
Shading of Spellsouls:

Achieving AAA Quality on Mobile

Srdja Stetic-Kozic
Tech Lead

Nordeus

About Nordeus

Spellsouls

● AAA experience on mobile

● Wide range of devices

Challenges

● PBR Shading

● VFX Shading

● Skinning

● Optimizing to 60 FPS

PBR

● Realistic look, different lighting conditions

● Standard GGX approach is expensive

● Normalized Blinn-Phong

Material parameters texture

● Roughness - standard

● Metalness - reflection color

● Reflectivity - environment reflection

Normalized Blinn-Phong

𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑃𝑜𝑤𝑒𝑟 = (512, 1 − 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠)

1.04 − 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ∗ (𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑃𝑜𝑤𝑒𝑟 + 8)

8
∗ (𝑁 ⋅ 𝐻) 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑃𝑜𝑤𝑒𝑟

Diffuse Environment light Specular &

rim lighting

Linear color space

● Necessary for PBR

● Only 50% of devices support it

Gamma = 2.2 Gamma = 1

Linear color space

● Went with Gamma = 2.0

● On fetch – correctedColor = color * color

● Shader correction – correctedColor = pow(color, 1/2.2)

Linear color space

Additional lights

● 4 point lights

● Per object lights?

● Forward+?

Forward+?

● Spotty compute shader support

● Already GPU bound

● Try to simplify?

● No depth pre-pass

● CPU light culling

● 64x64 pixel tiles

● Approximate light area

with spheres

Forward+?

Bounding circle

● Can use when perspective

is not strong

● Project assuming camera is

ortographic and increase radius

for safety

● Strong perspective? – project

into an AABB

Shadows

Dynamic shadows for moving objects

Static shadows for the environment

● Dynamic shadowmap

● Hardware 4-tap PCF

Dynamic

shadows

Static

shadows

Lightmap Shadowmap

Combining shadows

• Combining is done

when rendering the floor

• Both lightmap color and

dynamic shadow color

are evaluated for every

pixel

Combining shadows

𝑐𝑜𝑙𝑜𝑟 = 𝑎𝑙𝑏𝑒𝑑𝑜. 𝑟𝑔𝑏 ∗ 𝑙𝑖𝑔ℎ𝑡𝑚𝑎𝑝. 𝑟𝑔𝑏
𝑐𝑜𝑙𝑜𝑟 = 𝑐𝑜𝑙𝑜𝑟 ∗ 𝑙𝑒𝑟𝑝(𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑙𝑜𝑟, 𝑠ℎ𝑎𝑑𝑜𝑤𝐶𝑜𝑙𝑜𝑟, 𝑙𝑖𝑔ℎ𝑡𝑚𝑎𝑝. 𝑎 ∗ min(𝑁 ⋅ 𝐿, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆ℎ𝑎𝑑𝑜𝑤)

VFX

VFX

● No postprocessing

● Particle systems are expensive

● Spritesheets!

Motion Vectors

Spritesheet - Low FPS

Motion Vectors

Red & Green channels

UV coordinates for next pixel to read

Blue channel

Scale factor for Red and Green channels

norde.us/vfxmv

1. Read current frame pixel and

motion vectors value from same

UV coordinates

2. Determine UV coordinates to

read from next frame using

motion vectors

3. Interpolate between current pixel and the

next frame’s one

Motion Vectors

Skinning

• CPU skinning was taking

2 full cores

• Uploading meshes to GPU

every frame was killing

performance

Endgame scenario with 40 units

GPU Skinning

Requirements:

• No GPU mesh uploads

• Supports instancing

• Fast

Texture Based Matrix-palette GPU Skinning

• Sample bone TRS at regular

intervals

• Bake bone TRS into textures

• 3x4 floats – 3 textures needed

• Per Instance data – 1 float,

U coordinate

• How to interpolate?

Texture Based Matrix-palette GPU Skinning

1. Read two keyframes

2. Reconstruct matrices

3. Interpolate

● 6 texture reads per

bone influence!

Texture Based Matrix-palette GPU Skinning

• Problems to solve:

• 6 texture reads

• 3 textures

• Interpolation math

Texture Based Dual Quaternion GPU Skinning

• Dual quaternions! - norde.us/dualq

• 2 textures – 3rd scaling texture optional

• Bilinear filtering

• Looks good with low sampling rate – 15FPS for us

• Blending animations? – Double texture reads

Performance & optimization

We optimize for:

● Framerate

● Heating

● Battery drain

Graphics Profilers

Good for fast

shader iteration

Shader instructions

• Never use fixed

precision

• Convert between

precisions sparingly

• Watch out for No-ops

No-ops

float4x4 sum = (boneMatrices[index0] * weight0) + (boneMatrices[index1] * weight1);

float4x4 matrix0 = boneMatrices[index0];

float4x4 matrix1 = boneMatrices[index1];

float4x4 sum = (matrix0 * weight0) + (matrix1 * weight1);

180 No-ops20% Faster
ALU here

250 No-ops

Thermal throttling

20

25

30

35

40

45

50

55

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

FP
S

Minutes

Samsung Galaxy S8 (G955F)

Sony Xperia Z5 (E6653)

iPhone 6s Plus

Samsung Galaxy S7 (G930U)

Thermal throttling

Thermal throttling

1. Wait until the device goes

into stable state (25FPS)

2. Determine target framerate –

in this case 30FPS

3. Set graphical quality so FPS is

30% above the target – 40FPS

4. Cap framerate to target – 30FPS

Thermal throttling

• Benefits:

➢ We are not using all of the

computational resources of the

device

➢ Amortizes frametime spikes

• Quality settings

determined per GPU

Performance tracking

• Analytics tracking:

➢ Average FPS

➢ Battery drain

• Battery drain is correlated with heating

• New settings distributed on every game

start from our server

Recap

● Specialize your techniques

● It’s worth it to go old-school

● Be mindful of heating

Questions?
srdjas@nordeus.com

Thank You!

