QDC 2018

Journey to Mission: ISS MAGNOPUS

David Swift Head of Engineering

Derek Blume CG Supervisor

Luke Schloemer 3D Asset Lead

Chris Chavira Software Engineer

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018

What is Mission: ISS?

- Accurate interactive VR experience in the International Space Station
- Educational video content
- Fun Zero-G navigation!

Design Philosophy

- Design controls like we're making a game Constraints guide prototyping • Prototyping set final focus of experience • Make it feel as realistic as possible
 - 1 out of 1 astronaut agrees

Greyboxing Principles

- Already know metrics
 - \circ Door size
 - Narrowest gaps
 - \circ Scale
- So use this to determine player metrics

Visual Development of the Interior Balancing art, realism and performance.

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Goal

-identify key elements that define the space.

-structure the elements in a coherent way.

-don't tire out the player's eye.

-keep framerate in mind.

PERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Capture the spirit of the interior -Larger objects with simple shapes. -Object colors contrast with the background wall color

to make them more legible.

-Objects that seem to pop out of every corner of the environment...Wires!

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

() UBM

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018

- -Keep some areas thick with clutter, try to keep the clutter definable.
- -Create empty areas where the player can rest their eyes.
- -Module structures create compositional frames, lines that can help guide the players eye through the scene. -Make the wires thick, visible from a distance. Reduce wire braids down to single wires to help performance. -Blue sections break up the whites and greys, adding more visual interest.

#GDC18

VRDC VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Keep users oriented

-Structures at the end of each module are easily identified.

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018

Destiny Module just after installation

-Lighting is great for working astronauts, however...

-Whites overwhelm the visual composition.

-Very bright for the player.

Our Destiny Module -Warmer, more comfortable tones.

-Easier on the eyes of the player.

-More falloff on the lights, visible contours for the eyes to follow.

Visual Development of the Exterior

How to make the experience memorable.

-Dramatic lighting that feels appropriate to the environment.

-Highlights bring out extra details.

-Objects are still visible in the shadows.

Reference Images show a strong 1-point lighting scheme

Positives

VRDC

-Strong shadows bring more dimensionality (show where modules lie in relation to one another) to the station and add character to the otherwise flat areas.

Negatives

-Bright whites are too harsh for the vr player.

-Dark shadows obscure small details.

#GDC18

Find a lighting angle that makes the station interesting from as many angles as possible.

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Surfaces blow out in the reference images.

VRDC

and shadows.

Adjust light values to keep detail in highlights

VRDC @GDC 2018 VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Reflections

-Emphasize reflections from the earth and other parts of the station.

-Avoid reflecting the blackness of space.

Place the solar panel reflection probes close to the truss.

Single sided mesh allows us to place probes inside the modules.

Reference Image Conundrum

VRDC

-Reflections still feel like they are reflecting something interesting on the black starfield side.

UBM

Probe at Center

-Reflection feels dead on the starfield side.

Probe at Bottom -More life in the starfield reflection.

Reduce tiling along the truss

-scale and rotate uvs of the individual elements to avoid a tiled look.

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Post Process

We could afford: -Fast Approximate AA -Bloom

Too expensive: -Ambient Occlusion -Screen Space Reflections

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Hard Work

Building the ISS

Building the ISS

- Source Models
- Interior/Exterior posed different challenges
- Goal: Highest quality space station in VR

VRDC @GDC 2018

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

ISS Interior

- Cupola was the starting point
 Most complex module
 - Most complex module
- Final stats: 200k triangles, 12 materials, 30 textures

ISS Interior

• Final stats:

VRDC

- 1.8M Triangles
- 60 Materials
- 150 Textures
- 6 months w/ 1 artist
 - 4 months main details
 - 2 months extra details + lighting

ISS Exterior

- First attempt
 - Exterior started later in production than the Interior.
 - Highly tileable/procedural approach

• Stats: 930K Triangles, 25 Materials, 14 Textures. Colors are shared materials.

ISS Exterior

- Next Steps?
- Establish level of quality on a single asset
- Needed performance footprint
- Source mesh
 - 450K triangles
 - 15 materials
 - 5 textures

UBM

ISS EXTERIOR

- Isolate repeatable pieces
 - Cleanup
 - UV

VRDC

- Rebuild
- Bakes
- Final count:
 - 28K Triangles assembled
 - 1 Material
 - 3 Textures.

VIRTUAL REALITY DEVELOPERS CONFERENCE | MARCH 19-20, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

BASE MATERIAL PASS

ISS_GRUNGE SMART MATERIAL APPLIED

DIFFERENT FINAL TEXTURES; 1 = COLOR, 2 = ROUGHNESS, 3 = METALLIC, 4 = NORMAL, 5 = AMBIENT OCCLUSION

ISS Exterior

- UNITY TIME!
 - Import Process
 - Greyscale Metalness

Texture Packing!

Unity Standard Shader

VRDC

4k Base Color - RGB - 10.7MB 4k Metallic/Smoothness RGBA - 21.3MB 4k Normal Map - RGBnm - 21.3MB

Modified MSO Shader

4k Base Color - RGB - 10.7MB 4k Metallic/Smoothness/Occlusion **RGB - 10.7MB**

4k Normal Map - RGBnm - 21.3MB Total Texture Memory @ 4k: 42.7MB

4k Occlusion - RGB - 10.7MB

Total Texture Memory @ 4k: 64MB

DEFAULT STANDARD SHADER IN UNITY

M_QuestAirlock				\$,
Shader Standard M	so			
Rendering Mode	Opaque			¢
Main Maps				
🛐 o Albedo	— /			
o Metallic/Smoothness/	•			
Smoothness			8.0	
Source	Metallic Alpha			¢
🗾 🛛 Normal Map			0.5	
⊙ Height Map				
○ Emission	/		0	
Global Illumination	Realtime			÷
📃 o Detail Mask				
Tiling	X 1			
Offset	X 0			
Secondary Maps				
⊙ Detail Albedo x2				
O Normal Map				-
Tilina				-
Offset	XO	YO	_	
UV Set	UVO			•
Forward Rendering Options				
Specular Highlights	~			
Reflections	✓			

FINAL SHADER PARAMETERS OF MSO MATERIAL

STATS: 1.7M Triangles, 30 Materials, and 90 Textures

Locomotion

Zero G Mechanics

- Very first implementation was already fun.
- Also felt natural.

Locomotion Goals

- "Realistic" feeling zero-G movement.
- Minimize simulation sickness.

Thrusting

- Alternative to hand movement.
- Great for exterior.
- Momentum based.

Hands don't go through walls

- Originally wanted realistic hands with IK.
- Hands slide along surfaces.
- Needs very clean collision.
- Still needs failsafe.

Two-Handed Rotation

- Rotates world around you.
- Almost everyone likes it!
- Avoided one handed rotation.

Snap Rotation

- Need alternative to two handed Rotation.
- Snap 90°, 45°, 30°.
- Rotate around head.

Head Collision

VRDC

- Added to the immersion.
- Tracking space issues.
- Solution unique to space.

UBM

Head Collision

- Sudden stops are jarring.
- Bouncing less.
- Sliding felt correct.
- Dampening velocity.

"Body" Collision

- Floor Problem.
- Movement Problem.
- Same Problem for hands.

Tech Summary/Conclusion

- Designed like a game.
- Accurate as possible.
- Comfort vs realism.

Conclusions

- 4-and-a-bit Star Store Rating
- Median play-time 30+ minutes
- Emmy Nomination
- GearVR version released about a year later

Astronaut testing

Garrett Reisman and his son visit Magnopus to test Mission ISS.

Q&A

