
Autonomy in Realtime Effects:
Artist Driven Tools and Techniques
for Large Scale Production

Bill Kladis
Senior VFX Artist, Epic Games (Fortnite)

Automation & Tools in VFX
● Motivations and recurring themes for doing this talk:

● Ambitious project.

● Small team size.

● Lack of desired tech and features.

● Autonomy.

● Math and tech concepts are critical for the future
of FX in games.

● FX Artists embracing more technical & mathematical concepts.

● Use scripting languages to:

● Deal with ways to automate processes for large-scale problems.

● Write your own tools to fill void of technical deficits.

● All with simple to follow concepts and supporting visual examples
using Fortnite as a backdrop..

Automation & Tools in VFX

What is Fortnite?

● In development for over 7 years (started in UE3).

● Released to Early Access in July 2017 (PC / Mac / PS4 / Xbox).

● Battle Royale (PvP).

● (Almost) worldwide.

● Fortnite is a success for Epic and Unreal Engine.

Weak Points
● PvE (Original Campaign) relies heavily on looting.

● Weak points were introduced as a mini-game to
break up the monotony of harvesting for resources.

● The original effects themselves were incredibly
bright & strobed.

● Many players did not understand the connection
or purpose of the visuals before them.

● Very non-traditional problem for FX.

● How do teach players to use weak points in an
organic fashion?

Weak Points

Weak Points
● When a player impacts a destructible actor, a weak

point blueprint is spawned.

● Has our base particle system as a component.

● If this is the first weak point in a series

● Impact Level (int)= 0

● Previous impact location (v3) = 0, 0, 0

● Integer = Whole numbers
i.e. - 22

● Vector3 = Collection of floating values

● i.e. - (7855.113, -284.134, -0.942)

● If we’re part of a series, we instead get a valid previous
impact location in world space.

Weak Points
● Now we have simple rules we can test against to connect them:

● If our impact level is > 1

● If our distance between weak points is <= 512 units

● Or if our distance is >= 50 units

● If any of these = false, then don’t add a mesh.

Or else, what do we need to do to figure out how to connect them?

Weak Points
● A simple but incredibly useful equation in vector

algebra:

● If you want a vector that points from Point A
to Point B, simply subtract B from A.

● The result gives you a vector that not only can
give you rotation values, but distance as well

B – A = 0, -126, -156

Rotation = -51.07, -90, 0

Weak Points
● Our rotation works perfectly, but our mesh scale is constant,

no matter the length.

● We can take our result from B – A in our previous slide to
determine its length (magnitude).

● Pythagorean’s Theorem to the rescue!

Weak Points

● We can take our vector length, and use that drive
parameters within our material.

● UV tiling based on distance.

● Use a base length (i.e. tile every 30 units)

● Distance / 30 = New UV Scale

Weak Points

● We can ceil (up) the resulting value to
avoid fractional tiling.

● Ceil(137.15) = 138

● Floor(137.15) = 137

Weak Points

Blaster Husk

● We can take the exact same principals from weak points and
begin to apply them in other instances.

● The Blaster Husk is an incredibly powerful and damaging
enemy, and his FX needs to visually convey the level of
damage he can inflict.

● The original catalyst to a custom blueprint setup relied on
frustrations with beams in Cascade.

Blaster Husk

● The core elements of a laser beam can be broken
down into a cylinder with supporting particle
elements.

● Defining a multi-layered visual laser that’s stylized
with only one mesh (cylinder).

● Rely on Ryan Brucks’ “Axis Aligned Fresnel”
material function for consistent falloff regardless
of camera angle.

● Establish a base length. Define what the laser
looks like at a specified number of units (500 units).

Blaster Husk

● The attack uses a hit-scan (line trace)

● Since we’re using a trace, we can break the hit
results and get all sorts of useful data we can use.

● How can we use this data?

● Struct = Group of data / variables

Blaster Husk
● Reflection Vector

● As the name implies, it’s the simple way to
calculate the angle and which anything will
bounce off a surface.

r = d−2 (d ⋅ n) n

n
(Surface Normal)d

(Direction)

r
(reflection)

Roughness

Blaster Husk
● Timelines

● Arbitrary latent functions similar to something like sequencer/matinee.

● Outputs can directly control anything, but commonly used things:

Blaster Husk
● We can use multiple tracks in a timeline to:

● Sweep the laser in.

● Erode away the material’s emissive.

● Scale the mesh down on X & Y.

Weapon Alterations
● Fortnite currently has 400+ weapons (ranged and

melee).

● Each weapon must have a unique "elemental
alteration" based off 4 types (Fire, Ice, Electric, &
Energy).

● Now we’re 1,600+ weapon permutations needing
FX.

● Each elemental type uses the same particle system
across all weapons in the game.

● Using Blueprints and Cascade, we can easily
customize the particle system procedurally to fit
upon the weapon.

Weapon Alterations

● Each weapon is a skeletal mesh . . .

● We can add sockets to our parent skeleton for things
like the muzzle flash, shell ejects, etc.

● But then we can do something really cool and convert
these to mesh sockets.

● A mesh socket is simply a transform override on a
per-mesh level.

Weapon Alterations

● 1st part of altering the weapon is modifying the material.

● Originally developed by Jon Lindquist and helped
inspired my subsequent ideas on how to approach
this.

● We already have a “muzzle” socket where the particle
system for muzzle flashes are attached to.

● A 2nd socket called “muzzle falloff” is added and moved
as a mesh socket on a per weapon basis.

● The distance between the 2 sockets is fed into the
dynamic material instance to give artistic control on a
per-weapon basis.

Weapon Alterations

● Everything emits from a cylinder to roughly fit the
shape of the weapon body and muzzle.

● All 4 have the same layout and set of parameters.

● Cylinder Height (s)

● Cylinder Radius (s)

● Particle Size Scale (v3)

● Spawn Rate Scale (s)

● Scalar / Float = Floating point value
i.e. - 87.4139

Weapon Alterations

● We can apply a similar math principals for our
particle systems.

● We’ll create 2 new sockets (fx_start and fx_end).

● Attach the particle system to “fx_start”.

● We can go back again to our rotational and vector
magnitude principals.

● Get a rotation value between the “fx_start” and
“fx_end” sockets and use this to get the particle
system to rotate automatically.

● Measure the distance from “fx_start” to “fx_end”
and use this drive the cylinder height.

fx_start

fx_end

Weapon Alterations

● But when we start modifying parameters of the
cylinder, we can easily start to get problems.

● But how can control radius uniquely and quickly as
well?

● The mesh sockets have a full set of transforms
(location, rotation, & scale).

● Rotation and scale aren’t currently being used.

● We can hijack these values at our discretion.

● Scale XYZ = Cylinder Radius & Size Scale

Weapon Alterations
● But what about spawn rate scaling?

● We can calculate the volume and compare that
against a base volume.

Volume = π r² h

● Simply divide our current volume against our base
volume, and set this as a spawn rate scale.

● Base volume = 1600

● New volume = 2249

2249/1600 = 1.405

Weapon Alterations

Weapon Alterations
● How do we iterate & test in such large volumes?

● Developing tools for testing is critical to
efficiency when dealing with large volumes!

Automated Material Systems
● Fortnite (PvE) currently has over 25 different enemies (most show below).

● Some of these are simple "elemental alterations" of base types (ie husk, fire husk, electric husk, etc).

● All 4 elements must be conveyed clearly in all states.

● There needs to be a system of organization to manage all of these visuals and components, and do it automatically.

Automated Material Systems

● We can apply specific damage alterations to enemies at
runtime (a fire husk spawns in, becomes frozen, then
dies).

● The enemy parent blueprint and material was
restructured to support this.

● Material attributes were used as a "pipeline" to be able to
establish a visual order of operations, as well as
interchangeability between materials.

Automated Material Systems

Automated Material Systems

● 5 material attributes make up the enemy parent material.

● A: Base material - Things you’d typically find in a character material.

● B: Eye Glow – Uses vertex colors & fresnel to control husk eye emissive values.

● C: Spawn-In – Enemies are typically spawned from a small rift from the storm.

● D: Glow – Primarily used to flash the enemy when being hit for visual feedback.

● E: Dissolve – How enemies erode away while dying.

● We intentionally leave a split after eye glow. We can have separate materials that use the same material attributes
order, with unique modifications located within this split.

A B C D E

Parent Material

Character Instances

Modifiers
Alterations

Parent Material

Character Instances + Modifiers

Alterations

A,B
C,D,E

Automated Material Systems

● The spawn-in attribute relates specifically to
how (most) husks enter the world during an
encounter.

● Created by Jon Lindquist, the husk’s verts are
smeared in space using world position offset
from the nearest rift in the world.

Automated Material Systems
● Hit-Glow

● Used to give visual feedback for enemies
that are struck by player impacts.

● 2-tone additive emissive driven by fresnel.

● Slight “jiggle” in WPO.

Automated Material Systems

● Dissolve

● The dissolve attribute relates specifically to death.

● Enemy death cannot be gory.

● All husks in Fortnite die by sampling the last impact
point in world space, converting this to pre-skinned local
space, and driving a sphere mask across the entire mesh.

Automated Material Systems

Local Space
(Normalized)

Preskinned Local Position
(Normalized)

Reference Pose

● Unreal now supports “Pre-skinned Local Position”
& “Pre-skinned Normals” in the material editor.

● Currently only done through the vertex shader.

● We can retain the local position and surface
normal before any sort of deformation.

● This opens many doors for different types of
material effects that were either expensive or
impossible to try and track in a blueprint.

Local Space
(Normalized)

Preskinned Local Position
(Normalized)

Death Anim

Enemy Death
● Converting to local space is super easy. In fact, we’ve

already done it in this presentation.

● If we want to convert a vector into a relative offset of
another vector, simply subtract the vector from our
source.

● Point A is my husk: (4300, -9540, 20)

● Point B is my impact: (4325, -9535, 50)

● Take B - A = (25, 5, 30)

B
(4325, -9535, 50)

A
(4300, -9540, 20)

(0, 0, 0)

(25, 5, 30)

Automated Material Systems

Automated Material Systems

Elbow_r

Enemy Death

● We can use a “material curve” on any death
animation to drive a 0 to 1 scalar parameter in our
enemy’s material.

● But how specifically is a 0 to 1 value controlling
the dissolve?

● Sphere mask! We just want to start eroding from
the point of impact until the enemy is completely
dissolved.

● But going 0 to 1 gives 1 cm . . .

Enemy Death

● We can query the skeletal mesh to get its object
radius.

● Multiply radius against our 0 to 1 curve.

Enemy Death

Enemy Death

● To fix this, we simply need to calculate how far
away the impact is from the center of our mesh,
then add this to our radius.

● Radius = 80

● Distance to Center = 51

● r + l = 131

Caveats
● With all this power comes the ability to break the game

even easier!

● It’s important to understand the difference in how a CPU
works vs a GPU.

● Tick gets expensive! (calculating something every frame).

● Do keep any node based graphs clean, organized, and
well commented.

● Some caveats such as keeping a reference in a blueprint,
even if unused, will load the entire asset into memory.

● Beware of casts!

● Sometimes we have to get in to the world of network
replication. Understand the nature of client vs. server.

Takeaways

● Realtime visual effects is more than shooting particles everywhere.

● The VFX Artist of the future must be just as smart technically as they are talented artistically.

● The role of future VFX Artists will require them execute their own custom tools.

● We need to have a solid understanding mathematical concepts to turn our crazy ideas into awe-inspiring realities.

Learning Resources
● Content Examples – Math Hall – Ryan

Brucks
www.unrealengine.com (learn tab inside the launcher)

● Linear Algebra For Games (3 parts) - David
Rosen
http://blog.wolfire.com/2009/07/linear-algebra-for-game-
developers-part-1/

● Practical Use of Vector Math in Games
https://www.gamedev.net/articles/programming/math-and-
physics/practical-use-of-vector-math-in-games-r2968/

● Rendering Wounds on Characters in UE4 -
Tom Looman
http://www.tomlooman.com/rendering-wounds-on-
characters/

http://www.unrealengine.com/

● Developing the Art of 'Fortnite’

● Pete Ellis (Art Director on Fortnite)

● Wednesday, March 21 - 5:00 - 6:00pm

● Room 2005, West Hall

● Programmable VFX with Unreal Engine's
Niagara

● Wyeth Johnson (Technical Artist)

● Wednesday, March 21 - 5:00 - 6:00pm

● YBCA Theater

● We’re Hiring!

● https://epicgames.avature.net/careers

● 150+ positions currently open worldwide!

● General Fortnite / Battle Royale
Questions?

● Nick Chester, PR Manager

● nick.chester@epicgames.com

● @nickchester / Twitter

https://epicgames.avature.net/careers
mailto:nick.chester@epicgames.com

