
Tile-Based Map Generation Using 
WaveFunctionCollapse in Caves of Qud

Brian Bucklew
Co-founder at Freehold Games, LLC

Math for Game Developers:



Why are we here
● Caves of Qud is a game with lots of procedural 

content
● We utilize a few novel techniques, we’re going to talk 

about one, Wave Function Collapse (WFC)
● Let’s look at the final result then we’ll talk about how 

we got there











Wide variety of results, single algorithm
●Each of these had a very different character though the 
basic algorithm was identical between them
●We use an extremely powerful new texture synthesis 
technique called “WaveFunctionCollapse” alongside a 
set of other procedural tools engineered to supplement 
it’s unique weakness when used for map making.



WaveFunctionCollapse
●Developed by Maxim Gumin and released as open 
source in 2016
●https://github.com/mxgmn/WaveFunctionCollapse
●Caves of Qud was the first commercial use, many 
others quickly followed

https://github.com/mxgmn/WaveFunctionCollapse


WaveFunctionCollapse Texture and Tiles

●WFC has two primary modes of function, tile maps and 
textures



The tilemap generation mode creates tile set solutions 
via propagation of defined tile adjacency constraints.



Texture Mode
●In Caves of Qud we use the other mode, Texture Mode
●Easy training inputs (small ~16x16px training images 
that can be easily created in tools like mspaint)
●Powerful outputs (arbitrarily large output textures that 
are locally similar to the input)



Texture mode, wow!
Input

7 sample outputs



What’s going on here
1. The input is divided into NxN tiles and their overlap with other tiles 

is calculated
2. The output is initialized with each pixel being a full superposition of 

possible output tiles.
3. The lowest entropy NxN area is selected from the output and one 

option is selected at random from the remaining possibilities.
4. New information based on that selection are propagated to 

adjacent areas, removing possibilities that won’t properly overlap.
5. If any elements are still uncollapsed Goto 2!



Identify the NxN patterns

etc…



Identify tiles that overlap at offsets 
of 1..n in each dimension

etc…



Collapse one segment, propagate 
information, repeat…



Take a look at the first step…



Focus in on the three pixels here…



The pattern to the left is blue, blue, 
green for certain.



Those three pixels know blue, blue, green is to their left 
and thus could end up as any of the three pixels 
highlighted in magenta because those three 3x3 areas 
share the blue blue green pattern in the overlapping 
area



2 blue options, 1 green option for the top two pixels. 
Only green for the bottom.



Collapse one segment, propagate 
information, repeat…



Process Demo






Experiments in texture mode
Let’s look at a couple examples. Here was something that 
represents my first attempts. Neat but lacks controllability.



Texture mode, an example (2)
Using an additional color to hint the “inside” pixels was 
an effective solution to improve control.



Texture mode, an example (3a)
We can create some nice results!



Texture mode, an example (3b)
We can create some nice results!



Texture mode, an example (3c)
We can create some nice results!



Quick Code Example
1. var model = new OverlappingModel(input, N:3, width:48, height:48, periodicInput:true, periodic:false, symmetry:8, ground:0 );

2. model.Run(random.Next, limit:0);

3. model.Graphics().Save($"output.png");

Input – the training image

N – How large of blocks (NxN) to sample from the input as input patterns. (higher N leads to rising CPU and memory cost)

Width – The output width

Height – The output height

periodicInput – Whether to sample the input across edges

periodic – Whether the output should be sampled across edges to create edge-wrapping output

symmetry – a value between 1..8, indicating how many reflection and rotation symmetries should be sampled from the input



But … Problem 1 - Homogeny

It just goes on forever in every direction, there is 
no inherent large scale structure



Problem 2 - Overfitting
1. Adding more detail often results in overfitting small 

details, reducing variability of the output.



Solution to Homogeny

Partition large scale chunks whose interior walls are generated by 
WFC. Additional details are added in subsequent passes.



Solution to Overfitting
Use WFC to create overall architecture then create additional detailing and 
connectivity (doors, etc) via additional generative passes.



Full Example - Segmentation



Full Example – WFC Output



Full Example – Fill Segments



Full Example - Connectivity



Full Example - Connectivity



Full Example - Connectivity



Full Example - Connectivity



Full Example - Connectivity



Full Example – Finished Map











Additional Reading & Questions
● “A Brief Introduction to Wave Function Collapse”

https://youtu.be/pcZQILKxo_M?t=445

● “WFC is constraint Solving in the Wild”
https://isaackarth.com/papers/wfc_is_constraint_solving_in_the_wild/

● WFC Repository
https://github.com/mxgmn/WaveFunctionCollapse

https://youtu.be/pcZQILKxo_M?t=445
https://isaackarth.com/papers/wfc_is_constraint_solving_in_the_wild/
https://github.com/mxgmn/WaveFunctionCollapse

	Tile-Based Map Generation Using WaveFunctionCollapse in Caves of Qud���Brian Bucklew�Co-founder at Freehold Games, LLC
	Why are we here
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Wide variety of results, single algorithm�
	WaveFunctionCollapse�
	WaveFunctionCollapse Texture and Tiles�
	The tilemap generation mode creates tile set solutions via propagation of defined tile adjacency constraints.�
	Texture Mode
	Texture mode, wow!
	What’s going on here
	Identify the NxN patterns
	Identify tiles that overlap at offsets of 1..n in each dimension
	Collapse one segment, propagate information, repeat…
	Take a look at the first step…
	Focus in on the three pixels here…
	The pattern to the left is blue, blue, green for certain.
	Those three pixels know blue, blue, green is to their left and thus could end up as any of the three pixels highlighted in magenta because those three 3x3 areas share the blue blue green pattern in the overlapping area
	2 blue options, 1 green option for the top two pixels. Only green for the bottom.
	Collapse one segment, propagate information, repeat…
	Process Demo
	Experiments in texture mode
	Texture mode, an example (2)
	Texture mode, an example (3a)
	Texture mode, an example (3b)
	Texture mode, an example (3c)
	Quick Code Example
		But … Problem 1 - Homogeny�
	Problem 2 - Overfitting
	Solution to Homogeny
	Solution to Overfitting
	Full Example - Segmentation
	Full Example – WFC Output
	Full Example – Fill Segments
	Full Example - Connectivity
	Full Example - Connectivity
	Full Example - Connectivity
	Full Example - Connectivity
	Full Example - Connectivity
	Full Example – Finished Map
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Additional Reading & Questions

