

Some quick background about me so people realize I did not start out as a tech artist,

but rather slowly eased into it.

I hope to be able to demonstrate the link between how artists often intuitively

approach solving problems and a more classical mathematical approach, and the

union between them.

This talk is meant to give people insight into different ways to think about creating

effects where most things are done using vertex shaders and driven parametrically.

After going over some basic behavior modelling, we will show ways to use more

advanced effects utilizing methods like distance fields or analytical gradients

construction from easily accessible sources like mesh UVs.

While it will present some mathematical concepts, the goal is to not assume much if

any prior knowledge and break things down from the simplest level up to more

complex, interesting examples.

The basic idea for analytical simulation is that you pre-calculate the desired behavior

into some function and then simply look up into that function to get the desired result

later. This is in contrast to ‘regular simulation’ where you will actually be applying

some behavior every frame and re-updating and writing to some buffer.

Most standard particle systems (ie, both Cascade and Niagara in ue4) will actually be

writing to some buffer every frame to update positions, even if you are doing

something simple like a just gravity force.

This is just to first show the simplest possible function definition of y=x, which is a

linear line with a slope of 1.

This slide may be a bit boring, and it is understandable to want to skim past it. It is not

necessarily critical to applying the concepts presented, but I do feel it helps to

establish exactly what is the connection between the math we write as functions and

shaders and standard mathematical formulas. This is because you will often run into

functions expressed this way when reading white papers or researching a concept

that is expressed outside of the games industry.

We first look at a function less boring than a line. The most obvious one is the sine

wave and it actually forms the basis for a whole plethora of effects including but not

limited to: wind, water, earthquake shakes, tension on wires, flapping wings, bouncing

balls etc.

Just by adding the absolute value, we can force everything to be positive. This is

useful for creating a series of pinched gradients that can be used for things like

bouncing balls.

In UE4 creating vertex shaders is thankfully easy.

Just take a regular new material, and add instructions to the graph and hook them to

World Position Offset.

Since time normally continues from 0 until as long a the game is running, we might

need to prevent animation from happening until some interaction occurs.

An easy way to do that is pass in a Scalar Parameter called “Start Time” and then

clamping the result to positive values.

This is like having a linear, local time for an object and the value for the start time of

the interaction only has to be set ONCE.

Then that result can be modified and turned into the desired modelled behavior.

Using the “Time - StartTime” method, custom effects can be faded out automatically

in the shader without ticking the material. It is true that UE4 decals provide this

functionality, but knowing how to do this can be useful for many other reasons, such

as when you need to fade things that are not standard decals.

This shows a method where the material will automatically fade out after the specified

lifetime. Note that FadeTime is subtracted from Lifetime here. That means that the

Lifetime can be changed by the blueprint and the effect will still be destroyed at the

right time, accounting for the fade time.

This shows the full blueprint logic for the decals in the fade out example. On spawn, a

Material Instance Dynamic is created. The SpawnTime and LifeTime values are set

one time and a delay timer is started. At the end of the delay, the actor deletes itself.

This is replacing the previous fade out timed example with vertex shader behavior.

Instead of a linear fade, a sine wave is used and time is clamped so that the sine

starts and stops at the desired moments.

This is pretty much the same as previous example with the bouncing ball. The main

difference is that we added the Start Time offset and also did a Divide to control the

‘Air Time’. Notice that the Period of the Sine node was changed to 2. This is

because with a period of 1, sine would go both positive and negative. Since we use a

saturate note, that clamps the input to 0-1. Setting the period to 2 means the time

never gets past the ‘halfway point’ of the sine period, which effectively stops it when it

hits the ground again. It is also worth pointing out that in UE4, the default period of

Sine is 1, but in strict mathematical terms, the period is 2pi. This is just something to

be aware of, and when matching something from a whitepaper, you often want to set

the period to 2pi so your period will match the correct math default.

Vertex shaders can scale objects from any point. One way to think about this is by

thinking about what WorldPosition is. It is the position of any vert in the world. So if

you pass in negative worldposition as a vertex offset, it effectively collapses all verts

to the origin (0,0,0). Then if you add in a ‘center point’, it will instead collapse to that

center point instead of the origin. Then this offset can be scaled to smoothly blend the

collapse effect on and off.

Note that the collapse is ‘full’ when passed in without a multiplier (ie, a multiplier of

1.0). To rename our multiplier as “Scale” rather than “Collapse”, we simply perform a

1-x on the value and can now think of it as scale.

It is often useful to combine more than one function to get the desired effect. Here we

show the previous timed jump with a timed Scale by Life effect.

We combine the two pieces from before: Jumping and Scaling. Each operation has its

own Time Offset and then they are both added together. Note that the bottom ‘Scale’

area subtracts ‘AirTime’ instead of Dividing, since it is designed to wait until the jump

animation is complete. Then the saturate nodes are just a clamp between 0 and 1.

Using the frac operation usually forms the basis for custom looping effects in vertex

animation. First you divide Time by the desired ‘Lifetime’ and then get the frac. Then

you have a repeating 0-1 lifetime and can perform all of the custom animation effects

previously listed and they will repeat. When multiple particles (or static mesh quads)

are involved, the time can be randomized by providing a time offset, usually in the

form of a pre-stored random vertex color. The Pivot Painter script by Jon Lindquist

provides one great way to seed the data.

This is a quick operation that can be done to let you dynamically toggle between

using the actual Time node and a user specified value. This can be really useful when

you need to inspect your function at a specific time more carefully. It is often helpful to

use Material Parameter Collections for these values, then you can have control over

full time dilation across many shaders.

UE4 has a material node called Vector Noise which has a few modes. The one I want

to draw attention to right now is the ‘Cellnoise’ mode. This node takes a V3 input. For

each unit cell (ie, each integer sized input), it returns a random V3 output between 0-

1. Note in the input, I used the UV’s multiplied times 4 as the input (and appended a 1

to make it 3d). Thus, it created a 4x4 grid of random colors to use. This is the perfect

thing for taking things like a linear index and making them random for a variety of

effects.

Vertex colors are encoded as 8bit so you have values 0-255 available. Most dcc apps

will normalize the input though, so painting a value of 1.0 is actually ‘really’ painting

the 8bit value of 255. It is actually more useful mathematically for randomization to

think in the 8bit values for a variety of reasons (ie, a more advanced concept but this

allows quantization, ie using 2 vertex color channels to store 65,536 precise indices).

Using this method, using a single channel vertex color can get you full RGB

randomization which saves the other channels for other uses.

If you just take the VertexColor * 255, the output will be the exact integer index of

each quad. Since cellnoise is defined as a different random value per Unit input, it

transitions right on the integer values. So an exact integer value is expected to cause

a precision problem. This is fixed by just adding 0.5 after getting the integer value, in

effect sampling each cell in the center instead of the edge.

If you just take the VertexColor * 255, the output will be the exact integer index of

each quad. Since cellnoise is defined as a different random value per Unit input, it

transitions right on the integer values. So an exact integer value is expected to cause

a precision problem. This is fixed by just adding 0.5 after getting the integer value, in

effect sampling each cell in the center instead of the edge.

This emote and effect were originally authored for Paragon but were later brought the

fortnite. The heart at the end of the effect demonstrate very similar methods that this

talk describes.

The core heart in the effect was a single static mesh that has many small quads

premade. This was done in this case because there was no built in way to have

particles spawn in a specific artist controlled shape using cascade.

Each quad got a random vertex color value used to offset size and motion.

The vertex normals were encoded to be the direction to the heart shape spline.

These normals were handled in a clever way by Scott Kennedy.

By spawning the particles from the heart shape in Maya, the quads were oriented

along their spawning normal.

Because the quads are made very tiny and then later expanded in the vertex shader,

the fact that they are oriented strangely in the original mesh does not affect anything

visible.

The material function ‘Sprite’ can be used to turn any polygon into a camera facing

sprite.

Typically something like ‘object position’ or ‘particle position’ is used to specify the

‘Center Location’, but it also works in a pinch to use WorldPosition, assuming the

quads are very small to start with. It is not shown here, but the Size was also

modulated in the end by multiplying with the random vertex color value. Shown in a

further slide.

Since the vertex normals stored the direction to the original heart shape, the

‘VertexNormalWS’ node could be used to push the sprites along this direction. This

push is multiplied by the ‘Vertex Color’ node containing the encoded random values.

This causes some sprites to move more than other, effectively jittering the amount of

offset. This creates interesting noise in the motion.

The random scaling and position offset effects are chained together by Adding them.

Also, in order to synchronize the timing of the heart with the rest of the effect which

was made in cascade, the Scale and Expand parameters were replaced with a

‘Dynamic Parameter’ node, allowing curves from cascade (or Niagara if this was

remade today), to drive the values.

This demonstrates that sometimes the reasons for a building an effect like this can

have to do with technical limitations or just giving a much greater level of artist control.

A very similar method is used here to create the expanding Llama firework effect. The

shader is very similar to the previous example and uses cascade to control a

Dynamic Parameter to provide timing control.

We have often used simple static meshes for persistent environmental effects like fog

haze cards or dust modes.

The shader setup is very similar to the previous heart example. Random vertex colors

will be encoded and then used to apply some sort of jittered offset to size and/or

velocity.

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan

Demo in R&D. I later expanded on it and added accurate world normal support. This

method is frequently used by Epic FX and Environment artists for effects where some

kind of cheap spline or cylinder is needed.

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan

Demo in R&D. I later expanded on it and added accurate world normal support. This

method is frequently used by Epic FX and Environment artists for effects where some

kind of cheap spline or cylinder is needed.

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan

Demo in R&D. I later expanded on it and added accurate world normal support. This

method is frequently used by Epic FX and Environment artists for effects where some

kind of cheap spline or cylinder is needed.

From discussions with Colin Penty at the Coalition, many of the in game effects for

Gears5 are being authoried using vertex shaders, primarily the environmental effects

but also some weapons and gameplay effects.

They were having problems with the CPU cost of particle simulation. For GPU

particles, even spawning was a problem since there was CPU logic involved.

Switching over to this method freed them up to do more.

Amplitude = Wave Height

WaveDir = Direction of Wave Travel. It has magnitude k = 2pi / Wavelength

Pos = Starting position of vertex to evaluate

Frequency = Frequency of wave

Time = Our friend Time again

Note, not shown is the formula to create the steep crests. This is a separate function

that uses Sine instead of Cosine and displaces vertices sideways.

Gerstner waves were largely popularized by Jerry Tessendorf’s paper Simulating

Ocean Water

Amplitude = Wave Height

WaveDir = Direction of Wave Travel

Pos = Starting position of vertex to evaluate

Wavelength = Frequency of wave

Time = Our friend Time again

Phase = Offset, basically same as “Start Time” in previous examples

Note, not shown is the formula to create the steep crests. This is a separate function

that uses Sine instead of Cosine and displaces vertices sideways.

Since we know the frequency of the wave, we can simply use that to drive the Frac

that repeats with each passing wave.

Once we extract the period of the wave using the frac function, we can then use that

like linear repeating time that begins with each passing wave. It is also necessary to

offset the phase at this point by determining how far between wave crests the current

point is, using a time value of 0.

This video demonstrates many of the techniques built up in this talk. Material

Parameter Collections (MPC) are used to easily share the same global parameters

between the various materials involved so the parameters only need to be set once.

This way, all the timing and things like wavelength match between the ocean, the

splashes and the rock foam.

Notice that we now added a Phase parameter as a time offset. In the typical

implementation, the phase is just a random scalar constant for each wave, and only

serves to offset the starting values. But this value does not HAVE to be a constant. It

can have variation, as long as it is minor.

Since the DF varies spatially, it can be used to alter the phase spatially, based on the

environment.

For UE4 projects with distance fields enabled, the material node

DistanceToNearestSurface returns the Global Distance Field value, which is a

combination of all mesh distance fields in one volume texture surrounding the

camera.

This slide shows how to extract an linear mask from 0 to 1 of the specified world unit

size. Saturate is just a clamp between 0 and 1 that costs no instructions. ‘1-x’ inverts

the result so that it is 1 at the nearest surface and 0 at the defined width.

This shows the effect of the phase offset using a defined width from the obstacles.

The phase offset is modified during the animation, showing how the result can do

some crazy things if it is not kept sensible. But maybe somebody out there will find a

way to use such an exaggerated effect to artistic purpose.

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each

wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is

minor.

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each

wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is

minor.

Distance Field gradients give the slope of the change in distance in each direction. It

is common to normalize them to make the value unit vector length, similar to normal

maps.

The dot product between the DF gradient and another vector will show where the DF

gradient aligns with that vector. If both vectors are normalized (ie, unit vector length),

then the output will be 1 where the vectors align, -1 where the are opposing, and 0

where they are perpendicular. Using this knowledge, you can determine which side of

an obstacle needs forward buildup foam vs trailing turbulent foam.

This is just an illustration for how flowmaps work. There are two textures that each get

advected by some texture containing velocity or direction. Since if you advect or

distort the UVs of a texture too much things look bad, flowmaps reset every period,

and fade to another texture with an offset phase. When one texture has an alpha of 1,

the other has an alpha of 0. These are actually using sine and cosine waves, with the

absolute value. Note: UE4’s flowmap function actually uses a triangle wave, but

the difference is minimal.

This example shows a fortnite river effect. The water flowmaps near the edge of the

shore use the rock normalmaps to make it look like the water parts around the

pebbles. Since this pulls in reflection details, it also creates the illusion of small

whitewater, which is not actually present. Note that the normal map was pre-blurred to

help dilate the normals away from the rocks themselves. For other content it might not

be necessary.

This example shows the effect of altering flowmap vectors using a distance field

graph. The parameter for the distance of the effect is adjusted during the animation.

Note that when the effect is too big and the magnitude is not adjusted properly,

stretching can show up. This is the kind of thing that requires tweaking to taste and

can be very content dependent.

This is the graph to modify a flowmap vector using a distance field. The approach

when using a normal map (like the fortnite example) is actually pretty similar, you just

have to transform the normal map from tangent to world space, and do the same with

the flow vector and use world coordinates (or the opposite if using tangent vectors,

transform the normal map into the ‘flow space’).

This example shows a fortnite river effect. The water flowmaps near the edge of the

shore use the rock normalmaps to make it look like the water parts around the

pebbles. Since this pulls in reflection details, it also creates the illusion of small

whitewater, which is not actually present. Note that the normal map was pre-blurred to

help dilate the normals away from the rocks themselves. For other content it might not

be necessary.

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each

wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is

minor.

This is the full graph for a single gerstner wave. I know its probably a bit hard to read,

I tried a few times to cram it into a single graph. For a better understanding please

refer to the referenced GPU gems chapter.

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each

wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is

minor.

I ran out of time and had too many examples already, so here is a bonus slide on curl

noise. The suggested reading is super mathy, so don’t feel bad if it feels too

advanced. I can describe the take away pretty simply though: Use curl noise in low

pressure zones. The low pressure zone is always the backside of the object against

the flow. From previous examples in this talk, if you did a dot product with the

distance field gradient and flow vector, the negative area would be the low pressure

zone. You can start by simply using that as a mask to control curl noise intensity in

flowmap vectors. For additional modelling, you can take additional offset samples of

the DF against the flow gradient to refine the shape of the wake. The listed reference

will go into how to make this more correct and divergence free while preventing flows

from intersecting analytical boundaries, among other things.

Scale flowmaps were used in the ocean video to give the foam falling off rocks effect.

The timing was controlled using the repeating frac function with its period matched to

the largest wave. There is a UE4 material function called ‘ScaleUVsbyCenter’ that

can be used to replace the advection inside of the Flowmap function. To scale by

center from scratch all that you need to do is do NewUV = (StartUV -

CenterPoint)*Scale + CenterPoint.

