
Engine Architect – Far Cry
Ubisoft Montréal

@azagoth

Rémi QUENIN

THE ASSET BUILD SYSTEM OF

THE FARCRY PROJECT

 About 1000 people at peak
Across 5 studios

 Over 3 Years
Started after FC4

 Gigantic open world, 2x FC4/Primal
80 km2 playable

THE FARCRY PIPELINE

 1 nightly build = 560 GB
3 Platforms, Official + Test Maps

 Over 4.5 TB of I/O to produce a build
Read+Write, 3 platforms

 Over 20 Millions node in dep. graph
Spread in more than 120 asset types

DATA FLOW IN THE FARCRY PIPELINE

BINARIZING

1 THE PIPELINE

2 THE ASSET BUILD SYSTEM

3 FEATURES

Assets

THE PIPELINE
Runtime & Tool Separation

1

FC4 PIPELINE

 Fair amount of C++ tools code
Mixed C++/C# with CLI

 Strong tools/runtime coupling
Edition code “sneak” into engine / final game

 Big monolithic editor
Long load time

FC5 PIPELINE

 Modular specialized tools
Few dependencies, fast loading

 Clean data separation
Tools data != RunTime data

 No direct dependencies on engine
Focus on user experience

HOW ?

Engine as Service

HTTP

HTTP

HTTP

API

HTTP

INSPIRATION

API

RPC

Engine

RPC

Tools

ENGINE AS SERVICE

BENEFITS

 Separation of concerns
Proper dependencies

 Use the right technologies
C++ for engine, C# for tools

 Fast dev. and iteration
Key for quality

RPC

FEEDING DATA TO THE ENGINE

 Engine only consume binarized data
No code path for “tool” data

 Binarization delegated to the AssetBuildSystem
Separation of concerns

 Just in Time “JIT” compilation
Only if necessary

EXAMPLE
var engine = new Engine();
var particle = engine.Create<IParticleSystem>();
particle.Spawn(“Rock.Destruction”);

Tool.cs

EXAMPLE
var engine = new Engine();
var particle = engine.Create<IParticleSystem>();
particle.Spawn(“Rock.Destruction”);

FarCry.exe

Tool.exe

AssetBuild.exe

ParticleDesc* desc = FileSystem::Stream(“Rock.Destruction”);
ParticleSystem* particle = new ParticleSystem();

particle->Spawn(desc);

• Particle
• Sounds
• Textures
• …etc.

USING ENGINE AS A SERVICE
 Asset Preview

 Asset Editor

 Augmented debugging

 Automated testing

 Tech. prototyping

 …and More

3
POINTS

RUNTIME USED AS SERVICE
No « tool » code shipped

INDEPENDENT MODULAR TOOLS
Fast iteration

ASSET BUILD SYSTEM
Junction between both

FC5 PIPELINE

THE ASSET BUILD SYSTEM
Fast and scalable

2

WHAT IS THE PURPOSE OF A BUILD ?

 Source asset to RunTime optimized asset
Binary format, strip useless info

 Faster load, platform specific
Best possible result at runtime

WHAT IS A BUILD ?

PARTICLE

PARAMETERS

VERTICES

PARAMETERS (Txt)

VERTICES (Platform)

GEOMETRY (Generic)

WHAT IS A BUILD ?

 A set of independent build actions
Has dependencies, can produce output

 Graph of build actions
Dependencies needs to satisfied before processing node

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

WHAT IS A BUILD ?

 Want to Build asset “A”

 List dependencies

 Build dependencies

 Build

 Notify dependencies

A

B C

BUILD DEPENDENCIES: PARALLELIZATION

A

B C

D

E FSTEP 1

STEP 2

BUILD DEPENDENCIES: PARALLELIZATION

A

B C F

D

ESTEP 1

STEP 2

STEP 3

STEP 4

BUILD DEPENDENCIES: INCREMENTAL

A

B C

D

E FSTEP 1

STEP 2

2 BUILDS

BUILD DEPENDENCIES: INCREMENTAL

A

B C

D

E

STEP 1

STEP 2

STEP 3

STEP 4
4 BUILDS

F

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

DEPENDENCIES MAKE IT FAST

1. Parallelization
For non-dependent rules

2. Incrementality
Just do what’s need to be done

DEPENDENCIES

DEPENDENCIES

DEPENDENCIES

2
TYPES

COMPILE DEP
Required to build

RUNTIME DEP
Required to Run

DEPENDENCIES

COMPILE DEPENDENCIES

 Static
Can be listed upfront

 Dynamic
Needs analysis of the static deps

1

COMPILE DEPENDENCIES: EXAMPLES

 Static
cpp file

 Dynamic
Header files included

Code object file (.obj)

1

 Static
Definition file

 Dynamic
Vertex buffer

Particle

COMPILE DEPENDENCIES: EXAMPLES

 Static
.png file

 Dynamic
Texture profile

Texture

1

 Static
Anim. source file

 Dynamic
Skeleton

Animation

RUNTIME DEPENDENCIES

 Required to run, not to build: “Reference”
Discovered during build

 Emitted during the build
Weak link: does not block emitting graph

2

RUNTIME DEPENDENCIES : EXAMPLES

 Material
=> Textures

 Geometry
=> Materials

 Dialog
=> Sounds, facial animations

2

 Animation
=> Particles, sounds

 Particles
=> Textures, sounds

PPD

Prepare Platform Data

FC5 ASSET BUILD SYSTEM

PPD: PREPARE PLATFORM DATA

 Dependency graph
Static/Dynamic compile dep., Runtime dep.

 Everything is a node
Physical or virtual: asset file, src file, file list…

 Each node is access only once
Only one I/O op. per file

PPD: MODULARITY

 “Nodes” bound to “Processor”
”Data” separated form “Processing”

 User only write the “compilation”
…and callback to extract dependencies

 Framework does the graph evaluation
…and invoke user callbacks when necessary

 Easiness of implementation
Users are not afraid to add processors

 “Build this asset”
ie. : Build this node

 Don’t need to know the asset
User just invoke ppd.exe on target

 Unroll dependencies
From target to sources

PPD: REVERSE « USER API »

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

EXAMPLE: PARTICLE

 <particle>.bin: parameters + vertex buffer
Lifetime, spawn rate, emitting direction & speed…

 Static dep: <particle>.def
Particle definition

 Dynamic dep: A “trimmed” geometry
Needs to be built from a full “fat” geometry

 Runtime dep
Textures and sounds

EXAMPLE: PARTICLE

particle.bin

particle.geom.trim

particle.def

particle.geom

texture_diff.bin

texture_norm.bin

texture_disto.bin

texture_displ.bin

sound_start.bin

Static dep

Dynamic dep

Runtime dep

sound_end.bin

Inject static

Inject Dynamic

Build

Idle

Waiting dep

Built

Legend:

1

2

3

EXAMPLE: SETTINGS

 Set of parameters, edited through a Property Grid
Typically, the fields of a C++ struct/class instance

 Fields exposed through C++ Reflection
Lots of online material on the subject

 Can automate serialization
Many more usage

EXAMPLE: SETTINGS
struct Paramaters
{
int iVal = 0;
float fVal = 10.f;

};

<DuniaObject ClassType="Parameters">
<Member Name="iVal" Type="int" DefaultVal="0"/>
<Member Name="fVal" Type="float" DefaultVal="10.f"/>

</DuniaObject>

EXAMPLE: SETTINGS

FarCry.exe

Tool.exe PPD.exe

EXAMPLE: SETTINGS

Static dep

Dynamic dep

FarCry.exe

Tool « instance »

Definition file

Static dep

PPD: VERSIONING

 Each processor has a version number
Defined in code, saved in state

 At state-load time, discard any changed processors
Version number, or settings

 Discard all nodes attached to this proc.
…and recursively discard users of discarded nodes

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

PPD: MULTITHREADING

 Every stage is a task: all parallelized
Static dep, Dynamic dep, Build

 Notification driven
New task spawned upon completion of last dependent one

PPD: MULTITHREADING

Parameters.txt

particle.bin

Static Dep. Injection

ppd.exe particle.bin

Dyn. Dep. Injection

particle.bin

Build

particle.bin

Static Dep. Injection

<trimmed>.geom

<fat>.geom

Build

<trimmed>.geom

PPD: MULTITHREADING
48 cores, 256GB RAM, 2x 8GB VRAM, 2x RAID0 NVMe SSDs

PPD: BLAZING FAST NO-OP
 Graph is parsed by all the threads

Multithreaded logic

 Written in highly optimized native code
No script or external exec. => 1 exec. all in C++

 Cache friendly, low alloc. count
State loaded in single alloc., pooled Node

 Hammering file system
Local disk IOPS bound

3
POINTS

DEPENDENCY GRAPH
Compile dependencies

STAGED PARALLEL EVALUATION
Dependencies injection, Build

MINIMAL INCREMENTAL BUILDS
Primary speed factor

FC5 BUILD SYSTEM

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

FEATURES
Faster

3

PPD: FEATURES

 99% of build time spent in build
Further optim. needs to focus on build

 Features are just alternatives to ::Build()
No impact on graph parsing logic

PPD

1 PROCESS ISOLATION

2 DISTRIBUTION

3 CACHING

Features

4 FILE SYSTEM HOOKING

5 BUILD SYSTEM AS AS SERVICE

PPD: PROCESS ISOLATION

 Run the code in another process
Separate memory space

 Execute non thread safe code
Only one build per isolated process

 Execute non-trusted code
Crash tolerancy

1

PPD: PROCESS ISOLATION

 Start a sub-process in “worker” mode
ppd.exe -worker

 Send relevant information by RPC
Processor settings, node data

 Gather results
Logs, emitted runtime deps

1

PPD: DISTRIBUTION

 Virtualize RPC transport
TCP/IP instead of MMAP

 Contextualize file accesses
Virtualized file system (see GDC 2015)

 Worker management
Binaries transport, thread reservation. …etc

2

PPD+: DISTRIBUTION+ISOLATION2
Builder Worker

ppd.exe ppd.exe -worker

PPD: CACHING3

 Snapshot of “sources”: MD5 Hash
Everything that can affect result

 Save result on shared network location
Asset store – see GDC 2015

 Try to download prior to build
If not found, build locally

 Not always interesting
Only when build time > build key + download time

PPD: CACHING3

• Key: MD5 of several information
• Node (file) name

• Version of processor

• Setting of processor

• CRC of source file content

 Contains output(s) and emitted RT dep
Packed in a single buffer

 Sandboxing
Redirect outputs

 Distribution of 3rd party tools
Havok binarization

FILESYSTEM HOOKING: GOAL4

DETOURING4

&::CreateFile

0x0000

0x0100

0x0120

0x0120

0x0050

0x0121

jmp 0x0121

jmp <hook>

void HookFileSystem()
{
Original_CreateFile =

HookManager::Hook(&::CreateFile, &Hacked_CreateFile);
}

HOOKING REMOTE PROCESS4

void Hacked_CreateFile(const char* path)
{
const char* newPath = DoSomething(path);
Original_CreateFile(newPath);

}

HOOKING REMOTE PROCESS4

LoadDLL("hooking.dll");
FuncProto f = FindProcAdress("HookFileSystem");
f();

ASM

HOOKING REMOTE PROCESS4

ASM

void CreateProcessWithHooking()
{
CreateProcess(CREATE_SUSPENDED);

VirtualAllocEX();

WriteProcessMemory();

CreateRemoteThread();
Wait();

VirtualFreeEx();
ResumeThread();

}

PPD AS A SERVICE: JIT COMPILATION5

ppd.exe -service

PPD AS A SERVICE: LIVE EDITING5

ppd.exe -service

dst 1 dst 2

src

CONCLUSION
Figures

4

3
POINTS

PIPELINE TRINITY
Tools, Engine, Build System

DEPENDENCY GRAPH
Parallelisation & Incrementality

ADDITIONAL FEATURES
In replacement of ::Build()

THE FC5 PIPELINE

NUMBERS: TYPICAL NIGHTLY

116 editor exports, 20 at a time
20 millions nodes evaluated

309 world bigfiles (8 languages)

18 FarCry Arcade asset packs

Shaders for the 3 platforms

(10 min incremental)
Fc4: 3h00, 13 machines, 1/3 of the work (1h00 incremental)

4.5 TiB of I/O, 560 GiB of outputs

1 machine, 2 h 00

No-Op build(1.5M nodes): 28s (654k timestamps, 267 dirlist)

THANKS & CREDITS

 Jessy Gosselin-Grant / Engine as service, code hooking, pipeline architecture

 Philippe Gagnon / Pipeline architecture

 Jean-Francois Cyr / PPD power user

 Philippe de Sève / PPD power user

 Franta Fulin / Inspiration from FASTBuild

THANKS & CREDITS
 Jeremy Moore/ Peer review

 Ryan Smith / Peer review

 Dominic Couture/ Peer review

 Danny Couture / Peer review

 Jean-Francois Dube / Peer review

 Christian Martin / Peer review

 Julien Merceron / Peer review

 Audrey Belanger / Review

DEPENDENCIES

DEFINES

THE SPEED

OF THE BUILD

&

QUESTIONS?

Thank you!

@azagoth
remi.quenin@ubisoft.com

Rémi QUENIN

