
Applying AAA techniques to

mobile games

Understanding the flow-map and its applications

Shaoyong (Abel) Zhang

VFX Artist - NetEase Games

张少勇1

Thank you for coming everyone! My name’s Abel and I’m a VFX artist
from NetEase Games in Hangzhou, China.

Three years ago, I worked at Sledgehammer games. Right after we
shipped Call of duty: Advance Warfare, we had a week or two for VFX
research . I tried to figure out the flow map shader using particle subUV
textures that first developed by Gurrilla Games for Killzone2. But I failed
because the complexity of the shder logic.

Soon after that I moved to China and joined NetEase Games. I have kept
digging up flow map technique. in fact, flow map is a such essential
technique for VFX artist: Animators animate arms and legs, We VFX artist
animate pixels, and flow map is our tool.

One of the world’s top 10 highest earning game companies with revenue of

$4.03 billion in 2016.

More than 8000 employees with offices in Hangzhou, Beijing, Shanghai,

Guangzhou, San Francisco, Seoul and Tokyo.

Released 220 of our own games as well as 47 licensed games.

In the top 3 grossing companies on the App Store (iOS) May, 2016

张少勇2

You may not know NetEase that well at the moment, but as we can see
from this overview: it’s a large and influential company in China. And
we’re hoping to increase our presence in the west in time.

Before joining in NetEase, all the projects I worked on were AAA games,
such as Call of Duty: Advanced Warfare, Darksiders 1, Too Human and
and several others. On switching to mobile, naturally I start applying
techniques from AAA development to mobile. But I have to tailor them to
these devices.

In China, most of our game players use lower end cell phones. So to me,
good VFX is one that runs on all types of mobile devices, and good
techniques are simple and effective ones.

So today I want to talk about one example: a mobile effective, easy-to-
use Flow-map shader – and how I understand it and how I’ve applied
them to our current mobile project: Galactic Frontline.

www.abelzhang.com

张少勇3

Before anything, I need to confess that I have zero coding knowledge and
math was never my favourite subject. But I’ve always been interested in
art and VFX techniques. I learned VFX by taking Picasso’s advice. He said
“good artists borrow, great artists steal”. I experimented and emulated
the techniques of other technical artists, VFX artists and programmers. I
toyed and tweaked the interesting techniques to find my way. All the
techniques that I’ve collected over the years, my treasures, so to speak
are on my website: www.abelzhang.com. Just click Abel’s FX Learning
Notes and you will see this page.

张少勇4

The techniques shown here have been collected over the course of around
ten years. I used them during my time at Silicon Knights, Vigil Games,
Sledgehammer, and now, NetEase Games. Most of them are shader tricks
for VFX. Shaders are in fact the node base programming; which is not an
artist good at, so I have to take notes to remember, whether I
understand it or not. I’d say taking notes is the big part that got me
survived 13 years career as an visual effects artist.

Using a image to control timing
张少勇5

For example, this sequential ripple action caused by a water drop. The
rebounce timing is controlled by a gradient image. I noted this down 10
years ago and it was the first time I discovered that animation could be
controlled by a gradient image. If you asked me to recreate this fx, I am
sure it will take much more time without checking my notes.

How flow-maps work:

“the basic concept is to use an image, the flow image, to push around

the UV values of a source image. We can think of the flow-map as a

mapping of the different vectors, such as direction and magnitude,

and then use them intelligently to create the desired motion. ”

张少勇6

As I mentioned, today I want to talk about one of my favourite of these
techniques, the Flow-map.

This swirling galaxy is a menu background from Galactic Frontline.

Creating this kind of animation easily, quickly and relatively cheaply is
what I’m going to delve into today.

I want to quote Keith Gurrette, who spoke about flow-maps in his GDC

talk in 2012, as I feel he perfectly explains how flow-maps work:

How flow-map change the UV of the source image:

128 Middle Gray creates no motion.

Black creates motion in one direction.

White creates motion in the opposite direction.

0 128 256

张少勇7

Think of the gray scale of the flow-map as an array of numbers from 0 to
256. We can use these numbers to manipulate the position of each pixel
of a source image: 128 Middle Gray creates no motion. Black creates motion in

one direction. White creates motion in the opposite direction.

The Source Image

张少勇8

Say we have this image, the source image. It’s not moving.

Animated Left and Right

张少勇9

How are we going to make it move, both from the left and from the right?

Animated Up and Down

张少勇10

Or up and down?

The Flow-Map Image

张少勇11

The ‘how’ is by using a flow-map and a flow-map shader.

This is the flow-map image, which is a black and white image in its red
and green channel, and black in its blue channel.

+

Flow-map in red channel:
White makes it move left,

black makes it move right,
middle grey creates no

motion.

Flow-map in green
channel:

White makes it move down,
black makes it move up,

middle grey creates no
motion.

Moving left and right

Moving up and down

=

张少勇12

The black in its red channel makes the source image move to the right
and the white makes it move to the left. (Note that the green channel is
128 middle gray.)

And now switching it’s red and green Channel we see the black in its
green channel makes the source image move up and white move down.
(This time the red channel is 128 gray, so that the motion is only one
dimensional)

+

Flow-map Static Image Animated

Middle Gray

+

+
Only using two
channels

张少勇13

Here we can see that Flow-maps are able to generate a variety of
complex, specific motions such as swirls, smoke, clouds and explosions.

I just quickly grabbed three pictures online: lava, a river and smoke. I
quickly smeared out the flow-map textures in FlowMapPainter to
demonstrate what we can do with this simple flow-map shader.

Note that in flow-maps, the 128 middle grey covers the static area of the
source image. And the part that creates motion in the flow-maps are the
part slightly lighter or darker than the middle grey.

The flow-map is a not a new technique. Our goal here is to simplify

things down to the most fundamental level so that our games runs

on mobile devices of different capabilities, as users have devices

from the low-end to the high-end.

And we want to apply flow-map trick cheaply and quickly.

张少勇14

The flow-map is not a new technique. Our goal here is to simplify things
down to the most fundamental level so that our games run on mobile
devices of different capabilities, as users have devices from the low-end to
the high-end. And we want to be able to do that cheaply and quickly.

Now that we’ve looked at the basic concept of flow-maps, let’s check out
an actual flow-map shader and see how to create flow-map textures.

Part A

Part B

Part C

Simplified Flow-map
Shader with 14
Nodes

张少勇15

This is a simple 14 node flow-map shader. It works nicely in mobile
development as its simplicity would allow the VFX to run smoothly on
most mobile devices.

To better understand the shader, I’ve split it into three parts: A, B and C.

Part A: The source texture’s UV is animated by a flow-map image and a Time node

F(x)=fract(x)

张少勇16

This is Part A: as with most shaders, our aim is to manipulate the Texture
coordinates of the source image. By using the flow-map image multiplied
by the Time node to create motion.

But note that the animation is popping at the end of the cycle.

Part A: Flow speed control and distortion control

张少勇17

The only parameters added to the shader are flow speed and distortion
volume. The rest is a little simple math.

Part A: Subtract 0.5 to get opposite direction. Float range (0 - 1) becomes (-0.5 - 0.5)

张少勇18

The reason for subtracting 0.5 here is to change the float range from (0 –
1) to (-0.5 to 0.5) so that we gain an opposite direction vector, keeping
the distortion centered.

Part B: Same as Part A but with 0.5 second delay in motion

F(x)=fract(x+0.5)

张少勇19

Part B is a duplicate of Part A. The only difference is that a 0.5 second
delay has been added.

As we’ve seen part A is popping at the end of the cycle and is also part B
with 0.5 second delay. What can we do to get rid of the popping so we
achieve a continuous looping animation?

Part C: Blending Part A and Part B

F(x)=abs((fract(x)-0.5)*2）

张少勇20

This is where part C comes in. It generates a fade-in and fade-out image
that works as an alpha channel or mask.

=

Images are numbers,

numbers are images.

time

F(x)=abs((fract(x)-0.5)*2)

F(x)=abs(fract(x)-0.5)

F(x)=fract(x)-0.5

F(x)=fract(x)

F(x)=x
张少勇21

Here we see how part C works: step by step, the Time node turns to (0
to 1) repetition. Just like a controllable sin wave. And we see how math
has turned into an image at the end. Obviously In a node based shader,
images and numbers are same thing!

A is popping

B is popping
with 0.5” delay

Continuous
Looping Image

C crossfading A and B
Fading in and out to eliminate popping

Lerp =

A and B are same image

张少勇22

The relationship of the three branches: parts A and B are the same, but
the motion of B has been delayed by half a second. part C blends A and B
together using a Linear Interpolate node, creating the final effect.

F(x)=fract(x)

F(x)=fract(x+0.5)

F(x)=abs((fract(x)-0.5)*2）

lerp

A

B

C
The popping parts have

been faded out

=

张少勇23

Here we see the whole Shader expressed mathematically.

A: F(x)=fract(x)

B: F(x)=fract(x+0.5)

C: F(x)=abs((fract(x)-0.5)*2)

张少勇24

The graphs explain the shader so well. To me, this is the fun part. One
picture is worth a thousand words, as they say. The Graph application, as
it’s name suggests, it turns math into graphics. It has really helped me, to
understand each node’s function, and to show why that each node is
needed for the shader when I trained new vfx artist at work.

it amazes me that images and numbers can be same thing. After figuring
out how a flow map shader works mathematically, seeing that how little
bit of understanding of math can achieve the visual we wanted, I don’t
hate math as I once did. I only wish I was better at math then I could
create better visual effects.

张少勇25

So how did I apply the flow-map technique into our game?

First let me quickly introduce our game, Galactic Frontline, is a sci-fi
strategy game that takes you to the heart of a conflict that threatens the
entire galaxy. Players will assume command of a ship representing one of
three playable species and battle for supremacy against their enemies.
Each fleet is equipped with a broad range of combat units and tactical skill
vessels. Battles will take place in a wide variety of different environments.
Not only can players uncover the secrets of the galaxy in story mode but
they can also test themselves against players from all over the world in
multiplayer mode.

张少勇26

Galactic Frontline is still in production. This teaser will give you an idea of
it.

A flow-map used in a background:

张少勇27

I’ll now show you how I’ve used flow-maps in the game’s development.

This is one of the battle scene backgrounds from Galactic Frontline. This
huge storm raging over the planet’s surface was created by adding a
swirling motion to a static image with a flow-map shader. Although it
covers the full screen, it was cheap to run as it is one single layer. This
effect was achieved in one hour or so with the flow map shader.

Smearing a flow-map texture using FlowMapPainter:

张少勇28

Having spoken about flow-map shader, let’s take a look at how to create
flow-map textures.

In this case I imported the source image, the swirling storm, into
FlowMapPainter as a background and smeared out the flow-map texture
on top of it, almost as if I were painting the movement.

From the source image to the flow-map

张少勇29

Here is the flow-map texture smeared out in 10 minutes using
FlowMapPainter!

Making flow-map textures in Photoshop
张少勇30

Now let’s consider more complex motion, with more details to think
about, like the atmospheric phenomena on Jupiter, with all its raging
storms.

Source Image

张少勇31

This is the source image of Jupiter, a very complex texture. It would take
too long to brush out all the detailed motions in FlowMapPainter. Is there
anyway to cheat?

The The red channel of the flow-map imageThe red channel of the source image

Making flow-map texture out of the source image

张少勇32

What I did is this: Using Photoshop, I adjusted the grey scale of image’s
red channel, Gaussian blurred one pixel, and brushed the area with 128
grey where I wanted there to be no motion.

The green channel of the flow-map imageThe green channel of the source image

Inverted
张少勇33

Then I inverted the green channel, and did the same.

Flow-map made
out from a
source image

张少勇34

The result, a flow-map texture made out of a source image in Photoshop
without brushing any of the details.

There are so many quick and easy ways in which we can make flow-maps
textures as long as we know the basic principle how flow map works.

+

张少勇35

Flow-maps generate very specific or random motion in one single particle
or mesh as the smoke effect in the image shows.

A flow-map used
with particles effects

张少勇36

Here we see how this flow-map has made the dots into swirling lines in
the vfx.

Simulating the flow of a river

张少勇37

They can be used to animate environmental features such as rivers, or
water falls.

Simulating the flow of a river

张少勇38

Anything that flows!

Applying a flow-maps to Van Gogh’s The Starry Night

张少勇39

Let us imagine what Vincent saw in his mind’s eye while painting the
starry night.

We ‘ve seen the simple version of a flow map shader, let’s take one step
further: replacing the single frame flow-map with a subUV texture, what
change should we make to the shader?

Limit the particle subUV texture to

1024 x 1024, 4x4 =16 frames.

Source image:1024 x 1024

Without frame blending

Flow map512 x 512
With a flow-map shader
for frame blending

张少勇40

Cellphone is much smaller than Xbox. for a mobile project, texture
memory is big concern. Our project Galactic Frontline restricts the subUV
texture to no bigger than 1024 x 1024 pixels. Divided by 4, each unit
would be 256 x 256 pixels. Smaller than that, the resolution will not be
acceptable. So, 16 frames is all we’ve got for subUV particles, that is not
enough frames for a smooth animation.

But with a flow-map shader for frame blending, we’re able to use small
sizes and small numbers of subUV textures to achieve smooth animations
in mobile games.

Using flow-map for frame blending

Flow-map shaders for frame blending enable us to use small size and small numbers of subUV
images to generate smooth, evolving images for mobile games using less texture memory

张少勇41

This is the flow-map shader for frame blending using subUV textures. It
originally used for AAA games. I tailor it for mobile as you can see, it has
only the emissive input for the whole shader.

it is much more complex than the single frame one. But it has the same
basic concept of part C blending parts A and B.

(This was the exact problem I couldn’t resolve at Sledgehammer games
until I saw the webpage of Klemen Lozar.)

“The aim is to extend the utility of animated textures by distorting them
with motion vectors to procedurally generate the in-between frames”

Current frame

Next frame

张少勇42

Say we have this two frames: If the inside frame distorts outwards and
the outside frame distorts inwards.

Generated in-between frames.

Current frame
distort
outwards

Next frame
distort inwards

张少勇43

The image now makes more sense with the frames generated in-between.

(A rounded head gradually becomes a squared head)

First part of the shader
is the subUV function

Add one frame

Current frame

Next frame

张少勇44

This is the first part of the shader. It produces custom Particle subUV
function for frame control. There are three key parameters to control the
frame speed, total frame number and subUV image number.

The upper row is “part A”, the current frame. The lower row is “Part B”,
the next frame. Note that 1 has been added to the “Next” frame value to
offset the SubUVs by one frame. If you want know more detail of the first
part of the shader:

张少勇45

Ben Cloward gave a very detailed explanation of the “particle subUV ”
function in his talk at GDC 2016: Atlas walk Example

1

1

multiply the map value by 2
and then subtract 1 to move
it into the -1.0 to +1.0 float
range, this will keep the
distortion centered

distort the next frame back towards the
current frame

distort the current sub image pixels
towards the position of the next

Current frame

Next frame

张少勇46

The second part of the shader: In addition to interpolating from one sub
image to the next we need to distort the current sub image pixels towards
the position of the next and similarly distort the next one back towards
the current one so they look like meet in the middle.

It is hard to grasp the logic. I just want to know enough to use it to
achieve the visual, and don’t want go too deep because that will drive an
artist crazy. But,

Flow-map shaders for AAA games can be more complex for
more detailed visual

It need to use multiple applications: Unreal 4, FumeFx for 3ds Max and After Effects with a Twixtor pro plug-in.

And It takes time and effort to render motion vectors (flow-maps) using FumeFX, Maya or Houdini

http://www.klemenlozar.com/frame-blending-with-motion-vectors/

张少勇47

Thanks to Klemen lozar! who shared his flow-map shader for Unreal.
There is very detailed explain of the shader logic on his website. Check
the page http://www.klemenlozar.com/frame-blending-with-motion-
vectors/

This shader for AAA games can be much more complex while achieving greater

visual effects. But It needs to use multiple applications: Unreal, FumeFx for 3ds Max

or Maya, and After Effects with a Twixtor pro plug-in.

Output texture coordinates instead of an RGB channel
Modifying the existing SubUV functionality that comes with Unreal 4 so it outputs texture coordinates instead of an RGB channel.

SubUV Coordinates Function:

张少勇48

it needs manually make the particle subUV function so it outputs texture
coordinates instead of an RGB channel.

Flow-map shaders for AAA games

SubUV textures for flow-maps and source images, at least two 2048x2048 textures with 28 MB memory cost.

张少勇49

AAA games allow for much larger subUV textures. Take Call of Duty:
Advanced Warfare for example, The subUV textures can be up to 2048 x
2048 pixels, even 4096 x 4096, which was not a problem for Xbox.

On a mobile game, such as Galactic Frontline, we’re normally limited
subUV texture to 512 x 512.

5 minutes with CrazyBump vs 5 hours on 3Dmax rendering

The distortion effect has no
big difference on small screen

A flow-map
made from

CrazyBump in 5
minutes

张少勇50

it could take 5 hours or more rendering out a set of source and flow-map
subUV textures manually in Maya, 3D Max or Houdi. In game production,
Most of the case we already have the subUV source texture, all we need is
the matching subUV flow map texture. A quick way is
using CrazyBump to fake a flow-map texture out of a source texture we
already have. it only cost a few minutes. Just use the red and green
channel of the Normal map generated from the source texture. For
distortion purposes, the texture is good enough.

When you have to get things done in a hurry all the time, it is good to
have a way to cheat. Mobile projects are generally less budget, and short
developing cycle and for much smaller screen.

Frame blending

flow-map shader

used for

explosion effects.

张少勇51

This intensive explosion effects in Galactic Frontline uses a flow-map
shader for frame blending. It still runs at a decent frame rate considering
there are so many effects being played at the same time. And it was
made very quickly with a subUV flow map texture made from CrazyBump.

Only apply AAA techniques that are going to work on the majority of targeted users’ devices, including low-
end phones. Good VFX is the VFX that runs smoothly on all levels of devices.

The chart shows what kinds of cellphones our potential users have.

张少勇52

In a conclusion, for mobile games, the easier the technique, the better
things will run on lower-end devices.
There is a lot of diversity in terms of the phones and devices that users
play on, and we want to make sure that everyone can enjoy the game.

This chart shows what kinds of cellphones our potential users have, mostly are the

low end cellphones.

Outputting cross-platform and cross-engine material

programmer TA

Game
designner

张少勇53

NetEase as a large company, we have lots of different projects going on at the same

time, and different teams often use different engines in the development process. Our

engineers and technical artists were able to ensure the materials that we create, such

as flow-maps, can be shared between teams, and can be exported in such a

way that it works across various platforms and game engines.

There are so many talented people all working towards the same goals and I want to
say thank you to, especially our programmer李冰, TA吴振丹 and game designer

Matthew Aitken.

NetEase is a great company to work at, (anybody here want to work in China? please

let me know). And Thank you to GDC and all those who have shared their
expertise! I am standing here talking because I’ve watched a couple of
the previous GDC presentations ☺

53

Various use of flow map on VFX, character, background, and UI in NetEase games

张少勇54

at the end, Let’s see a few more flow-map examples in some other
projects from NetEase to see its broad use on vfx, character, environment
and UI.

Overview

Cons: Motion patterns are repeated.

Lots of negative space in particles overdraw.

Simplified flow-map shaders for mobile games are quick, cheap, effective and relatively

easy to create for very specific motions.

Flow-maps texture can be created in FlowMapPainter, CrazyBump, or Photoshop easily.

All we need to know is the basic principle that the middle gray creates no motion, black

creates motion in one direction and white in the other.

Flow-map shaders for frame blending enable us to use small size and small numbers of

subUV images to generate smooth animated images for mobile games with a low

texture memory cost.

张少勇55

Lastly, Let us quickly recap the good and bad about the flow-map
technique:

Thank you again for being here. I hope this simple and easy technique for
mobile development would be helpful to you. Any questions?

Thank you!

Shaoyong (Abel) Zhang

Vfx artist from NetEase Games

www.abelzhang.com

as6769@yahoo.com

