
Real-Time Reflections
in
and Beyond

Martin Sobek
Lead Rendering Engineer

Martin Sobek has been passionate about making games since 1992.
Martin studied computer science at Masaryk University in Czech Rebublic
with a specialization in computer graphics. He joined Illusion Softworks
in 2007 and worked on 'Mafia II'. He then moved to Hangar 13 in
California in 2013 and led the rendering team toward a successful
release of Mafia III. Now he is lead rendering engineer at Hangar 13
Brno, Czech Republic.

Mafia III overview

Open world, 3rd person, action adventure

Story driven, yet not linear

Set in 1968 New Bordeaux

Released October 2016

PS4, Xbox One, Windows, Mac OS

Mafia III is running on custom engine, which is an evolution of engine
used in Mafia II.

Motivation
Existing solutions
Ray casting on GPU
Reflection rendering
Reflections on rough surfaces
Timings, Results, Conclusion
Future work

Agenda

With PBR, reflections are an essential part of material
shading

Having proper reflections is a major step towards
photorealism

Not happy with any of the existing solutions

Motivation

Example 1 – with reflections

Obvious case – reflection from wet road

Example 1 – without reflections

Doesn’t even look wet without reflections.

Example 2 – with reflections

Most of the surfaces are quite rough, reflections still play major role.

Example 2 – without reflections

Existing solutions
Screen-space tracing

PROS
Doesn’t require content authoring
Good performance
Low memory cost

CONS
Only captures what’s on screen
 Lots of missing information (especially for high roughness)

 Unstable with movement (camera or dynamic objects)

Existing solutions
Pre-filtered cube-map look-up

PROS
Simple to implement

Great performance

CONS
Floating reflections

Problems with transitions between CMs

Iteration issues (if pre-rendered)

Missing dynamic objects

Isotropic

To achieve anisotropy, we would need to pre-filter the CM with multiple
kernel configurations that would make it much less practical.

Combination of SSR + Pre-filtered cube-maps
PROS

Simple to implement

Good performance

CONS
Partially: Floating reflections

Partially: Missing dynamic objects

Isotropic

Problems with transitions between CMs

Development iteration issues (if pre-rendered, need to re-render every time scene changes)

Stability issues (with camera movement)

Existing solutions

Bad issues around main character in 3rd person games.

SSR + Parallax-corrected cube-maps (pre-filtered)
PROS

Good performance

No floating reflections

Better transitions between CMs

CONS
Only works well for environments with certain shapes

More content authoring (scene approximation)

Partially: missing dynamic objects

Isotropic

Iteration issues (if pre-rendered)

Existing solutions

Multiple variants exist. E.g.:

Kevin Bjorke: sphere approximation

Bartosz Czuba: box approximation

Seb Lagarde: convex approximation

Cone tracing
PROS

No floating reflections

Dynamic objects can be included

Robust

Doesn’t require authoring

CONS
Requires run-time scene voxelization (difficult to implement)

Huge memory requirements

High GPU cost (scene update, tracing)

Isotropic

Existing solutions

None of the existing solutions fulfilled all requirements:
Stability with camera movement

Good performance and memory cost

Working seamlessly in all environments (indoor, city, landscape)

Reasonable content authoring cost

Real-time update (scene changes)

Existing solutions summary

Problem #1
General GPU-friendly ray casting

Find ray intersection with scene

Achieve mirror reflections (roughness=0)

Problem #2
Proper BRDF on all materials

What rays to cast?

How to process the results

Problem breakdown

Ray casting on GPU
Mesh/BVH

Branching

Non-coherent memory accesses

How to compute shading?

Voxels
Memory heavy

Non-trivial implementation

Depth texture
GPU-friendly

Trivial implementation

Not perfect coverage of the space

Update on mesh/BVH: New API (DX12 DXR) and HW has been
announced that is supposed to address some of the issues.

Covering space with 2D projections

Cube-map covers space perfectly from a given POV
6 2D views

Add depth

Works well if ray start position is close to CM origin

Efficiency decreases with distance from origin

Tracing height-fields seems to be the right direction for nowadays GPUs.

We like the small implementation cost (we already have 2D rasterization
implemented), low memory footprint and good performance.

Cube-map placed in camera covers reflection on vast majority of the
pixels on the screen. Has been proven on a prototype.

But can’t render a cube-map every frame! Sparse updates (like 1 side
every frame) would result in reflections popping and latency.

Multiple cube-maps

Pick best CM for ray start position

Switch to a different CM when ray
enters “shadow region”

Use cube-map array

We’ve got 3 manually placed cube-maps on the right image.

Ray starts tracing the green CM, at some point gets to shadow region,
red CM takes over. Ray reaches area without any coverage (implausible
result) and blue CM takes over to finally find a hit.

Cube-map array: to be able to run single tracing pass.

The more complex the environment is, the less efficient the CM coverage
is. Would be terrible for fractals but works well for typical environment
that we live in.

Cube-maps placement
Hand-placed CMs

Indoors: 1 CM for each room/hallway
City: Crossroad and every about 50 m on straight roads
Landscapes: Sparsely placed CMs (approx. every 100x100 m)

Automatic backup CMs
Automatically placed CM in camera, if no hand-placed CM is

around
Mainly used during development

Manually placed CM is always better than the automatic backup probes.
It was used on open water areas for example.

Cube-map coverage issues
Manual placement: Need good tools
Dynamic objects: costly update  rely on SSR
Not all pixels are covered
Inconsistent resolution (depends on distance from
CM origin)
Thin objects (rails, poles, signs, …) interrupt rays

Thin objects create aforementioned shadow regions that interrupt ray
tracing.

Our cube-map set-up

8 active geometry CMs
1 sky CM
Resolution of each 512 px, full MIP chain
Can’t pre-render CMs offline

Dynamic time of day and weather

If you can pre-render, don’t need separate sky CM

CM array slightly larger to be able to prepare new CM.

Cube-map rendering
Pre-compute max view distance offline (for each side)

Only consider objects in the pre-computed CM range for rendering the
CM.

Cube-map rendering

Single CHull scene query for all sides
Use geometry shader to output to affected sides
Limited feature set

Use lower LODs
Only render static objects (and static lights)
No post-FX
No sky (sky is rendered into separate CM,
geometry cube-maps contain sky-flag in
alpha channel)

No specular, no reflections, diffuse only
(need some approximation for metallic)
No fog/volumetric effects
No transparent objects
No AA

We want to submit as few draw-calls as possible. Many static objects are
large (terrain, buildings) and intersect more than 1 cube-map view
frustum (end up in more sides). So we collect all objects (for all sides)
and then only test, which sides are affected (fill to CB from CPU). Submit
just 1 draw-call that outputs the object into multiple sides using
geometry shader.

We have learned that Geometry Shaders aren’t the most optimal way of
attacking multi-viewport rendering, however is supported on all our
platforms and is least intrusive from the shader combinations point of
view.

We are rendering simpler LODs – these don’t have many vertices, so in
the end this is not an issue and we will stick to this solution.

No specular in CMs: not only it’s an optimization but it also dramatically
reduces noise in the result – specular has high intensity and frequency.
Having specular baked in CMs isn’t correct either since specular is view
dependent – reflection in a mirror has different specular.

Cube-map updating

Sky CM

Update every few frames (clouds, ToD)

Geometry CMs

Update dynamic lighting regularly (round robin)

Cache G-Buffer and static lighting

Render new when better CM has been found

Because of dynamic time of day and moving clouds, we need to update
sky CM very often (several times per second). Sun is considered
dynamic light.

Active cube-maps selection

Might differ per project
We use 8 closest to the player, with 2 special cases

At least one outdoor CM
Penalty in vertical axis to separate floors

Possible improvements
Use bounding boxes (in/out, distance)
Use occlusion queries
Pre-compute best CM set for volumes

Indoors are typically more populated with CMs, so if player is standing in
front of indoor location, all 8 closest might be inside. Outdoor would
have no CM at all, so we always force at least one outdoor.

Reflection rendering

Algorithm overview

Down-sample G-Buffer, apply NDF

Trace screen, output distance

Trace cube-maps, output distance & index

Resolve to color

Upscale

G-Buffer down-sampling and jittering

Can’t afford tracing at full resolution
Trace at half resolution

Bilinear down-sample not recommended
Incorrect depth on edges

Lost detail in normal & roughness buffers

G-Buffer down-sampling and jittering
Detect depth discontinuities

If edge is detected, discard “minor samples”

Pick random sample (exploit temporal filter)
Jitter normal (apply NDF)
Output (all at half-res)

RT0: Depth
RT1: Jittered normal and roughness
RT2: Original normal and roughness

Random sample: we actually alternate pixels in 2x2 block

Screen-space tracing
Trace screen-space depth

Output: traveled distance, “finished” flag

Stencil mask for “finished” flag
Traveled distance: Stencil mask (white means finished):

Best cube-map selection – CPU
Generate 8 cube-map index chains

For each starting CM, estimate best 3 consecutive CMs
Based on distance only
Output: 8 4-item CM chains
Encoded to global CB

0 1 5 2

1 0 3 4

2 1 7 3

3 2 4 1

4 5 6 7

5 4 6 7

6 4 5 7

7 2 4 5

This is something to be improved. We currently only find 3 closets CMs
to each CM. It doesn’t even take visibility into account.

Best cube-map selection – GPU

Select best starting CM per pixel
Use stencil (unfinished pixels)

Start at SSR end position

Assign score to each of 8 active CMs

Output CM index with best score

Score per pixel is assigned based on:

- Visibility (is that pixel visible from CM origin?)

- Distance from CM origin

- Ray direction vs. originpoint vector

- CM fade value (when adding/removing CM)

Cube-map tracing

2 passes based on roughness (HQ/LQ)
Start with SSR end point, using best CM
If tracing fails, switch to next CM in chain and continue
If all CMs fail, use fallback
Output traveled distance and CM idx (where hit was
found)

Roughness > 0.1: 16 steps, 100 m, scale 1.17 – 1.25, 3 refine iterations

Roughness <= 0.1: 24 steps, 300 m, scale 1.18 – 1.22, 4 refine iterations

Tracing fallback solution in Mafia III

Black reflection
Mostly OK
Really bad on very reflective surfaces (water, metals)

Simple lookup of best CM
Very different results when best CM was changing
Eliminate popping using temporal filter

Current tracing fallback solution
“Cocoon” cube-map depth MIP

Use 1 MIP (e.g. MIP#4 – 32x32) to store very smooth approximation of space

Large blur kernel with MAX filter ignoring sky

Pushing thin geometry away

Removing all edges

Caps windows

Tracing never fails

Preserves space but removes details

Similar idea to parallax corrected cube-maps, automatically generated

Cocoon MIP example
Original depth: Cocoon depth MIP:

Cocoon MIP example
Full tracing with fallback: Cocoon MIP tracing only (fallback only):

Note how the stairway, columns and flower-pot is pushed to the
background but windows are still at their correct location.

Compare to simple look-up, where the windows would be on wrong
place.

Generating cocoon MIP
Top-down pass

Build a MIP chain using MAX filter ignoring sky
If all (4) pixels are sky, result is sky, otherwise sky pixels are discarded

Generating cocoon MIP
Bottom-up pass

Lower MIPs (lower than cocoon)
Replace sky pixels with weighted MAX of neighborhood from lower MIP

Cocoon MIP
Replace all pixels with weighted MAX of neighborhood samples from lower
MIP

Upper MIPs (higher than cocoon)
Replace sky pixels with cocoon MIP sample

Caps windows/sky – also works as an optimization for rays ending up at
sky. Instead of burning all steps towards sky, ray hits the sky proxy
sooner.

Weighted MAX:

float pivotSample = SAMPLE_4D_LOD(srcTex, srcSampler, float4(dir, srcArrayIdx), srcMip).r;

float depth= 0;

for each sample

{

float smp = SAMPLE_4D_LOD(srcTex, srcSampler, float4(vec, srcArrayIdx), srcMip).r;

float weight = pow(dot(vec, dir), specPow);

float currVal = pivotSample + (smp - pivotSample) * weight;

depth = max(depth, currVal);

}

Cube-map tracing optimizations

Use lower depth MIPs for higher roughness

Pre-compute internal volume (AABB/sphere/convex
hull)

Run as async compute shader (lose stencil)

Color resolve passes – inputs
From cube-map renderer

Geometry color cube-map array
Sky cube-map

From previous reflection passes (half-res)
Linear depth
Jittered normals
Stencil mask for SSR
Traveled distance (combined SSR & CM)
CM idx (for non-SSR finished pixels)

From shading pass
Diffuse shading buffer (you don’t want specular here)

When tracing is finished (got traveled distance, stencil mask, possibly
CM index per pixel), it can be resolved to color using the mentioned
inputs.

Color resolve passes

Half-res passes
Resolve SSR color
Resolve CM color

Full-res passes
Upscale half-res resolved buffer, generate low-roughness stencil mask
Resolve SSR on low-roughness pixels
Resolve CM on low-roughness pixels

Color resolve shaders
Compute ray end position:

rayDir = -reflect(viewVector, surfaceJitteredNormal)
endPos = worldPos + rayDir * traveledDistance

Fetch sky CM
SSR only

Project end position to screen space
Fetch diffuse shading buffer (including sky)

CM only
Fetch cmIdx
endPos -= cmCenter[cmIdx]
Fetch color CM[cmIdx]
color += sky color * (1 – color.a)

Compute fog blend factor
Lerp(color, sky color, fog factor)

A little hack to add fog to reflections (fog is included neither in CM nor is
SS diffuse shading buffer): because we have volumetric fog, which is
non-trivial to compute for other rays than from camera, we simply fade
towards sky color – which in fact is fog integrated over long distance.

Upscale
Inputs:

Half-res color

Half-res unjittered normals

Half-res depth

Full-res normals

Full-res depth

Outputs:
Full-res color (high roughness pixels)

Stencil mask

Picks 1 sample from half-res color that best matches full-res normal & depth

Reflections on rough surfaces

Possible approaches
Using pre-filtered MIPs

Visible edges
Isotropic

Reference: Pre-filtered MIPs: Edges explanation:

Check out the edge artifact and missing elongation on the left image.

Diagram shows, how two neighbor pixels rays end up in a completely
different location in the CM, the results are vastly different. CM is pre-
filtered from the point of view of its origin, not from the point of view of
reflecting pixel.

Possible approaches
Screen-space blur

Leaking & losing detail
Stability issues
Isotropic

Reference: Screen-space blur:

On rough surfaces, the kernel is really large – would be very costly for
real-time. That’s why MIPs are used, so the blur can’t be
depth/normal/roughness aware. Note the big loss of normal map detail
but also how it leaks across edges.

Possible approaches
Importance sampling

Noise vs. performance
Need hundreds of samples to get noise-free result

1: 8: 32: 128:

We are shooting 1, 8, 32, 128 rays for every 4 pixels (still tracing at half
resolution).

Mafia III approach

Combination of screen-space blur and importance sampling
50 % SS blur
50 % importance sampling
Trade-off between leaking and noise

Large blur kernel (up to 25 % of screen)
Need to use MIPs
Can’t be depth-aware

Compute approximate reflection cone angle.

Halve the angle and jitter normal within this cone.

Output the ray traveled distance along with the reflection color.

Build color MIP chain.

For each pixel, estimate the MIP level to be used, based on traveled
distance.

Current approach

Mix of all 3 + some tricks
50 % importance sampling
50 % using pre-filtered MIPs (both SSR and CM)
5-sample BRDF-weighted screen-space blur
Modified sample distribution
Temporal filter

Math is based on Blinn-Phong (not converted to GGX yet)

Mafia III rough reflection approach

Note the leaking and loss of normal map detail.

Current rough reflection approach

Importance sampling vs. pre-filtering – 100:0

Compare several mixtures of importance sampling vs. pre-filtering.

100 % importance sampling is our reference.

Importance sampling vs. pre-filtering – 75:25

Importance sampling vs. pre-filtering – 50:50

Importance sampling vs. pre-filtering – 25:75

- Lost elongation

- Visible Edges

- Less correct – some surfaces look a lot different

Combining importance sampling
with pre-filtering
NDF produces vectors with angle [0, π/2) from normal

Find angle, where probability drops below threshold (in our case 0.1)
Ignore all vector beyond this angle

Split angle among NDF and pre-filering
Modify NDF to produce vectors [0, angle/2)

Compute cone base radius and MIP level for angle/2

We lose a bit of the tail by ignoring all vectors, where
“cos(angle)^specPow < 0.1” but on the other hand that helps reducing
the noise quite a bit.

Combining importance sampling
with pre-filtering
Example:

roughness = 0.5  specPow = 30

angle = acos(threshold 1/specPow) = 0.387

Changing importance sampling vs. pre-filtering ratio:
More importance sampling  more noise

More pre-filtering  less anisotropy

NDF MIP

Blue graph is target NDF. Red line is threshold (0.1). We ignore regions,
where blue is below red. Compute corresponding (cone) angle. Half of
the cone is delivered using NDF (green), second half using pre-filtering
(yellow).

Pre-filtering cube-maps

We do it at run-time  needs to be fast

Build regular MIP chain

Choose texel scale (in our case 3.5x)

Pre-filter individual MIPs

Simple English: once we know our cone angle, we find cube-map MIP,
where cone base radius is texelScale texels (3.5 texels).

Setting texel scale to 1 would cause pre-filtering of only 1 texel -> no
pre-filtering at all.

Setting texel scale too high would increase the cost of pre-filtering (you
need to add more taps) but also force sampling of higher MIP levels,
which will cost additional performance in resolve pass.

When playing with this, cross-check with reference (1000+ taps from
upper MIPs or base level).

Found more advanced run-time pre-filtering later – want to have a look
at that:

http://research.nvidia.com/publication/real-time-global-illumination-
using-precomputed-light-field-probes

Pre-filtering cube-maps
MIP pre-filtering (in our case 29 taps):

numPixels = 2mipIdx * texelScale
angle = atan(numPixels / cmSize / 2)
specPow = logcos(angle) threshold

Computing MIP level in resolve shader:
angle = AngleFromSpecPow(specPow) // see previous slides
radius = tan(angle) * traveledDist
cmRadius = radius / length(hitPosCM) / texelScale
numPixels = max(1, cmSize / 2 * cmRadius)
mipLevel = log2(numPixels)

Modified NDF

Input: 2 random values [0, 1), uniform distribution
Default Phong distribution:

θ = acos(rnd 1/(specPow+1))
φ = 2 * π * rnd2

Half-angle:
halfAngle = 0.5 * AngleFromSpecPow(specPow)

minRnd = cos(halfAngle)specPow + 1

θ = acos((minRnd + (1-minRnd)*rnd) 1/(specPow+1))

We don’t care about the PHI angle for now but want to modify THETA, to
get only angle/2 instead of angle. We inverse the function, find minimum
random value and then scale the input random value to be in range
[minRnd,1). Don’t clamp the value, it needs to be linear operation to
preserver the relative probabilities.

Combined BRDF comparison
Reference = cos(angle) specPow

Result = ∫-h
h cos(clamp(x + angle, -π/2, π/2)) specPow * cos(x) halfAngSpecPow dx

“Result” is what you get, if you modify NDF to half angle and sample MIP
corresponding to half-angle.

h – half-angle

halfAngSpecPow – specular power corresponging to half-angle

angle = acos(threshold 1/specPow)

halfAngSpecPow = logcos(0.5 * angle) threshold

It’s not 100 % the same but it’s pretty close

Modified NDF
Concentrate as much variance as possible to neighborhood

The best pattern we found was a “+” pattern – assign each pixel a value of 0-4

Every pixel has all 5 “classes” around that it can sample in blur pass

Map class ID to ray direction
φ = 2 * π * (0.2 * rnd2 + GetSSJitterPlus(ssPos, frameCounter))

Shuffle temporarily

Pixel class ID from screen-space position and frame ID:

SS pixels: Hemisphere slices:

2nd modification of NDF is to concentrate color variance to a small
neighborhood, to be able to blur that in SS blur pass and remove the
noise. The assumption is that rays going in similar direction are more
likely to result in similar color and vice versa. Focus direction variance to
neighbor pixels. We found that shifting “+” pattern works pretty well for
this purpose.

Blue noise might be a good alternative. Will try that later and compare
the results.

Neighbor sample reuse

Sample depth and normal of 4 neighbors
Same pattern as pixel classification
Use unjittered normals

Compute weighted average
Center tap: 1
Depth/roughness discontinuity: 0
Evaluate BRDF otherwise

If all the pixels have the same roughness and normal (flat, rough
surface), you can look at it as multiple (temporal) samples. Just average
them (assuming there is no discontinuity).

If roughness is very different, we haven’t found a way, how to combine
these samples.

With changing normals, the BRDF using unjittered normal seems to be a
good metric.

For very small roughness, we would have to consider also view vector
divergence between neighbor pixels. Instead of that (extra cycles), we
simply fade this blur out.

Temporal filter
We use up to 15:1 previous frame blend ratio
Reflections view dependent

Compute view vector divergence (previous vs. current frame)
Compute divergence threshold based on roughness

Mirror reflections: zero divergence threshold but no issues with noise!

Rough reflections: high divergence threshold but not so much view dependency!

Invisible in last frame (or discarded due to divergence)
Evaluate extra 4 samples in centers of neighbor “+” elements
Effectively up to 25 samples (5x5)

We use variance clamping for mirror reflections (roughness = 0) and we
gradually increase the clamping window with growing roughness.
Variance clamping is fully disabled when roughness > 0.1.

Extra 4 samples: look at it as separable blur. But instead of 2-pass
horizontal/vertical, we do “+” and tilted “x” that is sampling the
neighbor “+” centers.

Step-by-step recap – tracing

Down-sample G-Buffer depth, normal (add jitter), roughness to half-res buffers

Stencil mask based on roughness (different tracing quality for high/low roughness)

2-pass (high/low roughness) SSR trace outputting traveled distance and FIN flag

Stencil mask for SSR finished pixels

Best CM select

2-pass (high/low roughness) CM trace outputting traveled distance and CM idx

Step-by-step recap – post-tracing

Resolve to color (SSR + CM)

Neighbor sample reuse (screen-space blur)

Temporal filter for high roughness

Depth & normal aware upscale to full res

Resolve low roughness at full res (using half res traveled distance)

Temporal filter for low roughness (with variance clamping)

Timings (1080p @ PS4)

Down-sample G-Buffer 0.25

SSR trace 0.55

Select best starting CM 0.25

CM trace 0.9

Half-res resolve 0.35

SSR 0.1

CM 0.25

Half-res blur 0.17

Half-res temporal 0.1

Upscale 0.41

Resolve 0.22

Temporal 0.1

Sum 3.3 ms

Captured before porting to async CS. Slightly above budget of 3.0 ms.

Results

All the screenshots have been captured using Mafia III assets and the
new tech.

Note that the new tech has NOT been shipped in Mafia III.

ToDo: pic from game

Conclusion

Stable reflections when camera/dynamic objects move
Reasonable amount of manual work
Little pre-compute (max view distance, inner volume)
Real-time on nowadays gaming hardware
Scalable in terms of:

Lighting changes: re-light cube-maps

Geometry changes (destruction): re-render affected cube-maps

Scene complexity: adjust amount of cube-maps

Future work

Convert to GGX
Temporal re-projection using reflection depth
Improve upscaling pass
Pre-compute optimal starting CM and chain
Investigate automatic probe placement
Investigate better handling of off-screen dynamic objects

Thanks

Petr Smílek
First implementation

Naty Hoffman
Consulting

Rinaldo Tjan
Testing and feedbacking

Tianli Bi
Optimizations

Jiří Štempin
Code support

Eva Tajovská
Help with presentation

Jan Marvánek
Help with presentation

Radim Doleček
Help with presentation

Petr Záveský
Help with presentation

Sebastien Lagarde
Proof review

References
Umenhoffer, Patow, Szirmay-Kalos. 2007. GPU Gems 3 – Chapter 17. Robust Multiple Specular Reflections and Refractions

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch17.html

Stachowiak. SIGGRAPH2015. Stochastic Screen-Space Reflections
http://advances.realtimerendering.com/s2015/Stochastic%20Screen-Space%20Reflections.pptx

Robinson, Shirley. 2009. Image-Space Gathering
http://www.nvidia.com/object/nvidia_research_pub_015.html

Valient. GDC2014. Taking Killzone Shadow Fall Image Quality into the Next Generation
https://www.guerrilla-games.com/read/taking-killzone-shadow-fall-image-quality-into-the-next-generation-1

Lagarde. SIGGRAPH2012. Parallax Corrected Cube-Maps
https://seblagarde.files.wordpress.com/2012/08/parallax_corrected_cubemap-siggraph2012.pdf

Bjorke. 2004. GPU Gems – Chapter 19. Image-Based Lighting
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch19.html

Czuba. 2011. Box Projected Cube Environment Mapping
https://blenderartists.org/forum/archive/index.php/t-209688.html

Manson, Sloan. 2016. Fast Filtering of Reflection Probes
https://www.ppsloan.org/publications/ggx_filtering.pdf

McGuire, Mara, Nowrouzezahrai, Luebke. 2017. Real-Time Global Illumination using Precomputed Light Field Probes
http://research.nvidia.com/publication/real-time-global-illumination-using-precomputed-light-field-probes

.....questions?

Martin Sobek
martin.sobek@2kgames.com
https://hangar13games.com/

Bonus slides

Cube-map tracing pseudo-code
stepScale = Rand(stepScaleMin, stepScaleMax)
currStep = ComputeInitialStep(maxRayLength, stepScale)
bestCMIdx = FetchBestCMIdx
currCMIdx = bestCMIdx
usedCMs = 0
currPos -= cmCenter[currCMIdx] // currPos is always in CM space
for each step

currPos += currStep
cmDepth = FetchCMDepth(bilinear, currPos)
cmDepthPoint = FetchCMDepth(point, currPos)
cmDepth = clamp(cmDepth, cmDepthPoint – threshold, cmDepthPont + threshold)
cmDist = length(currPos) // Note: sqrt can be avoided
if cmDist > AddBias(cmDepth)

if ComputeMassDepth(currPos, currStep) + cmDepth > cmDist
// Hit has been found
numRefineSteps++
if numRefineSteps >= maxRefineSteps

success = true
break

else
currPos -= currStep
currStep *= 0.5

else

else
// Entered shadow region  need to switch CM
usedCMs++
if usedCMs >= maxTracedCMs

// Tracing failed, need fallback
success = false
Break

else
currPos += cmCenter[currCMIdx]
currCMIdx = cmOrder[bestCMIdx][usedCMs]
currPos -= cmCenter[currCMIdx]

currStep *= stepScale
if success

Secant refine
else

Use fallback solution

Output:
RT0: length(currPos + cmCenter[currCMIdx] – rayStartPos)
RT1: currCMIdx

CM depth texture contains distance from CM origin instead of linear
depth

- Simpler math

- Eliminate pre-filtering issues on CM edges

