<

UNREAL

DISTANCE FIELDS AND SIMULATION

TRICKS IN UE4
By Ryan Brucks

INntroduction

About Me

Started as Intern at Epic 15 years ago
Previously worked as LD and Environment Artist

Currently Principal Technical Artist

Mixture of R&D for tech demos and game development

. GEARS ~ |
EARSE CE
E;\NA] AN

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Some quick background about me so people realize | did not start out as a tech artist,
but rather slowly eased into it.

| hope to be able to demonstrate the link between how artists often intuitively
approach solving problems and a more classical mathematical approach, and the
union between them.

Overview

Driving behavior with math

Going over making Effects using

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This talk is meant to give people insight into different ways to think about creating
effects where most things are done using vertex shaders and driven parametrically.

After going over some basic behavior modelling, we will show ways to use more
advanced effects utilizing methods like distance fields or analytical gradients
construction from easily accessible sources like mesh UVs.

While it will present some mathematical concepts, the goal is to not assume much if
any prior knowledge and break things down from the simplest level up to more
complex, interesting examples.

Analytical Simulation

Basic

« Modeling Behavior with
as inputs

. Replaces regular simulation’

Y #UE4 | @UNREALENGINE

The basic idea for analytical simulation is that you pre-calculate the desired behavior
into some function and then simply look up into that function to get the desired result
later. This is in contrast to ‘regular simulation’ where you will actually be applying
some behavior every frame and re-updating and writing to some buffer.

Most standard particle systems (ie, both Cascade and Niagara in ue4) will actually be
writing to some buffer every frame to update positions, even if you are doing
something simple like a just gravity force.

Analytical Simulation

Synchronized Effects

Memory cost
Avoids Ticking cost

Deterministic

Y #UE4 | @UNREALENGINE

A function modifies some input

y = f(x)

« Simplest Function: y = x

. Afancy line!

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is just to first show the simplest possible function definition of y=x, which is a
linear line with a slope of 1.

Break

ng it down

The f(x) represents the function. Can be anything.
x represents your Input. Usually includes Time (plus other stuff).
They represents output.

Naming it y indicates plotting results on the Y axis.

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

This slide may be a bit boring, and it is understandable to want to skim past it. It is not
necessarily critical to applying the concepts presented, but | do feel it helps to
establish exactly what is the connection between the math we write as functions and
shaders and standard mathematical formulas. This is because you will often run into
functions expressed this way when reading white papers or researching a concept
that is expressed outside of the games industry.

Building practical examples

y = Sin(x) is a simple function
Use Time for x to get an animated Sin Wave
This is the foundation for many effects

Let’s build something practical from here!

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

We first look at a function less boring than a line. The most obvious one is the sine
wave and it actually forms the basis for a whole plethora of effects including but not
limited to: wind, water, earthquake shakes, tension on wires, flapping wings, bouncing
balls etc.

A Bouncing Ball

By adding one operation to our function

we can modify it to do something else.
Add the Absolute Value operator.

Y =Abs (Sin(x))

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Just by adding the absolute value, we can force everything to be positive. This is
useful for creating a series of pinched gradients that can be used for things like
bouncing balls.

A Bouncing Ball

Now let's use the function in a shader
This example takes the Sine of Time,

To a Vertex Shader
Using Time for x

Using the Output y as our

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Ok, enough "Math’, its material time!

What does that look like in UE4?

O Metallic

O sp

@ World Position Offset

(“Multiply(,100) ¥ /
A o

B

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

In UE4 creating vertex shaders is thankfully easy.
Just take a regular new material, and add instructions to the graph and hook them to
World Position Offset.

What about user control?

Control timing by Subtracting Start Time
Clamp Resultto >0

Only need to set one value once

Can modify the result from there

A Power adjustment is shown

3 #UE4 | @UNREALENGINE Af) uNREAL ENGINE

Since time normally continues from 0 until as long a the game is running, we might
need to prevent animation from happening until some interaction occurs.

An easy way to do that is pass in a Scalar Parameter called “Start Time” and then
clamping the result to positive values.

This is like having a linear, local time for an object and the value for the start time of
the interaction only has to be set ONCE.

Then that result can be modified and turned into the desired modelled behavior.

The Material Changes

We add a Subtract with Start Time scalar

We add a Max(x, 0) to clamp above 0.

3 #UE4 | @UNREALENGINE Af) UNREAL ENGINE

Fading Out Effects

Useful for Fading Decals and Mesh effects

QD

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Using the “Time - StartTime” method, custom effects can be faded out automatically
in the shader without ticking the material. It is true that UE4 decals provide this
functionality, but knowing how to do this can be useful for many other reasons, such
as when you need to fade things that are not standard decals.

Fade Out Logic: Material

Time
Subtract ¥ Divide ¥ Saturate ¥ L

A ®— 0 o —o o

v
o Aoe
B B8
Spawntime o, H /
T
o B ‘ FadeTime
8 { .
(iifeTime
Subtract ¥
.

—
B
mmu,/
[

Y #UE4 | @UNREALENGINE

Al) UNREAL ENGINE

This shows a method where the material will automatically fade out after the specified
lifetime. Note that FadeTime is subtracted from Lifetime here. That means that the

Lifetime can be changed by the blueprint and the effect will still be destroyed at the
right time, accounting for the fade time.

Fade Out Logic: Blueprint

° J DestroyActor

Create MID on spawn, set
Then roy Actor after LifeTime Delay

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This shows the full blueprint logic for the decals in the fade out example. On spawn, a
Material Instance Dynamic is created. The SpawnTime and LifeTime values are set
one time and a delay timer is started. At the end of the delay, the actor deletes itself.

A Timed Jump Shader

@

Same Timed Fade can be used for motion

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is replacing the previous fade out timed example with vertex shader behavior.
Instead of a linear fade, a sine wave is used and time is clamped so that the sine
starts and stops at the desired moments.

A Timed Jump Shader

(m— o— (— " —
Subtract ¥ Divide ¥ Saturate ¥V Sine ¥ Munply ad O Normal
A ® — @ [3 o o @ World Position Offset

/ / :
Spawnﬁm Thirtime o

O Ambient Occlusion

O Pixel Depth Offset

Same Timed Fade can be used for motion

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is pretty much the same as previous example with the bouncing ball. The main
difference is that we added the Start Time offset and also did a Divide to control the
‘Air Time’. Notice that the Period of the Sine node was changed to 2. This is
because with a period of 1, sine would go both positive and negative. Since we use a
saturate note, that clamps the input to 0-1. Setting the period to 2 means the time
never gets past the ‘halfway point’ of the sine period, which effectively stops it when it
hits the ground again. It is also worth pointing out that in UE4, the default period of
Sine is 1, but in strict mathematical terms, the period is 2pi. This is just something to
be aware of, and when matching something from a whitepaper, you often want to set
the period to 2pi so your period will match the correct math default.

Scaling by Life

@ World Position Of

© Ambient Occlusio

Absolute World Position
O Pixel Depth Offse!
[3

(Center - WorldPosition) collaj verts to center when used as Vertex Offset

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Vertex shaders can scale objects from any point. One way to think about this is by
thinking about what WorldPosition is. It is the position of any vert in the world. So if
you pass in negative worldposition as a vertex offset, it effectively collapses all verts
to the origin (0,0,0). Then if you add in a ‘center point’, it will instead collapse to that
center point instead of the origin. Then this offset can be scaled to smoothly blend the
collapse effect on and off.

Note that the collapse is ‘full’ when passed in without a multiplier (ie, a multiplier of
1.0). To rename our multiplier as “Scale” rather than “Collapse”, we simply perform a
1-x on the value and can now think of it as scale.

Jumping with Scaling by Lift

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

It is often useful to combine more than one function to get the desired effect. Here we
show the previous timed jump with a timed Scale by Life effect.

Combining Two Pieces

Jump Animation

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

We combine the two pieces from before: Jumping and Scaling. Each operation has its
own Time Offset and then they are both added together. Note that the bottom ‘Scale’
area subtracts ‘AirTime’ instead of Dividing, since it is designed to wait until the jump
animation is complete. Then the saturate nodes are just a clamp between 0 and 1.

A Looping Effect

Frac: The basis of a loop

Returns the fractional part of number

Repeats 0-1 PR
Think of each 0-1 repeat as one Lifetime

Offset time w/ random values encoded in mesh

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Using the frac operation usually forms the basis for custom looping effects in vertex
animation. First you divide Time by the desired ‘Lifetime’ and then get the frac. Then
you have a repeating 0-1 lifetime and can perform all of the custom animation effects
previously listed and they will repeat. When multiple particles (or static mesh quads)
are involved, the time can be randomized by providing a time offset, usually in the
form of a pre-stored random vertex color. The Pivot Painter script by Jon Lindquist
provides one great way to seed the data.

Manual Debug Time

Often useful to be able to del

Lerp between Time and Ma

Then set the Alpha to either 0 and 1
Values can be MPC for to sync’ materials

Allows quickly toggling looping vs manual scrubbing of value

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is a quick operation that can be done to let you dynamically toggle between
using the actual Time node and a user specified value. This can be really useful when
you need to inspect your function at a specific time more carefully. It is often helpful to
use Material Parameter Collections for these values, then you can have control over
full time dilation across many shaders.

Randomization

Vector Noise: The most useful UE4 material randomizer
[~][Perspecive | '

M_PlotSine
O Base Color
O Metallic

O Specular
TexCoord[0] ¥ f—
A O Roughness

@ Emissive Color

© Normal
© World Position

4 Material Expression Vector Noise

O Ambient Occlug

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

UE4 has a material node called Vector Noise which has a few modes. The one | want
to draw attention to right now is the ‘Cellnoise’ mode. This node takes a V3 input. For
each unit cell (ie, each integer sized input), it returns a random V3 output between 0-
1. Note in the input, | used the UV’s multiplied times 4 as the input (and appended a 1
to make it 3d). Thus, it created a 4x4 grid of random colors to use. This is the perfect
thing for taking things like a linear index and making them random for a variety of
effects.

Encoding for Randomization

Typically use Vertex Colors which are 8-bit

This means values 0-255 available

Values will appear normalized 0-1

Write values using 1/255 increments

On material, multiply color by 255 to restore integer

Shown: one mesh with 16 quads indexed 0-16 in vertex color

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Vertex colors are encoded as 8bit so you have values 0-255 available. Most dcc apps
will normalize the input though, so painting a value of 1.0 is actually ‘really’ painting
the 8bit value of 255. It is actually more useful mathematically for randomization to
think in the 8bit values for a variety of reasons (ie, a more advanced concept but this
allows quantization, ie using 2 vertex color channels to store 65,536 precise indices).
Using this method, using a single channel vertex color can get you full RGB
randomization which saves the other channels for other uses.

Decoding for Randomization

With Cellnoise, we can get precision artifacts sampling right at integers

v (—
_ Vector Noise
o Multiply(,255) ¥ | Add(,0.5) ¥ Celinoise

S A [2 A [3 @ Position @ —

B B

Fixed by doing Color * 255 + 0.5

A4l) UNREAL ENGINE

Y #UE4 | @UNREALENGINE

If you just take the VertexColor * 255, the output will be the exact integer index of
each quad. Since cellnoise is defined as a different random value per Unit input, it
transitions right on the integer values. So an exact integer value is expected to cause
a precision problem. This is fixed by just adding 0.5 after getting the integer value, in
effect sampling each cell in the center instead of the edge.

Building the random loop

I
SECEOR D VRN v,

e o |

*
=
-
i
4

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

If you just take the VertexColor * 255, the output will be the exact integer index of
each quad. Since cellnoise is defined as a different random value per Unit input, it
transitions right on the integer values. So an exact integer value is expected to cause
a precision problem. This is fixed by just adding 0.5 after getting the integer value, in
effect sampling each cell in the center instead of the edge.

A Fortnite Example

The heart FX in emote True Heart make use of these methods

Effect by Scott Kennedy

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This emote and effect were originally authored for Paragon but were later brought the
fortnite. The heart at the end of the effect demonstrate very similar methods that this
talk describes.

True Heart Effect

Heart is based on a static mesh

This is the wireframe for the mesh
Lots of tiny quads, randorr

The vertex shader expands into sprites

Cascade controlled timing for scale for shader

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

The core heart in the effect was a single static mesh that has many small quads
premade. This was done in this case because there was no built in way to have
particles spawn in a specific artist controlled shape using cascade.

Each quad got a random vertex color value used to offset size and motion.

The vertex normals were encoded to be the direction to the heart shape spline.
These normals were handled in a clever way by Scott Kennedy.

By spawning the particles from the heart shape in Maya, the quads were oriented
along their spawning normal.

Because the quads are made very tiny and then later expanded in the vertex shader,
the fact that they are oriented strangely in the original mesh does not affect anything
visible.

Sprite Expanding Shader

WorldPosition works as a center for small quads

Absolute World Position
Sprite
® — Center Location (V3) World position offset @ @ World Position Offset
—_—_— 0-1 UVs (V2) Normals O
Size v

XY scale (V2)

L

Normals (Optional) (V3)

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

The material function ‘Sprite’ can be used to turn any polygon into a camera facing
sprite.

Typically something like ‘object position’ or ‘particle position’ is used to specify the
‘Center Location’, but it also works in a pinch to use WorldPosition, assuming the
guads are very small to start with. It is not shown here, but the Size was also

modulated in the end by multiplying with the random vertex color value. Shown in a
further slide.

Positional Jittering

Normals Encode Direction from Shape
T ey

VertexNormalWs

L \ Multiply ¥
2 — A @ —— @ World Position Offset

.‘\'-m v/ B
s e
v B

3

Vertex Color

O Refraction

3 #UE4 | @UNREALENGINE Af) uNREAL ENGINE

Since the vertex normals stored the direction to the original heart shape, the
‘VertexNormalWS’ node could be used to push the sprites along this direction. This
push is multiplied by the ‘Vertex Color’ node containing the encoded random values.
This causes some sprites to move more than other, effectively jittering the amount of
offset. This creates interesting noise in the motion.

Combining Offsets

both offsets. Replace scalars with

VertexNormalWs

L
PR
Thditiply” ¥ 8
s o

B

Absolute World Position

’\ Spri
Mutiply ¥
P
-]

Dynamic Parameter

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

The random scaling and position offset effects are chained together by Adding them.
Also, in order to synchronize the timing of the heart with the rest of the effect which
was made in cascade, the Scale and Expand parameters were replaced with a
‘Dynamic Parameter’ node, allowing curves from cascade (or Niagara if this was
remade today), to drive the values.

This demonstrates that sometimes the reasons for a building an effect like this can
have to do with technical limitations or just giving a much greater level of artist control.

L lama Fireworks

ks effect by | ' huu uses similar methods

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

A very similar method is used here to create the expanding Llama firework effect. The
shader is very similar to the previous example and uses cascade to control a
Dynamic Parameter to provide timing control.

Environmental Effects

Often used for simple environment effects

Used when there's 0 |

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

We have often used simple static meshes for persistent environmental effects like fog
haze cards or dust modes.

The shader setup is very similar to the previous heart example. Random vertex colors
will be encoded and then used to apply some sort of jittered offset to size and/or
velocity.

Spline Thicken

Like , but projected along Splines instead of

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan
Demo in R&D. | later expanded on it and added accurate world normal support. This
method is frequently used by Epic FX and Environment artists for effects where some
kind of cheap spline or cylinder is needed.

Spline Thicken Example

Used for Environment assets and FX

Used for FN Grappler and Tracers

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan
Demo in R&D. | later expanded on it and added accurate world normal support. This
method is frequently used by Epic FX and Environment artists for effects where some
kind of cheap spline or cylinder is needed.

Spline Thicken Material Function

o SplineThicken
Supply parameters for Thi S T
O WidthTip (S) WorldPositionOffset O»
Options for which UV axis to project a|Ong WorldPosition (V3) UVs with Parallax O»
UVs for Projection (V2)

. . UVs for Thickness (V2)

Options for applying texture norn ettt
Expand U or V UV Channel (B)
DeriveNormalZ (B)
AngleCorrectedNormals (B)
AdditionalNormal (V3)
FlattenPixelNormal (B)

UVs For NormalShading (V2)

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Spline Thicken was originally conceived of by Jordan Walker for the UE3 Samaritan
Demo in R&D. | later expanded on it and added accurate world normal support. This
method is frequently used by Epic FX and Environment artists for effects where some
kind of cheap spline or cylinder is needed.

The Coalition: Swift Particle System

Referred to as Swift , written by

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

From discussions with Colin Penty at the Coalition, many of the in game effects for
Gearsb5 are being authoried using vertex shaders, primarily the environmental effects
but also some weapons and gameplay effects.

They were having problems with the CPU cost of particle simulation. For GPU
particles, even spawning was a problem since there was CPU logic involved.
Switching over to this method freed them up to do more.

What about Spatial info?

|.E., reacting based on proximity, or looping period

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Water FX

Gerstner Waves are a common method for modelling oceans
Based on the Sum of different length Sine Waves

Amplitude * cos(WaveDir - Pos - Frequency * Time)

N N A

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

Amplitude = Wave Height

WaveDir = Direction of Wave Travel. It has magnitude k = 2pi / Wavelength
Pos = Starting position of vertex to evaluate

Frequency = Frequency of wave

Time = Our friend Time again

Note, not shown is the formula to create the steep crests. This is a separate function
that uses Sine instead of Cosine and displaces vertices sideways.

Gerstner waves were largely popularized by Jerry Tessendorf’s paper Simulating
Ocean Water

Stop with the Math Alread

UE4 Vertex Shader of a

GerstnerWave ZDisplacement

Absolute World Position (Excluding Material Offsets)

Divide ¥ Multipy ¥ me'
L 3 A O HEEEO® O s

s

Y #UE4 | @UNREALENGINE

Al) UNREAL ENGINE

Amplitude = Wave Height

WaveDir = Direction of Wave Travel

Pos = Starting position of vertex to evaluate

Wavelength = Frequency of wave

Time = Our friend Time again

Phase = Offset, basically same as “Start Time” in previous examples

Note, not shown is the formula to create the steep crests. This is a separate function
that uses Sine instead of Cosine and displaces vertices sideways.

Synchronized, Tickless Splashes

Sample the Largest Wave(s) using a Material Function
Roll a function that resets every time the wave passes some point

Our old buddy, frac

Just divide time by wave frequency VOB " 47444

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Since we know the frequency of the wave, we can simply use that to drive the Frac
that repeats with each passing wave.

Applying At Scale

Match the frac function with wave period

Modify it like we did with our initial Power tweak

We can apply a gravity arc using sine .

Make particles jump up with waves

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

Once we extract the period of the wave using the frac function, we can then use that

like linear repeating time that begins with each passing wave. It is also necessary to

offset the phase at this point by determining how far between wave crests the current
point is, using a time value of 0.

Synchronized Ocean

-

7 € W » AL IENEN ST

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This video demonstrates many of the techniques built up in this talk. Material
Parameter Collections (MPC) are used to easily share the same global parameters
between the various materials involved so the parameters only need to be set once.
This way, all the timing and things like wavelength match between the ocean, the
splashes and the rock foam.

Distance Fields In the mix

Distance Fields tell you how far you are from the closest surface.
We can use them in a variety of ways to aid Analytical Simulation.

Let's expand on the Gerstner Wave formula:

Amplitude * cos(WaveDir - Pos - Frequency * Time + Phase)

—_—

N AN AN

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

Notice that we now added a Phase parameter as a time offset. In the typical
implementation, the phase is just a random scalar constant for each wave, and only
serves to offset the starting values. But this value does not HAVE to be a constant. It
can have variation, as long as it is minor.

DF Phase Offset

We can use Distance Fields as a PhaseOffset
Can be used to model the effect of rocks in the ocean

Adds some resistance to the water, delaying waves slightly.

Af) UNREAL ENGINE

3 #UE4 | @UNREALENGINE

Since the DF varies spatially, it can be used to alter the phase spatially, based on the
environment.

Distance Fields Debug

UE4 has Di ‘ace node

= T ———— :

Absolute World Position o DistanceToNearestSurface ¥ Multiply
A
B

° P Position [3

Debug Diplay /
°

In nits. Shown here by multiplying be small red value.

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

For UE4 projects with distance fields enabled, the material node
DistanceToNearestSurface returns the Global Distance Field value, which is a
combination of all mesh distance fields in one volume texture surrounding the

camera.

First we must remap the range of the distance field

rrrr——
Saturate ¥
[3 [3

=
S P DistanceToNearestSurface ¥

@ —— * Position

DFLength

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This slide shows how to extract an linear mask from 0 to 1 of the specified world unit
size. Saturate is just a clamp between 0 and 1 that costs no instructions. ‘1-x’ inverts
the result so that it is 1 at the nearest surface and O at the defined width.

Phase Offset Example

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This shows the effect of the phase offset using a defined width from the obstacles.
The phase offset is modified during the animation, showing how the result can do
some crazy things if it is not kept sensible. But maybe somebody out there will find a
way to use such an exaggerated effect to artistic purpose.

Phase Offset Graph

Use result to

v

® — A
B

Absolute World Position I
DistanceToNearestSurface ¥ Divide ¥ Saturate V¥ 1 Power V¥ Multiply ¥

®* — Position ® — A ®—@ ®—©® & — @B @ —— A @

B

Exp
Distance v .
Fa Power DF Phase offset
~ Pa F
[2 [3

B

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each
wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is
minor.

Distance Field Gradient Uses

By combining

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each
wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is
minor.

Distance Field Gradient Debug

are like Normal Maps, giving Direction to nearest surface

e
DistanceFieldGradient ¥

Position (o

They tell how fast values change in each direction

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Distance Field gradients give the slope of the change in distance in each direction. It
is common to normalize them to make the value unit vector length, similar to normal
maps.

Gradient Dot Product

t between Gradient and another vector can be computed

This shows where DF Gradient aligns with the second vector

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

The dot product between the DF gradient and another vector will show where the DF
gradient aligns with that vector. If both vectors are normalized (ie, unit vector length),
then the output will be 1 where the vectors align, -1 where the are opposing, and 0
where they are perpendicular. Using this knowledge, you can determine which side of
an obstacle needs forward buildup foam vs trailing turbulent foam.

How about Flowmaps?

Flowmaps: a popular method to model fluid flow

An artistic effect. Seeks to distill the essence of fluid flow.

Two textures advect and fade with offset p

N #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is just an illustration for how flowmaps work. There are two textures that each get
advected by some texture containing velocity or direction. Since if you advect or
distort the UVs of a texture too much things look bad, flowmaps reset every period,
and fade to another texture with an offset phase. When one texture has an alpha of 1,
the other has an alpha of 0. These are actually using sine and cosine waves, with the
absolute value. Note: UE4’s flowmap function actually uses a triangle wave, but
the difference is minimal.

How about Flowmaps?

and

Use the Gradient to alter flow

Y #UE4 | @UNREALENGINE

This example shows a fortnite river effect. The water flowmaps near the edge of the
shore use the rock normalmaps to make it look like the water parts around the
pebbles. Since this pulls in reflection details, it also creates the illusion of small
whitewater, which is not actually present. Note that the normal map was pre-blurred to
help dilate the normals away from the rocks themselves. For other content it might not
be necessary.

DF Flowmap modifications

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This example shows the effect of altering flowmap vectors using a distance field
graph. The parameter for the distance of the effect is adjusted during the animation.
Note that when the effect is too big and the magnitude is not adjusted properly,

stretching can show up. This is the kind of thing that requires tweaking to taste and
can be very content dependent.

DF Flowmap Graph

Mask (RG) ¥

DistanceFieidoradient ¥ Nomaize v [(Mask(RG) ¥
® — @ Vetorinpt © — @ -
Absolute World Position .
DistanceToNearestsurface ¥ Ovide ¥ [Satwate ¥ =

[Power ¥
® ~ & postion *e— 10— eo—9o o

™~

® e ®

“oFDR / TRy / =

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is the graph to modify a flowmap vector using a distance field. The approach
when using a normal map (like the fortnite example) is actually pretty similar, you just
have to transform the normal map from tangent to world space, and do the same with
the flow vector and use world coordinates (or the opposite if using tangent vectors,
transform the normal map into the ‘flow space’).

Wrapping up

Analytical Simulation is a great method to consider
Great for environmental FX and synchronization
Powerful cost savings

begin thinking about effect:

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

This example shows a fortnite river effect. The water flowmaps near the edge of the
shore use the rock normalmaps to make it look like the water parts around the
pebbles. Since this pulls in reflection details, it also creates the illusion of small
whitewater, which is not actually present. Note that the normal map was pre-blurred to
help dilate the normals away from the rocks themselves. For other content it might not
be necessary.

ienigpadX HyRYangpcks, Sky materist by Pet

N #UE4 | @UNREALENGINE s : ; AL UNREAL ENGINE

References

Simulating Ocean Water - Jerry Tessendorf - 1999

Flow Visualization Using moving Textures - Nelson Max & Barry Becker - 1995

GPU Gems Chapter 1 - Mark Finch - 2004

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to 0.

In the typical implementation, the phase is just a random scalar constant for each
wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is
minor.

G\

Bonus Slide 1: Full Gerstner Wave

Normals

-

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

This is the full graph for a single gerstner wave. | know its probably a bit hard to read,
| tried a few times to cram it into a single graph. For a better understanding please
refer to the referenced GPU gems chapter.

Bonus Slide 2: A Lagged Wave

Lagged waves are incredibly useful for many things

Code for a Lagged Wave
BaseWave = abs(sin(Time));

Build the Tail

WaveTail = frac(2* ((Time / (2*PI))) + 0.5);
WaveTail = (WaveTail / (LagValue * 2.01));
WaveTail = 2 * PI * (WaveTail + 0.25);

Combine the Tail and the Base Wave
LaggedWave = max (BaseWave, sin(WaveTail)) ;

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

Notice that emphasis is now placed on the Phase parameter.

Previously this was set to O.
In the typical implementation, the phase is just a random scalar constant for each

wave, and only serves to offset the starting values.

But this value does not HAVE to be a constant. It can have variation, as long as it is
minor.

Bonus Slide 3: Curl Noise

Curl noise is a Divergence Free vector field
Great for adding noise or turbulence to any simulation
Suggested reading:

Curl-Noise for Procedural Fluid Flow

4 Material Expression Vector Noise

3 #UE4 | @UNREALENGINE (Af) UNREAL ENGINE

| ran out of time and had too many examples already, so here is a bonus slide on curl
noise. The suggested reading is super mathy, so don’t feel bad if it feels too
advanced. | can describe the take away pretty simply though: Use curl noise in low
pressure zones. The low pressure zone is always the backside of the object against
the flow. From previous examples in this talk, if you did a dot product with the
distance field gradient and flow vector, the negative area would be the low pressure
zone. You can start by simply using that as a mask to control curl noise intensity in
flowmap vectors. For additional modelling, you can take additional offset samples of
the DF against the flow gradient to refine the shape of the wake. The listed reference
will go into how to make this more correct and divergence free while preventing flows
from intersecting analytical boundaries, among other things.

Bonus Slide 4: Scale Flowmaps

Modification on flowmaps: Scale by point instead of advection

Y #UE4 | @UNREALENGINE Al) UNREAL ENGINE

Scale flowmaps were used in the ocean video to give the foam falling off rocks effect.
The timing was controlled using the repeating frac function with its period matched to
the largest wave. There is a UE4 material function called ‘ScaleUVsbyCenter’ that
can be used to replace the advection inside of the Flowmap function. To scale by
center from scratch all that you need to do is do NewUV = (StartUV -
CenterPaint)*Scale + CenterPoint.

