
8 Frames in 16ms

Michael Stallone

Lead Software Engineer – Engine

NetherRealm Studios

mstallone@netherrealm.com

Rollback Networking in Mortal Kombat and Injustice

The how, why, and lessons learned from
switching our network model from lockstep to
rollback in a patch.

What is this talk about?

Staffing

• 4-12 concurrent engineers for 9 months
• Roughly 7-8 man years for the initial release
• Ongoing support is part time work for ~6 engineers

Terminology

• RTT Round trip time. Time a packet takes to travel from Client A > Client B > Client A

• Network Latency One way packet travel time

• Netpause Game pauses due to not receiving data from remote client for too long

• QoS Quality of Service. Measurement of connection quality

Terminology

• Input Latency Injected delay between a button press and engine response

• Confirm frame Most recent frame with input from all players

• Desync Clients disagree about game state, leads to a disconnect

• Dead Reckoning Networking model. Uses projections instead of resimulation

Basics

• Hard 60hz 1v1 fighting game
• Peer to Peer
• A network packet is sent once per frame
• Standard networking tricks to hide packet loss

Determinism

The vast majority of our game loop is bit-for-bit
deterministic.

We “fencepost” many values at various points in
the tick, and any divergence causes a desync.

This is the foundation that everything is built on.

The Problem

Our online gameplay suffered from inconsistent
(and high) input latency.

The players were not happy.

Latency Diagram

Hardware OS
Input

Latency
Game
Sim

CPU
Render

GPU
Render

Lockstep

Only send gamepad data

The game will not proceed until it has input from
the remote player for the current frame

Input is delayed by enough frames to cover the
network latency

1 2 3

1 2 3

Player 1

Player 2

Current Frame
Future Frames

X 8Pad Input

DO THIS
SLIDE

DO THIS
SLIDE

Player 1 Player 2

Lockstep

The Present

Mortal Kombat X and Injustice 2 have 3 frames of
input latency and support up to 10 frames
(333ms) of network latency before pausing the
game.

The online experience is much improved and the
players are happy.

Latency Curve

Rollback

Only send gamepad data

Game proceeds without remote input

When remote input is received, rollback and
simulate forward

1 2 3

1 2 3

Current Frame
Future Frames

X 4Pad Input

DO THIS
SLIDE

DO THIS
SLIDE

Player 1 Player 2

4 5 6

Player 1

Player 2

Rollback

Rollback Lockstep

Simple X

Visually Smooth X

Performant X

Robust X X

Low Bandwidth X X

Responsive X

Single Frame Latency X

What did we do first?

• First goal was to get an idle character rolling back

• Turn off almost everything

• Serialization (Saving/Restoring previous state)

• Debug mode that constantly rolled back (SetRollbackFrames 7)

Tick Timeline (when rolling back)

Input &
Online Restore 0 1 2 3 4 5 6 “Real” Tick

Simulated Frames

Restore to
previous state

Render

Serialization: Save

Rollback framework:

• Ring buffer (sized to rollback window)

• Object serialization interface

• Contains entries for object creation/destruction

• Only save mutable data

• Not delta based

Serialization: Restore

• Parallel serialization

• Cannot use shared_ptr

• Simple load balancing and priority scheme

• Large perf win (2.7ms > 1.3ms for double the work)

• Waking threads is a bit slow

• Single threaded post-serialization fixup

• Can coordinate with non-rollback systems

• Bulk-serialization and immutable data are hugely preferred

Object lifetime

Deferred Deletion

• Objects remain alive until their
time of death is outside the
rollback window

• Generally easier

• Code in destructors is dangerous

• Use handles

• Usually more performant

Delete and Recreate

• Delete objects as normal and create
them again if needed

• This is the default

• Slow (unless reusing objects)

• Increased serialization

• Follows “normal” construction and
destruction patterns

● Avoid creating the same object using “Re-Creatables”

● Used per type hashing to detect when an object was “identical”

● Sounds & particles were recreatable

● Can be nondeterministic

● Nondeterministic simulation means object reuse was mandatory

● Avoids wasteful creation

● Visual/Audio “correctness” without full serialization burden

Recreatables

● Fiber based proprietary gameplay script

● Fiber stack unwinding

● Fiber stack serialization

● Objects on the stack that require destructors can be a problem

● We registered these objects with another system for cleanup

What about gameplay script?

● When rollbacks occur, there can be a visual pop

● The extent of divergence varies wildly

● Mostly minor

● Avoid rolling back large visual changes

Rollback Artifacts

How was performance?
● Bad. Real bad.

● Before rollbacks, we idled at 9-10ms on the CPU

● After initial rollback support, we idled at 30+ms

● Headroom due to console generation jump … GONE!

● Tons of free cores

Performance Tools

● Sony/Microsoft perf tools

● Job Graph visualizer (task graph)

● Rollback loop (SUPER PAUSE!)

● PET Profiler

● Performance bots

Tick Timeline

Input &
Online Restore 0 1 2

13ms

3 4 5 6 “Real” Tick

Gameplay Save
Engine

7 frame rollback, shipped Injustice 2

(idle)

Tick Timeline

Input &
Online Restore 0 1 2

21ms

3 4 5 6 “Real” Tick

high thread contention

7 frame rollback, shipped Injustice 2

(Green Arrow spike frame)

Spike due to:
• Mesh spawning
• Particle spawning
• Particle attachment
• Extra gameplay procs

Spike can persist for 8 frames!

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Fixed cost

Single threaded

Larger % of frame Similar duration

Tick Timeline

Input &
Online Restore 0 1 2 3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Confirmed Frame

32ms

Tick Timeline

Input &
Online Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

Gameplay Save

Engine

7 frame rollback, Mortal Kombat X

(idle)

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

Turn off everything cool

• Physics/Cloth
• Raycasts that don’t effect gameplay
• IK
• Particle effects
• Online
• Desync detection

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

Easy performance wins

• Why are we strcmping?

• Don’t do that 8 times

• Controller polling

• Garbage collection

• Opt out of system/object updates during simulation

• Death by a thousand cuts

• Dynamic memory allocs

• Pointer chasing

• Walking sparse lists

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

More difficult performance wins

• Promotable re-simulation behavior

• Aggressive parallelization

• Graph optimizations

• Asynchronous UI/Audio ticking
• Automatic emitter parallelization
• Animation pre-sampling
• Simplify common graphs

• Special case complex cases
• Change graph types JIT
• Remove false dependencies
• More job priority levels

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

You’re only as fast as the critical path

Early Graph

Shipping Graph

~6ms

~3ms for a LOT more work!

Job Graph – Full (~2.0ms)

Job Graph – Sim (~0.5ms)

● Thread contention is real

● Manage thread priorities and affinities

● Don’t over-subscribe threads

● Drop thread priority for low priority or latency tolerant work

● Careful of priority inversion and starvation!

● Threading primitives can cost more than they are worth

● Useful migration pattern

● Use Move semantics to avoid unnecessary atomic operations

● E.g. Handle copying

So… about that threading

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

Do you have to save 8 times?

● KEY INSIGHT! You only need to save the confirmed frame!

● Large optimization for the worst case

● Makes average case slower (rollback further)

Tick Timeline

Restore 0 1 2

32ms

3 4 5 6 “Real” Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

Tick Timeline

Restore 0 1 2

12ms

3 4 5 6
“Real”
Tick

7 frame rollback, Mortal Kombat X

(idle)

Gameplay

Save/Restore

Engine

Particle Performance

● Particles were special

● Naïve approaches WAY too expensive

● Particle systems were the largest cause of performance spikes

● Heavy caching

● Deferred async initialization of particle systems

● Automatic emitter parallelization

Particle Resim Modes

● RESIM_ALWAYS – N simulations, 1 serialization

● Simulate this particle every frame

● RESIM_NEVER – 1 simulation, 1 serialization

● Simulate on the render frame

● RESIM_PREDICTIVE – 2 simulations, 1 serialization

● Simulate on the confirm and the render frame

● RESIM_NOT_TRACKED – 1 simulation, 0 serializations

● Simulate on the render frame

Predictive Particle Cache

● Predictive ticking/serialization

● May cause visual discontinuities

● Visual defects mitigated with custom particle state cache

● Hashed each frame (not just on creation)

● If particle simulation inputs match cache entry, use cache

● This was EXTREMELY effective

● This is a good template for areas that do not have to be perfect

Checking our work

● QA told us the game was playing GREAT

● Had been focused on SetRollbackFrames 7

● We were still bogging and net-pausing in our worst cases

● The net-pauses felt MUCH worse than bogging

● Enter Frame Lengthening!

16.6ms

Frame Lengthening

0 1 2 3 4 5 6 7 8 9

166ms

0 1 2 3 4 5 6 7 8 9

200ms20.0ms

Beta

● Run a beta!

● ~20,000 users

● Very positive public response

● 95% of the players rated it as “as good or better”

● Solidified our performance and network targets

Curveball

● First beta telemetry demonstrated unexpected results

● Most matches ended up constantly rolling back the maximum

● Caused by one player getting ahead of the other player

● Effectively a performance feedback loop

● Players loved it anyway!

● Solved by artificially slowing down the player who was ahead

● Re-used the Frame Lengthening tech

Fine Tuning

● Analyzed our rollback counts

● Used “speculative saves” to reduce rollbacks

● You don’t have to save more than once, but maybe you should…

Speculative saves (spec saves)

● Save the confirmed frame (mandatory)

● Save after the simulation mid point (time permitting)

● Bias this save closer to the confirmed frame

● Save at the end of the frame (time permitting)

● Thresholds are tweakable without patching

● Spec saves reduced total rollback count by 30%

What about all the desyncs?

● Not running procedural systems during simulation caused desyncs

● Luckily, our tools improved to compensate!

● Offline desync detection

● Remote input capture with network delays

● Allows the match to be replayed

● Allows breadcrumbs to be added after the fact

● Invaluable

● Final desync rate less than 0.1%

Desync Log

Desync tools

● General desync detection and logging

● Replay files

● DesyncUtil

● NRSSoak

Low-Level Lessons Learned

● Limit mutable state

● Prefer handles over pointers where performance allows

● Avoid shared ownership of mutable resources

● Avoid work in constructors/destructors

● Lean on memcopies/buffer swaps instead of dynamic fixup

High-Level Lessons Learned

● Design game systems to drive visual state, not depend on it

● Design systems to update with variable time steps

● Parametrically is even better

● Everyone should work with debug rollback systems enabled

● Defer processing until after the rollback window if reasonable

● Bog is no longer a function of a single frame

Future work

● Multithread gameplay script

● Extend state based serialization

● Simplify particle serialization/simulation (parametric?)

● Game state separation from the visual state

● Add rollback support for more systems

The how, why, and lessons learned from
switching our network model from lockstep to
rollback in a patch.

Questions?

Mike Stallone

mstallone@netherrealm.com

is hiring

