GDC

Shading of Spellsouls: Achieving AAA Quality on Mobile

Srdja Stetic-Kozic Tech Lead Nordeus

About Nordeus

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Spellsouls

AAA experience on mobile • Wide range of devices

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 E DEVELOPERS CONFERENCE

. .

GD

GD

Challenges

PBR Shading VFX Shading Skinning Optimizing to 60 FPS

PBR

Realistic look, different lighting conditions Standard GGX approach is expensive Normalized Blinn-Phong

Material parameters texture

Roughness - standard Metalness - reflection color **Reflectivity - environment reflection**

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018

Normalized Blinn-Phong

specularPower = (512, 1 - roughness)

$(1.04 - roughness) * (specularPower + 8) * (N \cdot H) ^{specularPower}$

8

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 EVELOPERS CONFERENCE

Diffuse

Environment light

Specular & rim lighting

Linear color space

Necessary for PBR

GD(

• Only 50% of devices support it

Linear color space

Gamma = 2.2

GDC

Gamma = 1

Linear color space

- Went with Gamma = 2.0
- On fetch correctedColor = color * color
- Shader correction correctedColor = pow(color, 1/2.2)

Additional lights

4 point lights
Per object lights?
Forward+?

GOC

Forward+?

GDC

Spotty compute shader support
 Already GPU bound

Forward+?

• Try to simplify? No depth pre-pass CPU light culling 64x64 pixel tiles Approximate light area with spheres

Bounding circle

- Can use when perspective is not strong
- Project assuming camera is ortographic and increase radius for safety
- Strong perspective? project into an AABB

Shadows

Dynamic shadows for moving objects Static shadows for the environment

GAME DEVELOPERS CONFERENCE[®] | MARCH 19–23, 2018 | EXPO: MARCH 21–23, 2018 #GDC18

GU

Dynamic shadows

Dynamic shadowmap
Hardware 4-tap PCF

GDC

Static shadows

GDC

Lightmap

GDC

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Shadowmap

Combining shadows

- Combining is done • when rendering the floor
- Both lightmap color and • dynamic shadow color are evaluated for every pixel

GD

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 LOPERS CONFERENCE

Combining shadows

color = albedo.rgb * lightmap.rgb $color = color * lerp(lightColor, shadowColor, lightmap.a * min(N \cdot L, dynamicShadow)$

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 CONFERENCE

GD

No postprocessing

- Particle systems are expensive
- Spritesheets!

Motion Vectors

Spritesheet - Low FPS

GDC

Motion Vectors

Motion Vectors

Red & Green channels UV coordinates for next pixel to read

Blue channel Scale factor for Red and Green channels norde.us/vfxmv

- 1. Read current frame pixel and motion vectors value from same UV coordinates
- 2. Determine UV coordinates to read from next frame using motion vectors
- next frame's one

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018

3. Interpolate between current pixel and the

Skinning

GDC

- CPU skinning was taking 2 full cores
- Uploading meshes to GPU every frame was killing performance

Endgame scenario with 40 units

GDC

GPU Skinning

Requirements:

- No GPU mesh uploads
- Supports instancing
- Fast

Texture Based Matrix-palette GPU Skinning

- Sample bone TRS at regular intervals
- Bake bone TRS into textures
- 3x4 floats 3 textures needed
- Per Instance data 1 float, • **U** coordinate
- How to interpolate?

Texture Based Matrix-palette GPU Skinning

- 1. Read two keyframes
- 2. Reconstruct matrices
- 3. Interpolate

• 6 texture reads per bone influence!

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

M1 M2 M-Interpolated

Texture Based Matrix-palette GPU Skinning

- Problems to solve:
 - 6 texture reads
 - 3 textures

GDC

Interpolation math

Texture Based Dual Quaternion GPU Skinning

- Dual quaternions! <u>norde.us/dualq</u>
- 2 textures 3rd scaling texture optional
- Bilinear filtering
- Looks good with low sampling rate 15FPS for us
- Blending animations? Double texture reads

PS for us eads

Constant of

Performance & optimization

We optimize for: Framerate Heating Battery drain

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

GD

Graphics Profilers

Good for fast shader iteration

GDC

Shader Viewer 📭 Send 🏼 🧐 Revert 🔣 Retain Modified 🛛 🕁 Modified Original 51 void main() 52 53 u xlatl0_0.xyz = texture(BumpMap, vs_TEXCOORD0.xy).xyz; 54 55 u_xlat16_1.xyz = u_xlat16_0.yyy * vs_TEXCOORD4.xyz; 56 57 58 u_xlat16_31 = dot(u_xlat16_1.xyz, u_xlat16_1.xyz); 59 u_xlat16_31 = inversesqrt(u_xlat16_31); 60 u xlat16 l.xyz = vec3(u xlat16 31) * u xlat16 l.xyz; 61 u_xlat0.xyz = vs_TEXCOORD7.xyz + (-_WorldSpaceCameraPos.xyz); 62 u xlat30 = dot(u xlat0.xyz, u xlat0.xyz); 63 u_xlat30 = inversesqrt(u_xlat30); 64 u_xlat0.xyz = vec3(u_xlat30) * u_xlat0.xyz; 65 u_xlatl6_31 = dot(u_xlat0.xyz, u_xlatl6_1.xyz); 66 u_xlat16_31 = u_xlat16_31 + u_xlat16_31; 67 68 u_xlat0.x = dot(u_xlat16_1.xyz, (-u_xlat0.xyz)); 69 #ifdef UNITY ADRENO ES3 70 u xlat0.x = min(max(u_xlat0.x, 0.0), 1.0); 71 #else 72 u_xlat0.x = clamp(u_xlat0.x, 0.0, 1.0); 73 #endif 74 $u_x = (-u_x = (-u_x = 0.x) + 1.0;$ 75 u xlat0.x = log2(u_xlat0.x); 76 u xlat0.x = u xlat0.x * RimLightCoeff; <

Shader is valid:

Device: Qualcomm Adreno (TM) 330

Full Precision ALU Instructions . 63 Half Precision ALU Instructions . 144 Interpolation Instructions 0 Iexture Fetches 5 Memory Load Instructions 0 Memory Store Instructions 0 Flow Control Instuctions 1 Synchronization Instructions 0 Short Latency Sync Instructions . 7 Long Latency Sync Instructions .. 3 Number of Full Registers 3 Number of Half Registers 9 EFU Instructions 14

```
u_xlat16_0.xyz = u_xlat10_0.xyz * vec3(2.0, 2.0, 2.0) + vec3(-1.0, -1.0, -1.0);
u_xlatl6_1.xyz = vs_TEXCOORD3.xyz * u_xlatl6_0.xxx + u_xlatl6_1.xyz;
u xlat16_1.xyz = vs_TEXCOORD5.xyz * u_xlat16_0.zzz + u_xlat16_1.xyz;
u_xlat16_2.xyz = u_xlat16_1.xyz * (-vec3(u_xlat16_31)) + u_xlat0.xyz;
```


Shader instructions

 Never use fixed precision

- Convert between precisions sparingly
- Watch out for No-ops

Total Instructions

Full Precision ALU Half Precision ALU Interpolation Inst Texture Fetches ... Memory Load Instru Memory Store Instru Flow Control Instu No-Op Instructions

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

(X) NORDEUS

250

	200
Instructions .	63
Instructions .	144
ructions	0
	5
ctions	0
uctions	0
ctions	1
	37

No-ops

float4x4 sum = (boneMatrices[index0] * weight0) + (boneMatrices[index1] * weight1);

GDC

float4x4 matrix0 = boneMatrices[index0]; float4x4 matrix1 = boneMatrices[index1];

float4x4 sum = (matrix0 * weight0) + (matrix1 * weight1);

E DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

20% Faster

180 No-ops

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

GDC

- 1. Wait until the device goes into stable state (25FPS)
- 2. Determine target framerate in this case 30FPS
- Set graphical quality so FPS is 30% above the target 40FPS
- 4. Cap framerate to target 30FPS

Benefits:

We are not using all of the computational resources of the device

Amortizes frametime spikes

Quality settings determined per GPU

Performance tracking

Analytics tracking: Average FPS Battery drain

•

Battery drain is correlated with heating

New settings distributed on every game • start from our server

MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

GD

Recap

Specialize your techniques
It's worth it to go old-school
Be mindful of heating

Questions?

srdjas@nordeus.com

Thank You!

