnon / Pipeline architecture

 Jean-Francois Cyr / PPD power user

 Philippe de Sève / PPD power user

 Franta Fulin / Inspiration from FASTBuild

THANKS & CREDITS
 Jeremy Moore/ Peer review

 Ryan Smith / Peer review

 Dominic Couture/ Peer review

 Danny Couture / Peer review

 Jean-Francois Dube / Peer review

 Christian Martin / Peer review

 Julien Merceron / Peer review

 Audrey Belanger / Review

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

&

QUESTIONS?

Thank you!

@azagoth
remi.quenin@ubisoft.com

Rémi QUENIN

