
CocoVR - Spherical Multiprojection

Luke Schloemer
Lead 3D Artist

Xavier Gonzalez
Senior Rendering Engineer



● Production
○ Prototype

■ 3 Months
■ 3-5 Team Members

○ Full development
■ 8 Months
■ 8 Team Members

● Expanded to 20 near launch.
■ 1 Month in December after 

launch for 1.1 patch

Image(s) courtesy of Disney/Pixar

http://www.youtube.com/watch?v=688XEeK80GQ


1. Intro to Spherical Projections
2. Spherical Projections in Practice
3. Art Pipeline
4. Algorithm Details
5. Tools Developed
6. Conclusion

OUTLINE



Intro to Spherical Projections

● Similar to taking a 360 image and applying it to a skydome
● Instead of applying to the background to simulate a sky, we apply it to 

mostly all geometry in the scene
● A lot of VR experiences are from a single vantage point



● Looks great….. 
● From the intended 

perspective

Intro to Spherical Projections

Image(s) courtesy of Disney

https://docs.google.com/file/d/1Kr18WHd-ZfalyooohBI3J5keQR9xnC2h/preview


Spherical Projections in Practice

Image(s) courtesy of Disney



Spherical Projections in Practice

Image(s) courtesy of Disney



Spherical Projections in Practice
● Moana VR

● GearVR

Image(s) courtesy of Disney



Spherical Projections in Practice

Image(s) courtesy of Disney Image(s) courtesy of Disney



Spherical Projections in Practice
Image(s) courtesy of Disney



Spherical Projections in Practice
● Coco VR - Prototyping Stage

● Much more ambitious
● Walk + Teleport
● 2 layers, props and architecture

Image(s) courtesy of Disney/Pixar



Spherical Projections in Practice

float2((1 + atan2(InVector.x, - InVector.y) / 3.14159265) / 2, 
acos(InVector.z) / 3.14159265);



Spherical Projections in Practice
● Coco VR - Prototyping

● DISCOVERIES!
● Bypass UV’s entirely, do everything 

on the pixel shader
● What if? We could blend two 

projections together?
● 1st version compared the normal 

direction w/ location of projection
● 2nd version used occlusion w/ 

depth maps to more accurately 
choose projections



CocoVR - Art Pipeline
● Location Scouting
● We sent Pixar coordinates for the 360’s

● Geometry was final on their end, so 
we could work in tandem

● They could update lighting + renders 
continually.

● Assets with complicated silhouettes were 
converted into real time assets.

● Entire environments need to be retopo’d 
by hand (90% of the time)
● All we care about is silhouette

● Final polycounts can be VERY low

Image(s) courtesy of Disney/Pixar



CocoVR - Art Pipeline
● Final Shader does magical 

things:
● No separated layers 

necessary anymore
● Up to 9 projection points
● Blends them all together
● Even supports spec + basic 

reflections
● Projection Patching

Image(s) courtesy of Disney/Pixar



Spherical Multi-projection Shader



Algorithm Overview
● For each pixel

● Test visibility against a probe’s depth cubemap
● If probe is visible then run it through a scoring system

● Project color from the best probe 
● Can also add spec and reflections

● If no probes were found we can fallback to
● Flat color
● Use color from a globally specified probe
● Use vertex colors to select what probe to use



Visibility Testing
● Every probe contains a depth cubemap rendered from its position

● Rendered offline
● Unity lacks support for higher precision cubemap formats for storing 

depth
● Played around with different 32-bit float encoding functions

● Most I tried introduced too many instabilities in the values
● Inaccuracies got worse as you moved farther away from a probe

● Added a small bias to this that increased slightly with distance
● Never got around to testing a latlong texture storing depth values

● Could potentially solve some or all of the problems with the cubemaps



Probe Visibility Preview
● Probe visibility view mode to help probe placement

Image(s) courtesy of Disney/Pixar



Scoring System
● World space distance from probe to vertex

● Helps reduce blurry texels
● Angle of incidence

● Helps with projection aliasing
● Each probe contains a weight that determines its contribution to the 

final image
● Probe contribution can be configured through AABB volumes placed in 

level
● More control over the probes used to generate the final image



Angle of Incidence View Mode
Image(s) courtesy of Disney/Pixar



Generated UV View Mode
Image(s) courtesy of Disney/Pixar



Shaded View
Image(s) courtesy of Disney/Pixar



Local Cubemap Reflections
Image(s) courtesy of Disney/Pixar



Other Rendering Features
● Cascaded Shadow Maps
● Fog
● Parallax Occlusion Mapping
● GGX specular



When the Search Fails
● Global probe index to use if none are found

● Can be hit or miss with the results it produces
● Vertex color

● RGB can hold a flat color
● Works great for faraway geometry

● A can hold a index to probe to use



Additional Editor Tools
● Custom material inspector to handle various shader permutations based 

on the features supported
● Can greatly simplify the workflow for the artists

● Small tool to handle texture2D array data refresh through right-click 
context menu
● Uses meta file to keep track of what textures comprise the array
● Speeds up iteration time

● Texture2D array viewer since Unity has no way of visualizing the 
content of such an asset

● Batch generation of depth cubemaps



Conclusion
● Technique looks great
● Cheap!

● Most expensive was around 0.8 ms to render per eye
● Meant we could extend the technique with other cool stuff life 

reflections
● Can be memory intensive

● Used 8k textures for the quality we wanted
● Small geometry can be problematic as the depth cubemap didn’t have a 

high enough resolution
● Typically around 512


