
Just want to say that it’s our 25th year here as a company at

Insomniac so WOO-HOO! We’re celebrating. Come check

out our booth!

So…Hi, my name is Sophie Brennan!

I’m a Character TD/Character Rigger/Technical

Animator/Character Technical Artist with around 7 years

experience in the games industry. I’ve worked on a range of

titles, from mobile, to internal R&D, to AAA and VR. I started

off in the UK (did the accent give it away?) but now live in

the USA. Previously worked at Ready At Dawn on titles like

The Order: 1886 and Lone Echo. My most recently published

title was Spider-Man, developed at Insomniac Games which

is where I am right now!

Firstly, I’d just like to say thank you to the entire team –

without them this project wouldn’t be possible. At

Insomniac, we try to stay humble and acknowledge each

other as frequently as we can. Together we made this

happen and when I talk today I will talk about my work, but

also the work of the entire team that enabled this game to

be made.

So, without further a due – let’s talk about Spider-Man.

Firstly, I have a little cloth reel prepared for you to give you a

little taster of the work we did on the game…

CLOTH REEL!! GO CRAZY, BABY!

Now you got the idea a little about what we did… let’s begin

at the start…

So, hopefully that previous video gave you a little taste of

what our cloth looked like on Spider-Man. But before we

dive into our pipeline and solutions, let’s talk a little bit

about the methods available to us…

First we have the simplest solution:

Skinning the cloth to existing joints.

PROS: Super easy to do and maintain.

CONS: Depending on where the cloth is it can look bad.

Areas around the crotch, long skirts/dresses REALLY suffer. If

the cloth is sculpted in a ‘hanging shape’ this will look

terrible when it rotates.

You can see in the clip that’s playing here the cloth looks stiff

and unrealistic.

Next, we can put joints on the cloth itself. There are several

ways we can handle this…

PROS: Can look AWESOME if done right

CONS: Time consuming (depending on the setup). There can

be a lot of controls and it can be difficult to animate. The

burden is also entirely on animators. Even without all the

controls – cloth is very hard to make look convinving

We can drive the animation via pre-rendered simulation.

This can be baked as an animation, or as a pre-rendered

cinematic (much less common these days as most

cinematics are real-time).

PROS: Accurate & realistic depending on joint fidelity and

setup. Can have additive animation to correct things.

CONS: Time consuming to set-up. Hard to maintain.

Depending on the animation or any changes made the setup

might not work the same. Doesn’t work well if elements are

changing. (i.e. can’t adapt well to gameplay or real-time

changes like character costumes on different body types).

Baked down curves suck for animators – have to work in

layers.

You can see here the animation on the hair looks awesome – but

this is no mistake. This is all simulated and baked down and isn’t

free.

Then we have real-time solutions:

This usually requires writing your own cloth solution or

using a middleware solution.

PROS: Super flexible, reacts well to change.

CONS: cloth fidelity might not be able to be very high.

Getting micro wrinkles and folds real-time at game

resolution is out of scope for most assets. Expensive to run

as it’s constantly being calculated and it lacks self-collision.

So why did we decide to over real-time cloth over all the

other options out there?

Well, one of our internal pillars for Spider-Man was ‘realistic

cloth’. We wanted Spider-Man to look as good as it could be

and thought that real-time cloth would help set us up to one

of the leaders in visuals. We also believed it would help

achieve of world of a ‘believable real world’. As part of

making the game feel as real as possible, we had to make it

LOOK real too.

On previous projects we had fallen down the rabbit hole of

simulation and saw what a time sink this could be.

Add that to the amount of content in our game, the size of

our team and the ever-changing nature of it – it seemed

wiser that we try real-time solutions versus baked

simulations.

A personal goal of mine was to remove as much additional work

from animators as possible. The last thing they needed was to be

animating cloth – so the idea in general was to have no controls on

the rig for them. This philosophy worked very well in most

instances, but did catch us up at points, especially towards the end

– but we’ll talk about that later…

Finally, the big one – it responded to player control! None of the

other methods listed can react real-time to player movement. Clip

and baked simulation will pop between poses rather than fluidly

follow through. We wanted some real secondary motion!

A big component of real-time cloth is are the tools used to

achieve it.

So our choices were to develop our own tech or use existing

tech out there. As we have our own in-house engine,

anything tied to a specific engine was written off right off

the bat.

Developing your own tech has big pros and cons:

PROS: complete control over what features you want and

need to focus on, design your own workflow to match your

needs

CONS: huge upfront cost, will come online much later than is

needed, maintenance, no external support

However, this was just simply not in our budget with the results

that we wanted to achieve.

We decided we needed to go third party.

Our choices were fairly limited (there aren’t many solutions out

there) but we already used Havok for our soft and rigid body

physics and had previously used their cloth technology in Sunset

Overdrive, so Havok seemed most viable.

So let’s talk a little bit about Havok.

Havok is essentially a plug & play system. So for us, all the

tools were already there. While I don’t want to get into the

full details of Havok itself, I want to explain the pipeline

process and tools for context.

The Havok Pipeline is as such… first you author your content

in your 3D software of choice between Maya and Max.

Havok has support for both.

You author a mesh in your 3D program and assign it some

properties via vertex color channels. This will be a sim mesh

that will in turn be driven in-engine real-time.

The sim, if you want it to collide, will need colliders – from the

cheapest pills/capsules to more complex shapes. These are

parented to the skeleton and driven by single joints.

From there, you filter this content thru their filter manager (as it is

multi purpose and supports all Havok content that comes from

other files) and it is taken into their Cloth Setup Tool (or CST).

In the CST, you can edit the properties of the cloth, add behaviours

or constraints, assign your colliders and such…

When all is said and done, Havok outputs it to a data file – an .hkt

– which is read by the engine. This contains all the cloth sim mesh

data as well as the properties assigned to it.

This is a little visual of what these tools look like within Maya

itself.

You can see here that we go from our 3D authoring package,

to Havok’s filter manager (on the bottom left) to the CST (on

the right). Which then exports an .hkt file that is read by the

engine.

Havok supports both vertex and joint-based sim meshes.

What does that mean?

Well, vertex Cloth takes your sim mesh as is and uses it

directly in the game. This means you need to have the

correct materials applied to the sim mesh. However, this

also means double-sided cloth isn’t possible (or at least will

probably not look good if Havok even deems the surface

valid) and will have to be fairly low resolution to run well in

engine. It also means content changes to any cloth might

affect the behavior of the cloth. Also, irregular shapes aren’t

great for simming – as Havok prefers evenly sized quads

when it sims.

Bone or Joint Cloth means a sim mesh that you create will drive

joints (on the surface), which you can in turn use to drive mesh.

This also allows for the possibility of additional animation – and for

us to turn off the cloth and override it if necessary. It also

complicated things. As you can see from the diagram, there are

now a few more layers of content to debug when things go wrong.

Let’s talk a little bit about creating the initial sim mesh for

Havok. Firstly, we use Maya at Insomniac so we had to install

their plugins. I apologise I didn’t use it in Max so I can’t

really speak for that might entail.

So what does this look like inside Maya? There are a bunch

of tool windows we can use to handle things.

You can see in the video here the Cloth Properties window.

This is all data set on the mesh itself, and is mostly handled

thru native Maya Interfaces like the Attribute Editor/Channel

Box. Here we can assign vertex selection sets to the cloth.

These are used to define what vertices are simming versus

those that are pinned. You can also use it to create selection sets

of vertices for optimision.

You can also create channels that can hold specific vertex

data. This can control many things like Distance, Mass,

Minimum Normals and Particle Radius.

You can see here you can also visualize the data within maya

– so here I am looking at the distance data I painted onto

the vertices on the sim mesh itself – utilizing Maya’s painting

interface.

You can have as many sets as you deem necessary, and can

make multiple outputs from a single set. (For example, you

may want a gradient of 0-1, top to bottom for both distance

and mass – this data can be split into multiple channels.

Sometimes this is necessary as Cloth needs different data types for

some data sets.

To get your cloth to collide with your mesh- you need to

create and assign colliders. In this video example, you can

see me creating a collider and assigning it to the chest joint.

From there, I can edit properties within the capsule shape

itself to adjust radius, height and taper.

(You can also set if a shape is custom on the havok shape

node itself.)

We’ve now got enough content to send it off to the Cloth

Setup Tool – where we will start to modify the cloth’s

behavior.

From Maya, we export this data into Havok’s own Filter

Manager, then into the CST. We’ll skip the Filter Manager for now –

just so we can talk about content we are authoring.

Mentioned briefly earlier, most of the work defining cloth

behaviours occurs in the CST. There is no native API to allow

you to alter cloth properties live in the game – so all cloth is

authored and saved as data – then loaded into game.

The CST is where the magic happens. It contains ways to

create and assign sim meshes, apply properties and

constraints and their colliders.

This can get pretty in-depth, but for the sake of brevity –

know that almost all settings related to general behavior are

set here, while the specifics of those behaviours are added

in the Content Creation part of the process – in our case this

is Maya.

Once you have setup your sim and are viewing it in game,

you can use the in-built Havok debugger. This allows us to

get important information like how much resources a

particular element of the setup uses, as well as visual

representations of our havok simulations. This includes

ragdolls, cloth sims and their properties. From here, I’ll be

jumping back and forth between the debugger and the

content tools to iterate on my cloth setup.

With that all said – now that the pipeline is setup – let’s talk

about our first cloth tests for Spider-Man.

Even though we had previously used cloth on Sunset – we

wanted to start testing more realistic cloth behavior that the

grounded world of Spider-Man would need. Our first tests

were of our Inner Demons and Thugs, shown above.

They both have very distinctive but very differently behaving

clothes.

For the thugs, they needed baggy, loose pants. For the Inner

Demons – smart suit jackets that held form.

We specifically used the Inner Demons as a test bed for both

our animated normal maps (to show more granular cloth

detail) and our real-time cloth. We got pretty good results

from this, if a little floaty. This was our first major pass with

the cloth system even though we would revisit these assets

later. We also used to this gauge how many enemies we

could draw at once using cloth (a lot!).

Through this, we wrote up some internal documentation on

the process. However, the workflow was pretty complicated

– with many points of potential error. This would continue to

cause us a lot of problems and heartache.

This was all previous to when I joined Insomniac. For clarify,

before joining the company I’d rarely touched cloth beyond

the propriety cloth setup at a previous company. And even

then, my exposure to it was minimal. This is perhaps a

bonus, because I came in with fresh eyes.

My first real test case was MJ. This was a tough one off the

bat for several reasons:

MJ had quite an extreme crouch pose that would cause the

cloth to get caught between colliders.

She had two layers of clothing.

She also had a ponytail.

…

And a scarf.

We’re return to MJ later… as this was just a ‘first pass’ with the

system. With some experience on MJ, I knew I needed to fix some

things to get iteration speed and quality on the cloth up.

Quite quickly, I was able to identify issues with the pipeline

as it was.

Authoring content took a long time. There was a lot of

confusion on getting assets working in engine. Figuring out

where exports were failing was tricky.

Even past that, iteration was slow. Bugs on the cloth

simulation were very difficult for us to isolate. On top of

that, we were using the system in ways our engine did not

anticipate.

There also was the issue of debugging cloth. This also

complicated things.

Firstly, we were unable to see the cloth draw on top of our

game mesh in engine. This made it difficult to pinpoint what

belonged to what specifically. Especially with our more

layered systems and multiple colliders.

We also lacked debug information. As previously mentioned

– elements were laid on top of each other without labelling.

Which led to our next issue – the information that was there

was hard to parse. Without any filtering, we couldn’t isolate

bits of the setup – which is usually the best method of solving

problems.

Here’s a visual example:

As you can see…. There are a lot of elements being displayed on

the right and it’s quite difficult to tell what is what. When we were

debugging – we would have to remove elements bit by bit to see

where an issue might stem from – rather than entirely rely on the

visual display.

To combat this; first thing to be addressed was anything that

could be automated. There were a lot of different windows

and many repetitive actions.

My first goal was to remove the Filter Manager. While the

Filter Manager is extremely flexible and powerful – we only

really needed a generic singular cloth setup for it. I was able

to create a template that was generic enough to work with

our naming convention.

So this removed one additional window and step from

getting our content from Maya into game.

BOOM!

It then meant our content went direct into the Cloth Setup

Tool. So we moved from one content authoring system to

another.

Next, I created a UI.

A UI allowed us not to trip up over the simpler arbitrary

stuff. There was a workflow that allowed people to let

people know what needed to be defined and if they were

missing something.

On the left here – was our list of cloth joints that would be

passed into the CST.

We found the most reliable way to get only the necessary

joints into the Cloth Setup Tool was to make a selection set

in the scene that was selected upon export. Havok had a

filter that only exported selected objects as joints in the

skeleton filter within the Filter Manager.

Havok also had a habit of exporting every node in the scene.

For quick iteration on large files with lots of blendshapes

this made things very slow. So we created a filter that would

only export the nodes in the list. This is the list on the right

seen here.

(Unfortunately, Havok doesn’t currently have any way of

passing a list of nodes to the filter… so we had to HIDE and

then UNHIDE every node in the scene to do this… pretty

nasty business considering the number of ways Maya can

‘hide’ a DAG node. This also added time to our export

process but it was worth it for savings on not iterating on

every node).

Another one of our challenges is a lot of cloth was on

playable characters. Since this was all dynamic, we needed

to test the cloth while moving the player character to be

able to test the motion on it.

Since all the content had to be authored before export, we

needed the iteration time on this to be as small as possible.

Changing one small value caused an asset rebuilt and if that

meant reloading the game every-time it was going to be

hard to create quality assets within reasonable time-frames.

We needed the updates to be live.

So we worked with our Core department to make sure we

could do this at run-time without massive reloads.

Here’s a video showing how our hot-swapping worked. Having this

work cut iteration time massively. Look at how I’m increasing the

radius on the collision for the outer jacket here and how quickly it

goes into game.

The combination of live hotswapping and a reworked pipeline and

Maya interface meant we could reduce updating assets to as few

clicks as possible.

So now that we made some improvement to our pipeline – let’s

talk specific cloth examples.

One of our first challenges was to create full-body labcoats

for Peter and Otto. This was for the pivotal scene where

Peter and Otto finally develop a working prototype for their

prosthetics research. We needed this scene to showcase

what we could do with the system, so we knew the quality

bar was high.

You meet Otto at the very beginning of the game and we

knew Peter would be playable in his labcoat – so we had the

challenge of creating real-time cloth for both cinematics and

gameplay in this scenario.

To reduce complexity, I wanted to be able to share the setup

between both gameplay and cinematics. In hindsight, while this

was easier on us for implementation – it made for quite the

challenge, as the needs of the each setup could be quite

different…

To make sure we got the look right we had to shoot

reference. We looked at various labcoats (both official and

costumes) and we ended up buying one we thought looked

closet to the concept. We recorded walking and general

movement to understand how they would flow. (Here you

can see Bill, our fellow TD, wearing the coat as it was too big

for me and I also wasn’t very close to our targets).

This gave us a good starting point (though we ended up

going with a heavier cloth).

We also specific shot references. We knew what poses we

were going to hit from our mocap and had a couple of

trickier ones we knew that the cloth sim might not be able to hit.

We also specific shot references. We knew what poses we

were going to hit from our mocap and had a couple of

trickier ones we knew that the cloth sim might not be able

to hit.

1/2

We also specific shot references. We knew what poses we

were going to hit from our mocap and had a couple of

trickier ones we knew that the cloth sim might not be able

to hit.

2/2

We simulated the sleeves and the coat all the way from the

pectorals down. Here you can see some very early

screenshots of the setup. As you can see – the cloth sim

alone wasn’t enough. We needed to do more to hit our high

quality bar.

To improve the quality we needed to improve the overall

shapes of the labcoats. As mentioned earlier, there were

some very specific shapes we needed to achieve the look

and feel, which weren’t going to be possible with the real-

time sim.

We developed two types of corrective shapes.

Lastly, you can see we had the specific cinematic

blendshapes we would toggle for particularly specific shots.

Here’s a small example of what these blendshapes looked

like in action and where and how we used them. As you

see, the use of blendshapes here really upped the quality

of the simulation! Especially in parts where the cloth is

lifting or dangling in a specific way.

You can see with blendshapes on the left, and without on

the right. On the right side, you will also see our in-engine

Morph Debug UI that would tell us when shapes were

triggering (the orange and yellow entries).

For a finishing touch – we weren’t going to get enough

detail from blendshapes OR cloth. We had already

doubled the resolution of our labcoats to support the

blendshape silhouettes we needed to hit but it still wasn’t

cutting it. We made use of animated normal maps to give

us the wrinkle detail we needed.

We also had a spare channel that we used for specific

cinematic targets. We would swap this channel with our

cinematic normal map, which was a full body replace

normal.

But wait! One final ‘hack’ we had to introduce was that

our cloth did not support collision in the environment, so

in many of our rigs we would include a ‘cloth collision’

plane or object that would act as a ground plain or table,

etc and could be animated into the scene when needed.

Our vanity system also worked with cloth and cloth

collision (this is something we had to get our core team

to implement as we needed to switch collision and cloth

setups within assets frequently), so we would have this

‘collision object’ on a separate layer that we could toggle

on when we needed, rather than making sure it wasn’t

getting in the way in any scenes.

Things like the sleeves would get ‘pinned’ more often than not…

so it was safer to let them ‘fall through’ the table in some places

– as it often wasn’t super visible.

Let’s move on to another example…

Mr. Negative was another one of our big villains in the game

– and we needed him to look the part. He was smooth

dressed and clean-cut and that needed to show in his suits.

We also had suits being used for all his thugs, as well as

Norman Osborn.

A bit part for the suits to look more like suits where for them

to lift up like suits do and hold their cut. Well-tailored suits

hold their form well and we wanted this to show in game,

even for the thugs who are in more ‘sports’ suit jackets.

Once again, we captured reference with a sports suit jacket.

We captured mostly shoulder shapes, but were also paying

attention to how the suit lifted when the arms moved, and

how the shoulders bunched.

Armed with all this reference, we knew that getting the

jacket to work as required was going to need a combination

of two techniques. Real-time cloth and blendshapes.

The first was the get the cloth behaving and feeling realistic

in game. This was mainly for the movement. The first big

challenge for this was our Mr Negative subway boss fight.

Since this was a one-on-one boss fight with a fairly close

camera, we had to make sure his suit jacket looked right for

the sequence. There were also a handful of cinematic

sequences were we wanted to nail a particular look. Above

is a little before and after of some of the iteration on the

suit jacket in one of these scenes.

We used a lot of finely tuned blendshapes for this, as well as

a system on the rig that effectively ran blendshape

animation on the sim mesh.

We simulated a lot of these blendshapes first in Marvelous

Designer, then sculpted them iteratively to hit the shapes we

needed. This was a long process with a lot of back and forth.

Luckily, unlike the labcoats, the suits were mostly black or

had effects on them, which meant that doing blendshapes

on them was a lot more forgiving overall.

Firstly, we would have our ‘rivet’ mesh. This was a direct

duplicate of our sim mesh.

We would also have a series of cloth control joints. These

were single joints at the bottom of the mesh that animators

could use to pose out the mesh.

These cloth controls were, in turn, driving the rivet mesh

with clusters. These clusters were weighted in a soft

gradient towards from bottom to top…

On top of that the cloth controls (which were additive), we

had the rivet mesh being driven by a series of core skinned

joints such as the pelvis and spine joints. This got us all our

major movement.

Remember our blendshpes? Those blendshapes were wrap

deformed to first match the rivet mesh, and then were

applied and directly hooked up to be driven by the rig

deformation controls.

This rivet mesh is called as such as it has a bunch of joints

that it drives via surface constraints like point on surface or

follicles.

These cloth controls were then skinned to our sim mesh.

This is the real-time cloth sim that would go in game. This

means it would be following not only animator adjustments

from the earlier cloth controls – but any movements from

the blendshapes (so collision could be accurate)

The cloth sim mesh fed into engine as a havok sim which in

turn our final skinned render mesh joints were being

skinned to.

Here’s what went into engine. Both our cloth sim driven by

our riveted cloth control joints (which could be animated

and would echo our blendshapes) and our actual skinned

render mesh which was driven by the cloth sim.

And here’s the whole setup. Not too bad when you break it

down.

The wind effect seen in the helicopter was actually not done

by cloth, but by iterating between a series of ‘noisy

blendshapes’ that were added to give the rippling effect.

This is different to Spider-Man’s suit which was done by

animating normals. However, because the suits were so

dark, normal animation would be lost, so we had to create a

moving surface to get the wind rippling effect.

Finally, we tuned the shapes and behavior on the cloth, ties

and sleeves in our real-time cloth sim to get the weight and

dampening on the cloth feeling correct.

All 3 of these elements, blendshapes driving the sim, the

real-time cloth and corrective blendshapes on the shoulders

helped sell the final look and feel of the suitjackets in Spider-Man.

Let’s move on to our final example for this presentation…

We mentioned MJ earlier in the talk, so let’s go over the

particulars of her setup. She 4 elements to her cloth setup.

Her hair,

Scarf,

Outer jacket (the leather one)

Inner jacket (the green one)

All these separate elements had their challenges, but the

biggest issue we had is that our cloth had no cloth-to-cloth

collision built in, so we had to be very careful with our limits

and use collision capsules smartly to make sure we didn’t

have cloth clipping issues. For us, in cloth, this was our

BIGGEST hurdle. Making sure cloth did not clip for the majority of

the time was a real challenge. You might notice in a lot of games

cloth sim clips all over the place and goes straight through a lot of

objects. We wanted to avoid this as much as we could – so we

build a lot of our cloth elements to avoid those kind of scenarios.

Here’s an example of the sim meshes on the left and the

behavior in game on the right.

Much like our other examples, we used a series of

blendshapes to enhance the shoulder and elbow shapes on

MJ’s jacket. But on top of that, she had this layered jacket

with a longer inner portion and a shorter outer portion. Not

only that, but MJ’s crouching (used mainly in the mission

taking place in GCT) caused her knees and legs to often

‘trap’ the cloth. Some games avoid that by modelling the

cloth to fall to the side of the legs, but we wanted to try and

avoid that as it can often look unappealing and unrealistic.

Firstly, we DID sim these two elements separately. We could have

bundled them into a single sim, but this wouldn’t have had the

pleasant overlapping action you can see in the final game as even

if we skinned them at different rates (risking clipping happening)

we probably wouldn’t have got such realistic behavior. The main

trick to this was making sure the inner layer had VERY strict

distance limitations on it. This meant that it couldn’t really escape

this really tight cone of forward/back behavior but had some nice

side-to-side motion.

Finally, we had to have controls added for animators to have poses

that would ‘coax’ the cloth into the general position. Due to the

nature of the cloth, it would move into these poses and then relax

if the movement so this was a tricky balance.

The scarf overall was a fairly simply setup. However, we had

to make sure to limit the side-to-side motion on it to make

sure that it didn’t collide through the jacket (as cloth-to-

cloth collision wasn’t possible). To do this, we added small

colliders parented to MJ’s chest to keep it within a small

range. However, we didn’t reduce the overall range as this

would mean upon leaning forward the scarf would reach a

wall.

Havok currently can’t limit side to side motion so we had to

resort to ‘capturing it’ with capsules.

Here’s a small screen capture of the kind of ‘distance’ limits

we put on the scarf within the content in Maya. We’re

generally paint a very soft gradient from top to bottom,

making sure the top two edges (the top edge was ‘pinned’)

had no distance to prevent shearing when the mesh

transitions from skinning to sim.

The ponytail was complicated as MJ wore it in a variety of

outfits. However, it would have to work with each outfit. We

didn’t want to double up the geo/sim by duplicating this

setup per outfit, so we tried to ‘coax’ it gentle within a range

with a use of different colliders across the outfits.

We encountered a similar problem to before where we

needed to limit side to side motion but were unable to do so

with constraints. However, in this case – we couldn’t

‘capture’ with colliders as MJ’s head moved side to side a lot

and colliders would create an invisible wall. Eventually, we

ended up having to stiffen up the hair sim a ton, and

lengthen and widen it so reduce the range of movement.

Here’s what’s the sim mesh looked like in Maya…

To get the behavior we wanted – we needed to extend the

sim way past the end of the ponytail and the width of the

sim had to be widened a lot.

It’s also hard to see, but we had 3 hair sim running on top of

each other with VERY slight adjustments to get some

variation in the hair .

Finally – there were some things that didn’t make sense or

were too time-challenging to do with real-time cloth and

had to be done by animators. Because we had added

(optional) controls to MJ’s cloth, the animators could

technically turn off cloth and animate by hand. For a scene

such as the one above, we had to rely on entirely keyframe

animation to get the job done. We had more animators then

character TDs and by now we knew enough about the cloth

that making a new setup for a couple of scenes was just too

expensive. This is because we would have to duplicate the

setup and the geo to get different behavior, but also every

time we R&D’d a new behavior it would require a lot of time

from the TechAnim department.

So, hopefully that previous video gave you a little taste of

what our cloth looked like on Spider-Man. But before we

dive into our pipeline and solutions, let’s talk a little bit

about the methods available to us…

This is more specific to Havok itself, but since this is what we

authoring with, it would be good to share the knowledge

here.

There was a lot of learning curves for us – one of the main

ones being that it is okay to play with gravity. We know

gravity to be a pretty fixed and static number for physics, but

in Havok it had the effect of making everything look heavier

or lighter with a one number cheat change.

As mentioned earlier we used Havok Mesh-Bone (bone

driven cloth) cloth deformer as their Mesh-Mesh(vertex

cloth) deformer would have been too expensive for us and

didn’t allow us to do depth on the cloth.

For player characters, we made use of their Motion Transfer

system, which limited the speed at which cloth could accelerate

and stopped cloth from ‘snapping’ into position.

We used the Mass to weight down cloth, for example to make the

start or end of a setup feel heavier. For the Mass to work, the you

needed to paint custom masks with different values across the

mesh – a constant Mass value of 1 would act as tho Mass were

disabled.

Also – soft gradients rocked! If you painted very specific

information into your mesh – if there was any large movement you

would get anomalies like bumps or jittering.

Finally, here highlighted in yellow are some useful

Constraints I used frequently for our cloth setups.

Standard Link was the basic/standard constraint and Stretch

stopped stretching. These were always there unless you just

wanted your cloth to look and behave like spaghetti!

We would add Bend-Link and Bend Stiffness to create more

rigid behavior in different ways. Volume Constraint tries to

keep the shape of your original mesh – but I found I rarely

used it.

When it came to where to put cloth – we avoided any

complex areas of articulation. There were just so many

factors in these areas to account for that it wasn’t worth the

trade off.

We tended to stay clear of the armpits/shoulders, as these

areas would add complication and simulated mostly from

the armpits down. If a design came in with particularly

complex cloth concept we would work with character to

modify it in way that wouldn’t compromise the design but

also simplified the cloth (no point spending a bunch of time

on something that could be avoided).

The areas marked in red here are what I considered ‘safe zones’

and were clear enough from complex areas. Not to say you can’t

break these rules – but pick and choose your battles!

Our sim meshes had uniform polys as much as possible and

kept as close to the character bind pose. We would often

use the inside of the mesh if there was a thickness, so that

there wasn’t any guesswork when it came to collidables. If

you used the middle of the mesh (an average position of the

thickness) – there would be an arbitrary distance between

your cloth and collison capsules that was challenging to

account for. Remove the guesswork – put the sim on the

inside of the mesh. It’ll make your life easier!

So… custom collision…

Versus…

Standard capsules….

I found we got better and smoother results layering up

collision capsules versus using custom collision objects.

Some very rough napkin math made it seem like it took up

to 6 collision capsules to make up the cost of one single

custom collision shape. Also, I found that jittering was more

likely to occur on custom shapes. It was also harder to make

smoother transitions between the capsules associated with

joints if they weren’t capsules. The rounder they were, the less

likely it was to create ‘lumps’ in the sim.

We tried to be conservative in our cloth setup by creating

low-poly sim meshes – but this also had a behavioural link to

our cloth. Lower poly cloth created a stiffer feeling, where

adding more resolution caused the cloth to behave more

silkily.

Here’s an example:

Same settings… totally different behavior. (for the record is it

out-of-the-box Havok behavior on the cloth here and I have

not modified it at all for this example).

Try and nail down your sim mesh resolution before you start

doing iterations on it – otherwise you’ll be causing a ton of rework

for yourself later down the line.

Now that we got some tips and tricks covered… what else can you

do? Well, if you are lucky enough to have an in-house engine team

– you might want to get yourself some extra features!

Out of the box, Havok was able to get us to achieve a lot –

but we still needed extra engine support. Luckily – this is

where our Core team came in!

(As a side note – having an in-house engine is great as you

can get to directly interface with your engine team and get

feedback, answers to questions or even feature requests.

Here’s a nod to our core folks as they enable us to do

awesome stuff everyday.)

So, what did we get in terms of support?

Firstly, it came in the removal of cinematic cloth pop. What’s

that? Ever seen a game where the camera cuts and all the cloth

settles on a frame? Our core/engine team worked extremely hard

to remove that – which was no easy feat. Shout-out to Reddy at

Insomniac for his tireless work on this.

Next, came the creation of events that let us trigger cloth on and

off, as well as alter some values in cinematics. These events were

gameplay triggers that we could assign in various ways in the

game. In some cases, where we needed a more art-directed

approach to the cloth, and the ability to disable it per shot was

utilized to get the look just right. As mentioned earlier, we would

then swap to the animator controls and the animator would

animate the cloth accordingly. We did this in shots that were

overly specific for the look/feel we needed as it was often more

time effective than trying to develop a new setup.

We also added some events for adjusting gravity and dampening

on the fly. We needed it in some very specific circumstances that

helped solve some particularly tricky problems.

So, from our work on Spider-Man - we developed a good

understanding of what real-time cloth was good at and

where we had to sprinkle on a little extra magic.

Real-time cloth was great for overall flow and larger shapes.

Nothing else could get us that immediate dynamic feedback

and follow-through that it gave us – especially in gameplay.

It also saved us a ton of time by using it in cinematics too –

that allowed us to iterate without destroying the sim.

When we need more detail – this is where we would start

using normal maps or blendshapes. This would let us add

the more granular visual information that we couldn’t afford

to do so with the sim alone.

Despite my initial philosophy of wanting to keep cloth controls as

far aware from animators as possible so they could focus on

performance – we could we still needed them. Whether it was to

massage the sim into position or complete override and control in

some instances – it was something that animators wouldn’t have

to touch 90% of the time – but was really needed when they did.

Most of my time with real-time cloth was spent on polish and

iteration. Nudging a collision capsule here, subtracting a radius

value by 0.001 there… To avoid clipping there was a LOT of

noodling of the numbers. Don’t underestimate the amount of time

this takes – cause I sure did!

And with that… behavior changes that might seem trivial (like

subdividing the sim mesh so it doesn’t pass through collision) were

actually massive and had huge knock on effects. Unfortunately,

there were times where we spent a lot of time iterating on a

particular setup before coming to terms that wasn’t going to

achieve what we needed it to. Changing some components of it

requires all other attributes to be rebalanced – which basically

ended up a re-do. And as previously mentioned… iteration took a

LONG time! Try to make sure you’re happy with your sim mesh as

much as possible before jumping into polish.

More real-time iteration. We’d love the ability to be able to

adjust values of gravity, dampening, mass, etc in real-time.

Each time we altered this, it would cause a rebuild of the

asset and export times. While we did lots of work to

minimize this, the best solution would be immediate

feedback. This would also allow us more instant debugging,

as we could alter properties at will to see what effect they

are having on the behavior.

Better visual display. It would be ideal to add the ability to

see our debug draw within our engine – to remove the

disconnect.

Another thing I’d love is the ability to swap cloth profiles on the fly.

Our current system is to duplicate parts of the model and sim. It

would be nice if we could alter these real-time so we could have

different behavior setups for different scenarios. It would also

mean that if we got a performance we liked on one scene, we

could keep that intact and adjust it on other scenes without

worrying about breaking it.

So let’s sum this all up!

Did we deliver on our promise: to create a believable world

and cloth that services that? I believe we did! Not only was

it belieable – but it was also abundant! Cloth was

everywhere – in the enemies you fought, the npcs you

talked to and in our vast cast of characters. A cursory glance

at our depot and we had around ~70 different assets with

active real-time cloth – and that doesn’t include the

separate setups inside the models themselves! And we did

this all without our small and versatile rigging team – no one

person was dedicated to cloth!

And while we were at it – we improved our cloth tools and

pipeline A LOT. Our engine team worked with us tirelessly to give

us the best results. Whether it was removing cloth pops – to better

and quicker loads – to developing new ways to filter it on and off

in our engine… from start to the end of the project the pipeline

was transformed. I also helped streamline the content side as I

removed as much room for error as I could and made our content

pipeline much more straightforward.

Finally, and perhaps this is a subjective opinion, but I believe we

made some of the best real-time cloth developed ever – especially

in such a large scale open world game. We pushed the bar and

tech and for that I’m proud of us and our entire team at Insomniac.

