
I would like to start by thanking each of you for attending this talk. There
are a lot of great options and I’m flattered that you are here. I will let you
know that there are bonus slides at the end of this presentation that I
won’t have time to cover. However this talk and its slides will be available
via the GDC Vault or feel free to reach out to me directly if you are
interested. Also please don’t forget to fill out your evaluation forms, I need
the feedback.

So now that you are here, whether intentional or you just realized you are
in the wrong room; you are most likely wondering, who the hell is this
guy?

Well, my name is Peter Dalton and I’m the technical director for Bluepoint
Games, and as you can tell from the grey in my beard, I’ve been around
for a while.

I’ve been working in the games industry for over 18 years and I will never
leave, I love my job, the insanely hard problems and the talented people
I’m surrounded by.

Over the 11+ titles that I have shipped my specialties revolve around core
engine development, streaming, memory, performance, I like to believe
that my job is to basically, make shit happen.

So, Bluepoint Games. Perhaps you have heard of us; the Masters of the
Remaster, I have to thank Digital Foundry for that title. Seriously the
Digital Foundry guys are amazing. Their technical reviews are spot on and
Bluepoint is tired of me ranting about how our framerate and frame pacing
must be perfect or Digital Foundry will call us out.

Bluepoint has made a name for itself by remastering games, many of
which I’m hoping you have heard of. We have been blessed to work with
titles that we absolutely love, and from my perspective it is insanely
awesome that we get to see exactly how these games were made.

At Bluepoint there are 2 primary ideals that I try to promote

1. Quality is the foundation of success. I believe that this is absolutely
true for our industry. If you want long term sustained success you
must have quality to feed it.

2. Every project we release must be better than our previous release.
Hopefully you can see this trend by looking at our past projects.

The depth at which we remaster projects has grown exponentially. Starting
with the God Of War Collection, which involved texture cleanup, to the
Uncharted Collection which involved all aspects of the game being

modified. In fact for Shadow we don’t call it a remaster, we coin it a remake given
the complexity of the project. And moving forward to our next project, we coin it
a re-envisioning given that it goes well beyond what we even thought possible on
Shadow.

Now I want to take a minute to show you a video from PSX 2017, showing a
comparison between the original Shadow and the PS4 remake to give you a
better sense of what we do.

Shadow of the Colossus PSX 2017 Comparison Trailer - PS4

I feel that it is important that people understand a couple of our over
arching goals that we take into each remastering project.

1. We have to be true to the design of the original game.

2. We have to respect the decisions of the original game team.

3. We must not loose the magic of the original game. And if you say
to yourself, I can’t find the magic in the original, then what the hell
are you doing?

4. We have to acknowledge that there is rarely a black and white
answer for what we do and as a result there will be lots of internal
debates. These debates are good and health and most importantly
show passion.

To help explain our thought process I like to use an analogy.

As a kid growing up, I use to love watching cartoons, who didn’t. I’m sure
if you think about it, you had your favorites, certain shows that stand out
in your memories. Well in my case I loved Thundercats and have fond
memories. However if I go back and watch them now, or try to show them
to my kids, they aren’t anything like I remember.

What we are trying to do, is bring those memories back to life and enable
others to have similar experiences.

We are trying to recreate the game the original game developers would have
release if they had the technology that we have today.

So, let’s take a technical look at the development process that we use at
Bluepoint when remastering a title.

Besides determining whether or not it makes business sense to remaster a game,
there are several key factors that must be considered.

1. We absolutely must have access to the released package. For Shadow this
was the final package that was delivered to Sony for distribution. This
should include all patches, back end servers, etc. Basically we need to be
able to run the retail project in house.

2. We require all of the final source code required to rebuild the game’s final
binaries. Now there are exception.

• We can work around miscellaneous systems. For example, if we are
missing an audio library, chances are we are going replacing the entire
system so no biggy. However if we are missing gameplay code it quickly
becomes cost prohibitive to reverse engineer those libraries.

Other examples include:

• Server code if required is a bonus, however we can work around not
having it.

• Tool pipeline code is a bonus, however we usually don’t build our
processes around legacy tools and primary only use them for reference.

• And finally any Source assets that were used to build the final distribution
package is a bonus, but not mandatory.

So looking at the development process, the goal for the first month is to obtain all
of the required pieces and to rebuild the game’s binaries for the original target
platform. We then send this build to our internal QA and run a whole suite of
parity tests.

I should call out that it is critical to the success of the project that we get these
first steps correct. Small errors here will be magnified as we get into full
development, leading to waisted time and incorrect decisions being made. Here
we feel that taking our time to ensure correctness is preparing for success.

Moving forward, once we have parity we upgrade the original target to its latest
SDK to make life easier, then rerun all parity tests. Basically we make incremental
changes and verify parity though all steps.

Take Shadow for example, very early on we decided that we were going to use
the remastered PS3 version as our base. At this point QA ran extensive parity
tests between the PS2 and the PS3 versions, combed old bug databases, search
the web for user feedback, etc. Concurrently engineering got the game up and
running on the PS3, converted to the latest SDK, localized all Japanese code
comments, rearranged code libraries to make use happy and then re-ran all parity
tests, and we fixed the issues before moving forward.

At Bluepoint every developer, at their desk has full access to our target platform,
which for Shadow was a PS4. And the original game, which in this case was a PS3
dev kit. Programmers are expected to debug and play the game on the PS3 dev
kits to determine original code intent and purpose and to diagnose parity issues.
We do the same thing for all other departments, Art always has full access to
both platforms and are expected to be familiar with both. And in the case of
Shadow, QA went the extra mile and threw the PS2 into the mix.

Only after parity is verified do we start porting the code to the target platform.
Porting is usually a 1-2 man project that takes approximately 2-3 weeks before
we have the code compiling. During this phase we are more interested in just
getting everything to compile on the new platform, not porting everything.
Basically, we try not to lie to ourselves by pretending we know how everything
works and instead are using this time to familiarize ourselves with the code base.
We create #defines to disable whole systems, mark up changes we have made to
the original code, etc. The most important goal at this point is to:

1. Get the code to compile and link, which is harder than it sounds.

2. Make it trivial to identify where we have modified the original code.

So congratulations after about 2 months you have a binary that you can
launch on your target platform. Not only did you get the game to compile,
you got it to link which was a huge pain in the ass. You can’t help but want
to play the game so you hit run and …

(Click) BOOM, everything blows up.

In fact the breakpoint that you put in main() never got hit.

You blew up during preinit, the callstack doesn’t make any sense and
everything feels broken.

• (Click) Memory is being requested

• (Click) You have 32 to 64 bit compatibility issues. Plenty of code
assumptions that a pointer fits within a uint32.

• (Click) Resource files are being requested

• - Where the hell is the file system?

• - You have Endian issues everywhere.

• - And how do we deal with memory mapped files that assume 32 bit
pointers?

At this point you can’t help but wonder: What have I gotten myself into and does
it make sense to assign this task to another engineer?

At this point I must tell myself, “stop being a little bitch, and keep going”.

Given that the first step was just to get the game to compile on the target
platform the next step is to get the game to main() then to the main loop.

The main loop will be pretty much commented out at this point, however
our goal is to get the game running displaying nothing but a black screen.

Getting to a stable black screen is a critical milestone for us. It is really the
point at which the entire team of engineers can real start piling onto the
project and efficiently look at their respective realms.

It is the point at which momentum really starts to pickup.

So I want to stop for a second and share a little bit of history:

With all of the projects that we worked on before Shadow of the Colossus
we would work within the realm of the original code base.

• We would rewrite the low level platform code to work on the new
target platform.

• We would build a new rendering system to handle the needs of the
game.

• Tools and processes would be adapted to closely fit those of the
original development team.

The problem was that with every new project it felt like we were completely
starting over.

• Code would end up being very tied to a specific title and thus was not moved
from project to project.

• The team; art, engineering, including qa, all needed to re-learn processes as
we moved from game to game.

Basically it started to conflict with our ideal that each project needs to be better
than the previous. So for Shadow of the Colossus we completely revamped how
we work. We made a point of building reusable technology and processes that
evolve from project to project rather than being recreated. This requires a deeper
commitment to processes and long term planning rather than solely focusing on
immediate goals.

So we took our existing Bluepoint Engine, dusted it off and started to make a
major investment. For reference the Bluepoint Engine is proprietary and has been
around for quite a while. In fact it has been licensed and used to ship several
titles, however it was time for it to evolve.

Now getting back to the goal of getting the game running. We achieve this goal
by merging the original code with the Bluepoint Engine. Basically we structure the
code libraries so that the original game is built on top of the Bluepoint Engine.
This allows the Bluepoint Engine to provide all platform centric system such as

• Memory

• Threading

• File IO

• Rendering

• Etc…

For us it is key to keep in mind which original game systems we want to port to
the target platform and which ones will be replaced with Bluepoint systems.
Basically don’t waist time porting a system that will be replaced in the future.

With this said I think it is important to make one clarification. When it comes to
gameplay systems; AI, character logic, etc… we want to keep all of the original
systems intact. While we will fully replace core systems. With gameplay we take a
much more surgical approach of fixing and enhancing.

Next I want to take a minute to discuss the Bluepoint approach to game
assets. While it is ideal to get the source assets from the original game
team; and we do to varying levels of success; we do not depend upon
them. Rather we only use them for reference. The reason we don’t rely
upon source assets as a starting point is that they are often wrong or
incomplete.

Teams are notorious for not checking everything into source control. Often
local file changes or P4 shelved changes are used to build the final
package creating very difficult to find parity issues. This is exaggerated
when dealing with patches as the likely hood of a one off local change
increases.

To eliminate this concern we will spend around 2 months extracting all of
the data within the original distribution package to BPE compatible
formats. We also assume that before we ship we will have a need to edit
every type of data, not just key file formats. While this is time consuming
it has several key benefits:

1. We know the data we have is exactly the data that shipped.

2. We learn a lot about how the game is constructed, allowing us to
make smarter decisions moving forward. Understanding the content
greatly helps us understand the code and enables us to make

decisions that work with the original code rather than fighting it.

3. Once we have extract key file formats and converted them to BPE formats;
such as models, animations, skeletons, textures, collision data, these
assets are immediately available within our BPE toolset.

And finally, because we are taking ownership of all data we are no longer
dependent upon the content pipeline of the original team. We don’t need their
tools and we don’t need to follow unfamiliar practices. It is actually quite
liberating and after the extraction is finished we follow Bluepoint processes rather
than the processes of a remote team we don’t understand.

Now to be completely honest, there are some game specific file formats that we
don’t always extract and we will take shortcuts. We do however regenerate these
files addressing endianness and 64 bit compatibility issues and we spend the time
to understand and document their purpose. For example in Shadow we did not
convert all of the pathing data to BPE formats because we figured that we would
never change this data. This came back to bit me in the ass and I’ll tell you more
about it later.

So let’s take a look at the final results that we achieved in Shadow in
relationship to how we integrated the two distinct engines.

I like to call this the dance. Without proper planning and coordination,
chaos would take over. However with each engine assuming specific
responsibilities we can create a ‘harmony of technology’.

What this diagram is trying to illustrate is the responsibilities of each
engine. The original Shadow engine maintains sole responsibility for the
majority of all gameplay. If there is a gameplay bug or a behavior that we
want to modify, chances are we are going to modify the original Shadow
codebase.

On the other side the Bluepoint Engine handles all core system
responsibilities; memory, threading, platform services, etc… along with
anything visual. The Bluepoint Engine handles the management of the
world:

• The static geometry in the world

• The particle systems placed in the world

• The lighting

• Etc

It remains the responsibility of the Shadow engine to create all dynamic
GameObjects such as; Agro, Wander and Colossi within the BP Engine in order to
build the completed scene which in turn feeds the renderer.

Take for example Wander, the main character in the game. The original game has
a concept; an object representing Wander and also has a link to a BP Engine
representation of Wander. The original game code provides all of the simulation
logic and pushes matrices and required state information over to the Bluepoint
representation. In turn the Bluepoint representation can add additional
functionality, such as head tracking and drives the renderer to ensure everything
shows up in the final scene.

So let’s take a look at the game and break down a scene staring Colossus
6.

So who is responsible for what.

1. Shadow is responsible for all dynamic characters in a scene, in this
case Wander and the Colossus.

2. Shadow is responsible for AI behaviors, when QA would report a
behavioral problem we addressed it within the original codebase.

3. Shadow is responsible for collision. In retrospect this was perhaps a
mistake and we should have brought collision into BPE to make it
easier to work with.

4. Shadow is responsible for building the animation blend trees and
building the final pose. Shadow has these responsibilities because
the simulation is dependent upon the final pose. It would have been
better to use BPE systems for animation, however at the time
intertwining Shadow and BPE processes was very difficult.

5. The eye state of the Colossus was determined by Shadow code,
passed to BPE code where it was managed, used to determine the
correct eye color and drive dynamic shader parameters.

6. It is the Shadow code that handles the simulation of the bones that
hang around Wander’s waist. These were never lifted into BPE given

that the original coder did such a great job.

So that is about where the original shadow code ends and the BP Engine takes
over.

1. BPE handles all rendering and scene management.

2. The entire environment and atmospherics that you see are handled by
BPE.

3. The physics simulation of Wander’s poncho is handled by BPE. It is purely
visual and needed improvement, thus all aspects were removed from the
Shadow code and moved into Bluepoint.

4. BPE is also responsible for the dynamic rings attached to the Colossi. In
the original the rings are static and misaligned, they are now dynamic.

5. And finally BPE is responsible for all audio and particles within the scene.

One way to think about our approach is that we are taking the original game and
overlaying visuals and enhanced gameplay.

Here is another scene with the path node’s debug display enabled. The
blue line simply shows available connections between nodes while the
purple line shows the navigation path that Agro, your horse will take to get
to you.

When we started the game we figured that we would not change the
layout of the environments enough that we would need to modify collision.
This became perhaps the biggest lie we told ourselves. Before shipping all
collision within the game was completely rebuilt.

We also told ourselves that because we were not significantly changing the
layout of the environment, there would be no need for us to modify path
node information. This was also a lie.

As the environments started to be finalized QA started flagging bugs where

• Agro could no longer path to you because someone place a large tree
on top of a path node.

• In certain areas Wander could not find lizards because they where
now hidden under hills.

• In other areas the hawks and birds in the game would start flying
though the sides of mountains that were now in their paths.

After a bit of digging it became obvious that it was not an acceptable solution to
require art to go back and fix the geometry to match the constraints of the
original. Instead within the last 2 months before shipping we wrote a tool that
allowed for path nodes to be visualized and edited directly in game and then
serialized back out. Before this issue the pathing logic was the last piece of
untouched code and data. While we didn’t necessarily set out to change every
single piece of data loaded by the game, it became a necessity.

So I guess the moral of this story is to assume that if something can bite you in
the ass, it will. I think this is a safe mantra for anyone in engineering.

So Shadow was release a year ago this February. I explicitly don’t want
this talk to feel like a post mortem but more of a sharing of our approach
and processes. My goal is to be completely transparent and share what
worked and where we fell short.

While on Shadow we had a fairly sophisticated worker job system, we were
not able to retro fit enough code to take full advantage of it.

We had this notion of the Shadow code completing its full simulation
before moving onto handling BPE gameobjects. The CPU frame was broken
up so that the Shadow code took about 70% of the game frame and the
BP Engine took the other 30%. We could find areas to optimize the
Shadow code by jobifying, however this basically just moved code from
one core to another without really increasing CPU saturation. As a result
we did not get much parallelization within the game code.

Within the BP Engine we represent a scene as a tree of gameobjects where
each gameobject contains components that exposes functionality. To
update a scene we would walk the gameobject tree and update all
components. The overhead of walking the tree quickly became time
consuming. To make things worse, we would actually walk the gameobject
tree a second time to build the list of items to render. This happened
during the sync point between the game and rendering threads creating a
major bottle neck. While towards the very end of Shadow’s development

we implemented a couple of Hail Marys to address the problem, they were band
aids at best.

Moving forward to our next project we knew that we needed to re-architect how
we coordinate the game loops between the two engines. Basically it was time to
take what we had learned and evolve the dance.

The major breakthrough came when we decided to stop treating the
original code base as special, but rather as just another think process that
happens at a specific point in the frame. You could think of the entire
original Shadow game code as a component on a GameObject exposing
functionality. Unfortunately this is easier said than done.

To evolve to where we are today we had to make the following changes.

1. The first thing we did was to eliminate the need to walk
gameobjects to determine what needs to be rendered. Rather we
make components responsible for adding and removing persistent
render items. We support a commandbuffer style interface for
changing render item parameters to keep everything threadsafe.

2. We no longer walk the gameobject tree to update components.
Rather components register ThinkRequest delegates.

3. ThinkRequests can be added or removed at any point from any
thread. A single object can submit as many ThinkRequests as
desired based upon demand. This makes it very easy to create an
object that only needs to think for one frame or under certain
conditions.

4. ThinkRequests can be explicitly invoked at any point. If not
explicitly invoked they will be invoked when their bucket is
processed. However it is trivial to be in the middle of a

ThinkRequest, start an async job that you need to wait for and invoke
other ThinkRequests ensuring we never stall.

With these changes and looking back at Shadow, now rather than merging the
Shadow game loop with the BPE game loop we would simply have the Shadow
code register a ThinkRequest within the correct bucket eliminating the distinction
between the Shadow update and the BPE update. When the original Shadow code
needed to wait for async jobs, it could simply start processing other
ThinkRequests rather than stalling.

This type of behavior is proving to be critical on our next project. In fact this last
week, I spent a day rearranging ThinkRequest dependencies to fix stalls saving
approximately 2ms within in the game loop. I didn’t optimizing any code rather I
simply fixed scheduling issues to increase CPU saturation. Having the flexibility to
easily rearrange a frame’s work to fill dead areas and remove contention is
proving to be awesome.

So, here is a diagram showing our current running layout. It is much
easier to use and a lot more flexible.

At this point, my only regret is that we didn’t implement this system
earlier.

So rather than looking at Shadow, let’s take look at how we have evolved
and what is next.

Sorry I hope you didn’t think I was going to expose our next project, I
know this isn’t funny, well maybe a little bit to me.

While I’m super excited about our next project and the tech that we are
building, I’m pretty sure Bluepoint would make me walk home, all the way
to Texas, just to shoot me if I screwed this up.

So next, I want to talk about what we have learned from past projects and
how it affects our systems.

How we go about creating a harmony of technology by doing a deep dive
into our memory system. How it is designed with flexibility and what steers
those decisions.

Before I do so, here is a quick disclaimer.

• All of the examples that I’m going to share are based upon my
personal experiences and memories.

• My examples are based upon outdated technology from the
companies in question and don’t represent their current technology
or processes.

And finally I apologize in advance if I misrepresent anyone’s work.

So memory, who needs it, I’m pretty sure I do.

I’ve been dealing with memory systems since I started my career. Over
this time I have tried numerous approaches and have shifted the way I
view memory biased by the games I’ve shipped. In fact I wrote an article
for Game Programming Gems years ago. As I look back at this article, I
still embrace the ideas presented but am embarrassed that the
implementation was so short sighted.

I actually got my first job in the game’s industry working for Beyond
Games creating a HotWheels game. The key to landing this job was a BSP
collision system that I had written that required less than half of the
memory footprint of their current system; cutting memory requirements
from 6 to 2Megs on a PS2.

If there is one lesson that I learned then, that is just as true today, it is
that proper memory management is critical to achieving performance and
ship titles.

So let’s look at Bluepoint’s hardest title to date. Shipping Titanfall on the
Xbox 360. What an amazing game Respawn created and if you buy me a
drink I have a lot of stories. If you don’t recall, the original Titanfall was
developed by Respawn and released on the PC and Xbox One. Bluepoint
released the Xbox 360 version approximately 2 months later.

Simple summary, if I ignore the performance aspect: It is not easy to ship
a 5GiB Xbox One game on an Xbox 360 with 512MiB. So how did we do it,
a lot of hard work, or as we like to call it Bluepoint Magic.

The original title used a fixed sized bucket allocator for allocations less
than 32 bytes and dlmalloc for everything else.

• Where all memory allocations were funneled to a single allocator and
dispatched from there, creating a chock point where thread
contention became a major issue.

I know that a lot of people love dlmalloc and argue that it is sufficient.
While it has a lot of great features, in practice on Titanfall we found that:

1. The version of dlmalloc we used did not have a concept of virtual
allocations, thus a custom system was required.

2. dlmalloc was not ideal for large page aligned allocations. dlmalloc

works by placing tags at the beginning of an allocation, if you need a
texture with a 128 byte alignment, the tag can create memory waste.

3. Due to dlmalloc not being ideal for small allocations, virtual allocs or page
sized allocations we needed dlmalloc to release unused memory back to
other memory systems. In practice we found that dlmalloc held onto more
memory that we thought was ideal.

The key to us shipping Titanfall, from a memory point of view, was
memory tracking.

• Knowing exactly where all memory was at all times.

• Tracking fragmentation issues

• And tracking memory by category so that peaks could be compared
from build to build to determine trends.

From there we were able to optimize data formats and nearly every
system to cut memory usage. We reworked the memory system to:

• Use a fixed block size allocator for small allocations less than 512
bytes.

• We used dlmalloc for medium sized allocations, and several changes
where made to dlmalloc to get it to aggressively release memory.

• We used a large page based allocator, used primarily by textures and
large vertex buffers.

• And we added the concept of a single frame allocation, where small
allocations would be placed within unused DXT mipmap memory. This
memory was only valid for a single frame and coordinated with the
texture streaming system.

Basically every byte was used.

By the end we had spread sheets backed by more spread sheets for every level
showing max memory usage, how much memory was available for texture
streaming etc. While I’m still in shock that we pulled it off, looking back, the
whole system was perhaps more involved than it needed to be.

So Uncharted. What a great project. Going from a PS3 target to the PS4,
how could there be any memory considerations?

Well there weren’t any real memory considerations provided we kept the
streaming textures reasonable however, there are a couple of key things
to learn.

1. All memory was allocated at startup by the core memory system.
From here all memory was assigned to specific allocators. There
was a hard coded table within the code dictating how much
memory each allocator was allotted.

• The down side is that when a allocator ran out of memory you would
play Russian roulette to push memory around until the problem went
away, often over allocating.

2. There was no virtual memory support and fragmentation issues
were evident. There was code to handle the shuffling of memory
and pointers when defragging, however it came across as error
prone and touched numerous systems.

3. The later Uncharted games adopted a rule that memory could not
be allocated before hitting main(). I love this ideal given that it is
strait forward when to create your memory allocator and at the end
of main you can easily check to ensure there are no memory leaks.

And finally Uncharted introduced the idea of a TaggedHeapAllocator. Which is very
similar to the single frame allocations that we implemented for Titanfall, just
evolved.

[NOTE] Originally after: Memory: Uncharted Collection

Next, what did the original Shadow of the Colossus code look like?

• It used a single custom dlmalloc type allocator.

• And in general allocations were avoided during the runtime loop.

There was one interesting code path that particle effects would take when
allocating memory. If memory was exhausted the memory system would
return NULL and the particle spawning would be skipped. Everywhere else,
if you ran out of memory the game would halt. On the PS4 we removed
this path as we could never think of a case were it was acceptable for us to
run out of memory.

One restriction that we placed on our selves that affected the memory
system design is that we wanted to ensure that all memory allocations
requested by original Shadow code came out of a fixed memory block. We
did this to make it easier to support memory mapped files that contained
32 bit pointers.

To resolve a pointer we simple added the 32 bit value along with a base

address for the starting block. Provided the top 32 bits of the 64 bit address were
always the same, we never run into issues.

So what were some of the philosophies that we felt were important when
designing the memory system for the Bluepoint Engine.

1. You should never run out of memory, never expect null from an
allocation request. In fact we explicitly halt the game if this
happens.

2. We need smart allocation schemes to allow for a wide variety of
allocation patterns. Basically encourage small custom allocators
rather than an uber allocator.

3. Allocators should help to eliminate thread contention.

4. Ensure Debuggability across all allocators without a lot of custom
work. To us debuggability in this case means

• The ability to track and categorize all memory allocations.

• And tools to help detect and diagnose common memory issues; with
the most common being memory stomps.

With these basic philosophies in place, we built a list of our goals. I’m only
going to focus on a couple of key points:

1. All allocators should be platform agnostic. We didn’t want to write
custom allocators for each platform. An allocator should deal with
memory patterns not the specifics of where the memory came
from.

2. Allocators should be memory agnostic. Basically every allocator
should work with both CPU or GPU memory. While this seems trivial
it does have implications. During Shadow our per-frame GPU
memory allocators benefited greatly by removing tags and markers
that were being written directly in the memory blocks for tracking
purposes.

3. Assume that memory will be allocated at any point. Programmers
need power and flexibility to create great systems.

4. Eliminate the need for fixed sized allocators. Basically allocators
should support working with a fixed memory block but should also
support growing and shrinking as required. We want to avoid over
allocating and the memory Russian roulette game.

To get started, let’s take a look at how we ensure all memory allocations
are routed through our memory routines.

We start by override system memory routines, which is pretty strait
forward.

And second we create BPE macros that wrap all memory requests.

We chose to use macros for a couple of reasons:

1. This solution is simple, strait forward and requires no additional
steps.

2. Some sort of redirection is required to support malloc and free.
VirtualAlloc will also require custom wrappers to be platform
agnostic, so it is nice to standardize everything.

3. Macros allow us to provide additional features such as location
tracking and passing additional parameters directly to the memory
requests such as; alignment requirements and requesting specific
allocators.

Converting to using macros is not a big undertaking. I’ve done this about 3
times in my career and each time it takes about a week. If you don’t

redirect and control all allocation routines in your code I would highly recommend
you start and using macros is the cleanest method I’ve found.

And even if we forget to wrap a new or delete call, it will still get picked up due to
overriding the system memory routines, so you can’t miss anything.

And finally, to ensure we redirect all memory routines into our system, we
simply control all memory. On consoles we allocate all physical memory
upon initialization. As a result, if we miss an allocation due to a 3rd party
library allocation, there simply isn’t any memory for it to request.

Talking about 3rd party libraries, whether audio, physics, video playback or
anything else there are a couple of mandates that I believe everyone
should insist upon.

1. If a library does not provide control for how it gets its memory,
don’t use it.

2. If you can’t control the threading behavior of a library, don’t use it.

3. If you can’t control how it loads files, don’t use it.

There is one 3rd party library I would like to call out that we use
extensively, the EASTL which is a replacement for the std containers. I
hope anyone that has been in game development for a while at least has
an opinion on the debate of whether or not to use the std containers. For
us, we don’t. However we have found an awesome replacement that
provides a lot of really cool features that while not always safe, allows for
smarter code. If you have not checked out EASTL I strongly suggest you
do.

So let’s take a look at a diagram illustrating the flow of memory requests.

• As you can see it all starts with overriding system allocation routines
which are redirected into our memory coordinator.

• From there memory requests are funneled into the appropriate
allocator.

These allocators manage their own memory pools to service memory
requests and fall back to requesting memory pages from the
PlatformPageAllocator. Note that the only system that is platform specific
is the PlatformPageAllocator. This helps to ensure allocators only deal with
memory usage patterns and ensures that we get consistency across all
platforms.

So the MC contains some of the hardest hit code in the entire codebase.
It’s primary purpose is to redirect memory requests to the appropriate
allocator, all without creating thread contention, thus it must avoiding
locking mechanism.

We are able to achieve this goal by ensuring that the MC is basically
stateless and the few stack based variables that it forwards into the
allocators are all stored using thread local storage.

There is one caveat to keep in mind. Our threaded job system is
constructed using fibers that we switch in and out.

Because we are using thread local storage we need to prevent fibers from
picking up the wrong set of variables when switched.

So within our job system, if we perform a context switch and switch out a
fiber we also create a copy of the memory local thread variables. Then
when the job system switches back to the previously suspended fiber we
restore the local thread variables. This keeps everyone happy and
consistent.

By using thread local variables, not only do we allow memory requests to
be directed to any specific allocator, but it is also at the heart of how we
categorize memory allocations. In our engine every single allocation is
categorized, even if it is just categorized as a ‘General Allocation’. Our
strategy is that once a category starts to account for too much memory,
we simply start splitting the category and refining our tracking.

And finally the MC gives us a great single location to track all
OutOfMemory issues, eliminating the need to spread the code between
individual allocators.

One tip that you can see from the code snippet is that we create a specific
function that is never inlined to handle OutOfMemory issues.

This has been great. If QA ever encounters a crash, it is trivial to
determine if it was an OutOfMemory issue by directly looking at the
extracted callstack, no need to look at the log or try to interpret the line
number.

One last trick that I would like to share, while pretty strait forward and
really not special, but took a bit of iteration to get correct is how we deal
with static initialization order issues. This technic allows for the memory
system to be initialized even before static initialization has occurred for
this .cpp file. You can check out the snippet if you are interested.

The allocator, or as I like to think about it, the heart of the system.

This snippet shows portions of the interface that that all allocators must
provide. The primary idea here that I want to call your attention to is the
fact that we declare all memory routines as protected.

Basically we want to prevent code from directly bypassing the Memory
Coordinator. This helps to ensure that all allocators follow consistent
conventions and are properly registered with the Memory Coordinator.

I mentioned earlier anytime an allocator needs to grow its memory pool to
service a request, it requests new memory pages from the
PlatformPageAllocator.

For Shadow, on the PS4, we determined that 64KiB pages were the ideal
size. We also align all requested pages to 1MiB boundaries. We wanted
smaller page sizes to minimize waist and fragmentation, while also
minimizing TLB issues. For us, 64KiB pages is the sweet spot.

I also want to point out that when coding allocators, we strictly avoid the
use of mutexes. While allocators need to deal with threading issues we
stick to using atomic locks. These are significantly faster and the
restriction of not being re-entrant is easy to work around.

So let’s take a look at a few of the different types of allocators that we
support.

The DispatchAllocator is the default allocator that the majority of all
allocations get redirect to. It is a very simple redirector which basically
looks at the alignment and size requirements of the request and forwards
them to the appropriate allocator.

• We use a BucketAllocator for small allocations.

• We use a HeapAllocator which is similar to dlmalloc. It uses a
intrusive red black tree to store free blocks and uses a heuristic of
preferring recently freed memory followed by best fit. We then add
headers and post-headers to the allocations to provide tracking
information.

• And to round it off we use a PageAllocator for large memory requests
that fit nicely within our 64KiB pages.

We also have several special use allocators.

• A simple AnsiAllocator that is only used by tool code.

• There is a VirtualPageAllocator to handle virtual memory requests.

• And there is a FrameAllocator which is great for:

• Packing multiple request together to ensure memory
coherency.

• And creating small block of easily reusable memory.

And let’s not forget about the TaggedFrameAllocator which is awesome.

Our TaggedFrameAllocator is based upon an allocator described by
Christian Gyrling in his 2015 GDC talk.

The basic idea behind the TaggedFrameAllocator is that we are creating an
extremely fast allocator where allocations are only valid for a short period
of time. These are basically temporary memory allocations that are valid
for N number of frames, where a frame is arbitrarily defined for each
allocator.

The fact that users don’t need to track the memory or call free() to release
memory is a huge win. Not only is the code requesting the memory easier
to write, the TaggedFrameAllocator can take a bunch of shortcuts knowing
that individual free() calls do not need to be supported.

It is also impossible to create memory leaks when using this allocator.

We discussed earlier that one of the goals behind allocators, is that they
should help to minimize thread contention.

This is achieved using two strategies.

First we use atomic locks rather than mutexes.

And secondly by using thread local storage.

Several of our allocators use the pattern illustrated in the code snippet.
For the TaggedFrameAllocator, this allows it to service memory request for
multiple threads simultaneously without ever locking. If you have ever had
to deal with multi-threaded performance this should immediately jump out
as a huge win.

Within the Bluepoint Engine, there are more TaggedFrameAllocators that
any other type of allocator.

Each TaggedFrameAllocator is built ontop of a shared TaggedFrameArena
that allows all TaggedFrameAllocators to share a common memory pool,
eliminating over allocation issues.

The TaggedFrameArena will also grow and shrink upon demand, thus all
pool sizes are dynamic.

If you don’t have something similar to this in your code base I would
highly recommend you make it happen.

And finally the PlatformPageAllocator, or the brains of the operation.

As we have discuss this class is responsible for abstracting away the
details of how 64KiB pages are managed per platform.

In practice, we restrict anyone from accessing this class directly. The only
customers of this class, are the memory allocators.

Our windows version is very simple and is built using VirtualAlloc().

The PS4 version is more complex due to platform considerations.

At the heart of both implementations is the concept of virtual memory and
mapping physical memory to virtual addresses on demand.

If you are not familiar with the differences between virtual and physical
memory you might want to investigate.

Looking at the PlatformPageAllocator there is one last problem that I would
like to discuss which has been a problem in every non uber memory
scheme I have worked with.

Given that we are avoiding an uber allocator and embracing numerous
allocation patterns, we need to be able to take any random memory
address and determine which allocator it belongs to. This is required to
properly direct free() calls.

While BPE macros allow you to optionally specify which allocator owns
memory when calling BPE_FREE(), this is not ideal. Instead we need to
support the GetMemoryOwner() routine.

So how did we solve this problem. We threw memory at the problem.

We break up the problem by realizing that we only need to determine
which allocator owns the memory page that contains the memory address
in question.

Within the PlatformPageAllocator we use a 1MiB block of memory to store
a direct lookup table which maps 1TiB of virtual memory to its owning
allocator.

If you have a better solution I would love to hear about it.

So what do you get when you put it all together? Hopefully a game without
performance issues that runs within retail memory.

Ok, that isn’t going to happen.

But hopefully you have the flexibility and tools necessary to get there from
a memory perspective.

Here is a screenshot showing our memory statistics. You can see the
PlatformPageAllocator at the top, and each of the various allocators below.

Here is another screenshot that shows memory category tracking.

I want to call your attention to the outlined black boxes that I have
marked up.

Most consoles often have the concept of development memory, basically
the development kits have more memory than the retail kits.

We make it very easy, at all times to see where memory usage is in
regards to a retail kit.

From this screenshot you can see that the closest we came to running out
of memory on a retail kit was 130MiBs; or the equivalent of the max
memory of 4, PS2 games, there is no way we could run out, right?

[NOTE] Originally right before: Game Benefit: Texture Streaming

Bonus Slide: Out of Time

[NOTE] Originally right after: AllocationTracker

Bonus Slide: Out of Time

[NOTE] Originally right after: AllocationTracker

Bonus Slide: Out of Time

So to finish up I want to share one additional feature in Shadow of the
Colossus.

It is related to memory and made a significant impact on development.

Texture streaming. I’m sure many of you have texture streaming
solutions.

We use GPU based feedback to determine what to stream and specify a
fixed streaming texture memory budget.

For Shadow we initially set this budged to 1GiB and after some tweaking:

• Most of the game looked great.

• Some areas required a higher texture budget to facilitate its needs.

• And some areas would simply crash due to running OutOfMemory
before even hitting the 1GiB budget.

It was about half way through development that the team began to stress
about memory and started get flash backs of previous projects.

So how did we solve this problem. We set the texture streaming budget to
unlimited. Problem solved and now everyone is happy.

Instead of relying upon fixed memory budgets, the texture manager
monitors the total available memory by querying the PlatformPageAllocator
and acting appropriately.

If there is extra memory, stream in more textures.

If no more textures are required, do nothing.

If memory is low, start releasing textures.

I should note that this does require balancing to avoid ping pong effects
and to determine proper memory thresholds.

However these thresholds are game specific, not area specific so they only
need to be calculated once.

This was really a major turning point for stability as OutOfMemory issues
basically disappeared.

Of course we still had to deal with memory usage issues where memory
was scarce. However these areas only needed to be pushed to acceptable
levels and the texture manager would auto calibrate.

Moving forward we are pushing our texture streaming solution beyond
what was achievable in Shadow by prioritizing and loading even higher
resolution textures when memory allows.

So here is a screenshot showing the texture streaming stats at the top of
the screen.

Here you can see that we have over 2GiBs of textures loaded however the
scene actually only requires about 680 MiB of texture data as the texture
manager maintains a buffer of 220MiBs free.

Here is a more demanding area. There is 1.3 GiB of textures loaded,
however only 1.13 GiB are required.

During development the art department would play the game watching
these statistics to verify budgets were satisfied.

By the end the only questionable location in the game was the final
cutscene where the secret garden is exposed.

And of course, the minute you tell any one that the texture budget is
exceeded you need to be able to show them why and what is loaded.

Only then can properly debate “how big must the eye texture be”.

So once again I would like to thank you for your participation. I’m flattered
that I had the opportunity to ramble on.

And yes Bluepoint is hiring. Basically if you are a bad-ass and you know
how to get shit done, we want to work with you.

Use the email address on the slide and mention my name, I’ll let everyone
know that we are best friends so that I can get the recruiting bonus and
then perhaps it will be time for me to buy you a beer.

Also please remember to fill out the speaker evaluation forms so I know
whether or not I should ever do this again,

