
Smart Bots for Better Games:

Reinforcement Learning in Production

Olivier Delalleau

Data Scientist @ Ubisoft La Forge

Objective

Share practical lessons from using

RL-based bots in video game production

Agenda

1. RL & games

2. Learning from pixels

3. Learning from game state

4. Learning from simulation

5. Epilogue

1.Reinforcement learning & games

2.Learning from pixels

3.Learning from game state

4.Learning from simulation

5.Epilogue

[image source]

https://medium.com/mlmemoirs/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9

[image sources: #1 #2 #3 #4 #5]

https://www.theverge.com/2017/8/11/16137388/dota-2-dendi-open-ai-elon-musk
https://www.theverge.com/2017/8/11/16137388/dota-2-dendi-open-ai-elon-musk
https://www.technologyreview.com/the-download/612832/deepminds-new-ai-just-beat-top-human-pro-gamers-at-starcraft-ii-for-the-first/
https://schedule.gdconf.com/session/ml-tutorial-day-smart-bots-for-better-games-reinforcement-learning-in-production/864367
https://schedule.gdconf.com/session/reinforcement-learning-in-action-creating-arena-battle-ai-for-blade-soul/862523

Potential application #1: player-facing AI

Black & White (2001) Dota 2
(OpenAI Five, 2018)

Starcraft II
(AlphaStar, 2019)

Blade & Soul (2016)

[image sources: #1 #2 #3 #4]

https://boards.fireden.net/v/thread/334829662/
https://www.bladeandsoul.com/fr/game/classes/warlock/
https://openai.com/blog/openai-five/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Potential application #2: testing assistant

Open World
(Far Cry: New Dawn, 2019)

Live multiplayer
(Tom Clancy’s Rainbow Six Siege, 2015-…)

[image sources: #1 #2]

https://mobile-flasher.com/tout-ce-que-nous-savons-sur-far-cry-new-dawn-plus-les-premieres-captures-decran/
https://imgur.com/gallery/E1pfUzS

In this talk: prototypes @Ubisoft
Goal: player-facing AI Goal: testing assistant

state: enemy_visible=1

enemy_aimed=1

What is reinforcement learning?

state: enemy_visible=0

enemy_aimed=0

What is reinforcement learning?

reward: +3.1

action: ”fire”

new

Objective:

Find optimal action in each state
to maximize the sum of rewards

Q-values:

Q(state, action) = sum of future
rewards when taking an action in a
given state

Taking the optimal action = taking
the action with maximum Q-value

Runtime

Offline

Search/Planning vs RL

…

…

+

Q(𝑠0, 𝑎0) = 0.8

Q(𝑠0, 𝑎1) = 0.7

[scientist icon by Vincent Le Moign]

https://commons.wikimedia.org/wiki/File:158-man-scientist-2.svg

In a nutshell: why reinforcement learning?

Automated AI generation from reward alone

“If you can play, you can learn”

It’s not magic (…)

[icons from pngimg.com]

http://pngimg.com/download/40953

1.Reinforcement learning & games

2.Learning from pixels

3.Learning from game state

4.Learning from simulation

5.Epilogue

[image source]

http://karpathy.github.io/2016/05/31/rl/

Deep Q-Network (DQN) in action

https://www.youtube.com/watch?v=DqzSrEuA2Jw

Human-level control through
Deep Reinforcement Learning
(Mnih et al. 2015)

https://www.youtube.com/watch?v=DqzSrEuA2Jw
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Deep Q-Network (DQN)

16 8x8

convolutional

filters + ReLU

32 4x4

convolutional

filters + ReLU

256 fully

connected units

+ ReLU
state =
last 4 frames

#actions fully

connected units

Estimated total future
score increase for each
action in input state

Deep Q-Networks, Mnih 2017

https://drive.google.com/file/d/0BxXI_RttTZAhVUhpbDhiSUFFNjg/view

Why learn from pixels?

● Generic

● No need to access code

game.exe

rl.py

[screenshot source]

https://assassinscreed.ubisoft.com/game/fr-ca/odyssey/rpg/mercenary-system

From Atari to AAA games

➔ ➔

[image sources: #1 #2 #3 #4]

https://www.youtube.com/watch?v=DqzSrEuA2Jw
https://th.ubisoft.com/far-cry-new-dawn-now-available-on-ps4-xbox-one-and-pc/
https://en.wikipedia.org/wiki/Atari_CX40_joystick#/media/File:Atari-2600-Joystick.jpg
https://www.bestbuy.com/site/microsoft-xbox-elite-wireless-controller-for-xbox-one-black/9529009.p?skuId=9529009

State: Simplify graphics Actions: Imitate humans

Imitation Learning with Concurrent Actions in 3D Games
(Harmer et al. 2018)

https://arxiv.org/abs/1803.05402

screen CNN objects tree action

vision decision making

Challenges with pixel-based learning

Steep automated testing
(Ubisoft Pune)

[CNN diagram by Aphex34] [tree diagram source]

https://fr.wikipedia.org/wiki/Fichier:Typical_cnn.png
http://www.texample.net/tikz/examples/rule-based-diagram/

Why not learn from pixels?

● Complex training

Policy (decision making)

Why not learn from pixels?

● Complex training

● Large neural network

Why not learn from pixels?

● Complex training

● Large neural network

● Costly GPU rendering

Why not learn from pixels?

● Complex training

● Large neural network

● Costly GPU rendering

● Partial observability

[images source]

https://www.youtube.com/watch?v=LW20UbquVBU

Why not learn from pixels?

● Complex training

● Large neural network

● Costly GPU rendering

● Partial observability

● Less than ideal for…

● UI details

● Sound

● Reward
[headset image source]

https://www.bestbuy.ca/en-ca/product/hyperx-cloud-ii-over-ear-gaming-headset-red-black/11800872.aspx

In a nutshell: learning from pixels

Attractive due to its genericity…

… but trickier than it seems and computationally costly

1.Reinforcement learning & games

2.Learning from pixels

3.Learning from game state

4.Learning from simulation

5.Epilogue

[image source]

https://www.youtube.com/watch?v=80pm62J9kto

Learning from game state

● Cheap to compute and process

● Can add unobserved information

● Can inject domain knowledge

game.exe

rl.py

state + reward action

Learning from game state

● AI testing in For Honor

● RL-based driving in Watch_Dogs 2

AI testing in For Honor

Example: kiting exploit

SmartBot
vs

Game AI

RL loop in For Honor

reward:
damage_to_opponent – damage_received

action

state

distance_to_target=3
self_HP=110
self_stance=“top”
self_stamina=60
self_animation_id=4
target_HP = 65
...

“attack_light_left”
“attack_heavy_top”
“block_top”
“dodge_back”
“guard_break”
...

DQN with distributed experience replay

Interface
Agent

Game

Replay
buffer Learner

Network
weights

AgentAgentAgentAgentAgentAgentAgent(s)

Distributed Prioritized Experience Replay
(Horgan et al. 2018)

https://openreview.net/forum?id=H1Dy---0Z

Example: poor defense vs zone attack

Example: poor defense vs zone attack

Example: poor defense vs zone attack

SmartBot
vs

Game AI

Some lessons we learned the hard way

● The RL loop (state → action → reward) must be bulletproof

● Complex gameplay logic was modifying actions chosen by our agent

● Ability to reset state & replay matches can help a lot

● We did not collect enough data in rare-but-important situations

● Debugging from logs only was painful

● RL is not always the best solution

● Was found inefficient on some tasks
[hammer icon by John Caserta, from The Noun Project]

https://fr.wikipedia.org/wiki/Fichier:Hammer_-_Noun_project_1306.svg

Action mask

Alternatively: penalize

incorrect actions
(ex: Borovikov et al. 2019)

http://aaai-rlg.mlanctot.info/papers/AAAI19-RLG-Paper36.pdf

Human-like reaction time

state action

t

Ex: mimic 250ms reactions

time
t+250ms

sleepprediction

Reward shaping: bonus for guard break

vs
Game AI

SmartBotSmartBot
SadisticBot

Learning from game state

● AI testing in For Honor

● RL-based driving in Watch_Dogs 2

Hand-tuning driving behavior

● Classical driving logic:

PID controller

● Costly to tune across many

different vehicles

[images source]

https://watchdogs.fandom.com/wiki/Vehicles_in_Watch_Dogs_2

Watch_Dogs 2 as RL driving playground

Deep Deterministic Policy Gradient

𝑠𝑡𝑎𝑡𝑒

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛{1, . . , 𝑘})

Reminder: DQN
(discrete actions)

𝑠𝑡𝑎𝑡𝑒

critic

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)

k

𝑎𝑐𝑡𝑖𝑜𝑛

1

actor

𝑠𝑡𝑎𝑡𝑒

DDPG
(continuous actions)

acceleration ∈ 0,1
braking ∈ 0,1
steering ∈ −1,1

distance from path
next waypoints’ positions

current velocity
desired velocity

wheels’ angle
drift angle

Learning to brake at high speed (or not)

Problem: local exploration

𝑠𝑡𝑎𝑡𝑒

critic

𝑄(𝑠𝑡𝑎𝑡𝑒, ෣𝑎𝑐𝑡𝑖𝑜𝑛)

𝑎𝑐𝑡𝑖𝑜𝑛

actor

𝑠𝑡𝑎𝑡𝑒

Exploration noise is
added during training

෣𝑎𝑐𝑡𝑖𝑜𝑛

noise

Typically: small amount of noise ➔ fails to discover braking benefits

chosen action

optimal action

Solution: expert-driven exploration

Here: randomly force the
“braking” action dimension
to 1 during training

➔ use domain
knowledge to guide
exploration

෣𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑛𝑢𝑎𝑙 𝑛𝑜𝑖𝑠𝑒
Braking

In a nutshell: learning from game state

More efficient & flexible than from pixels…

… but requires a bug-free training interface

and may remain costly

1.Reinforcement learning & games

2.Learning from pixels

3.Learning from game state

4.Learning from simulation

5.Epilogue

[image source]

https://www.youtube.com/watch?v=lUZUr7jxoqM

Learning from simulation

● Direct transfer from simulation to game

● Prototype in simulation, re-train in game

● Pre-train in simulation, fine-tune in game

Drone Swarms drone

objective

obstacle

collisions

Multi-agent & non-stationarity

Each agent’s environment changes as other agents learn!

…

➔ For some tasks training may get unstable

Multi-Agent DDPG

𝑠𝑡𝑎𝑡𝑒

critic

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)

𝑎𝑐𝑡𝑖𝑜𝑛

actor

𝑠𝑡𝑎𝑡𝑒

Reminder: single-agent DDPG

𝑠𝑡𝑎𝑡𝑒

critic

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑎𝑐𝑡𝑖𝑜𝑛2)

𝑠𝑡𝑎𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛1

𝑠𝑡𝑎𝑡𝑒

𝑎𝑐𝑡𝑖𝑜𝑛2

actor1 actor2

• One actor per agent: MADDPG (Lowe et al. 2017)

• One actor for all agents: “Clone-Ensemble DDPG”

centralized

decentralized

https://arxiv.org/abs/1706.02275

Swarm in action

ORCA (traditional) Swarm (RL-based)

From 2D to 3D

Neural Net performance (single-thread PC CPU)

Console port: easy / medium / hard

Tip: use C++ keyword __restrict

Caveats:

● Small network

● No input batching

* Untuned

0
10
20
30
40
50
60
70
80
90

100

µ
s

Single sample forward duration (layer sizes: 58-128-128-3)

Learning from simulation

● Direct transfer from simulation to game

● Prototype in simulation, re-train in game

● Pre-train in simulation, fine-tune in game

Driving++: handling maneuvers & obstacles

• Prototyping in toy 2D
driving environment with
simple physics

• Soft Actor-Critic algorithm
for improved exploration

[custom version of CarRacing-v0]

https://bair.berkeley.edu/blog/2018/12/14/sac/
https://gym.openai.com/envs/CarRacing-v0/

Reward shaping: distance to center penalty

Reward:
forward_speed * (0.5 – distance_to_center)

forward_speed

distance_to_center

Reward shaping: distance to center penalty

-0.8 * (0.5 – 0.9) = 0.32

Reward:
forward_speed * (0.5 – distance_to_center)

Physically simulated ragdoll from MoCap

• Prototyping in toy
3D environment with
Bullet physics engine

• Proximal Policy
Optimization
algorithm with a
reward for matching
the desired pose

https://openai.com/blog/openai-baselines-ppo/

Learning from simulation

● Direct transfer from simulation to game

● Prototype in simulation, re-train in game

● Pre-train in simulation, fine-tune in game

1.Reinforcement learning & games

2.Learning from pixels

3.Learning from game state

4.Learning from simulation

5.Epilogue

[image source]

https://www.lemonde.fr/pixels/article/2018/10/09/on-a-teste-assassin-s-creed-odyssey-le-jeu-de-role-qui-tutoie-presque-l-olympe_5366833_4408996.html

In a nutshell: personal advice

● Learning from pixels

➢ Avoid it if you can

● Learning from game state

➢ Ensure the RL loop is bug-free & efficient

● Learning from simulation

➢ Trade-off fidelity vs computational+implementation cost

c
o
m

p
u
ta

tio
n
a
l re

q
u
ire

m
e
n
ts

Exciting opportunities

[OpenAI Five video source]

https://www.youtube.com/watch?time_continue=3&v=UZHTNBMAfAA

Production challenges

● Building an “RL-friendly” engine

● Managing heavy computations

(task & algo-dependent)

● Controlling RL agents

𝑠𝑡𝑎𝑡𝑒

𝑎𝑐𝑡𝑖𝑜𝑛

neural
network

Reward shaping is tricky:
Specification gaming
examples in AI
(Krakovna, 2018)

https://docs.google.com/spreadsheets/u/1/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml

The End

Olivier Delalleau

http://laforge.ubisoft.com

laforge@ubisoft.com

Bonus content: keep reading for more tips / references / examples

http://laforge.ubisoft.com/
mailto:laforge@ubisoft.com

Bonus content
[photo by Rich Grundy]

https://www.flickr.com/photos/loughboroughuniversitylibrary/6333984637

RL tips for game developers
● Only use RL when it’s the right tool for your task (consider also
decision trees / search / planning / imitation / evolution / …)

● Avoid learning from pixels if you can (and if you can’t, try and
help your agent with custom object recognition)

● Use human data to speed-up learning if available

● RNNs can help but are trickier to work with, try to fake
memory through feature engineering first

● (Ab)use domain knowledge for feature engineering, reward
shaping, network architecture and exploration strategy

● Estimate computational requirements before investing too
much effort

● Don’t rush the game RL loop implementation (state-action-
reward) – bugs will haunt you later

● Define benchmarks to compare algorithms – while ensuring
statistical significance

● Mask invalid actions

● Fake human-like reaction time when it matters (but ask
yourself whether some state features should *not* be delayed)

● Practice trumps theory: try simple techniques first, even in
settings where you suspect they may not work

● Simulate your game (even imperfectly) if it is slow and / or complex

● Don’t aim straight for a generic / efficient / cross-platform / perfect RL
framework for all your games – hacks get things done

● Re-use open source implementations of established algorithms,
understand them and customize them

● Ideal RL-friendly engine should (easily) allow:

● Two-way communication with Python (e.g. through sockets) – with
events, callbacks & RPC

● Parallelization (multiple agents within a single game instance / across
multiple instances on one computer / across multiple computers)

● Efficient execution of core gameplay code without the “cosmetics”
(e.g. without graphics, vfx, animations, …)

● Ability to run neural networks directly in-engine (also useful during
training to properly synchronize agent decisions with the game update
loop)

● Direct access to game data from Python

● Save / reset state

● Replay

● Player data collection (same state-action-reward format as RL agent)

● Linux compatibility

RL pointers – My top 3’s

● Theory

● Deep RL Bootcamp

● Reinforcement Learning: An Introduction

● David Silver’s UCL Course on RL

● Hands-on

● OpenAI Spinning Up in Deep RL

● Simple Reinforcement Learning with Tensorflow

● A Free course in Deep Reinforcement Learning from beginner to expert

● Software

● Stable Baselines

● RLgraph

● RLlib (linux-only )

https://sites.google.com/view/deep-rl-bootcamp/lectures?authuser=0
http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://spinningup.openai.com/
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
https://simoninithomas.github.io/Deep_reinforcement_learning_Course/
https://github.com/hill-a/stable-baselines
https://github.com/rlgraph/rlgraph
https://ray.readthedocs.io/en/latest/rllib.html

Warning!

The following slides do not tell a coherent story!
Consider them as “deleted scenes” on a DVD ☺

Going further…

● Learning from search

● Ex: AlphaGo [Zero]

● Combines RL with

Monte-Carlo Tree Search

● Costly!

Designer Diary: The Search for AlphaMystica

[image source]

https://deepmind.com/research/alphago/
https://boardgamegeek.com/blogpost/75798/designer-diary-search-alphamystica
https://blogs.loc.gov/maps/category/game-theory/

Going further…

● Learning from search

● Learning from player data

● Ex: AlphaStar

● Combines RL with

imitation learning

from replays

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Going further…

● Learning from search

● Learning from player data

● Learning from evolution

● Ex: AlphaStar (again)

● Combines RL with evolution

of a population of agents to

obtain a variety of behaviors

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

DeepMind – Quake CTF

[source]

https://deepmind.com/blog/capture-the-flag/

Go-Explore
Search!

[source]

https://eng.uber.com/go-explore/

OpenAI Five Lesson #1: specialize your network

https://d4mucfpksywv.cloudfront.net/research-covers/openai-five/network-architecture.pdf

Input preprocessing

OpenAI Five Lesson #2: build a robust RL pipeline

Watch for bugs in

state definition and

action execution!

OpenAI Five (2018)

See also related Lessons from AlphaZero:

https://blog.openai.com/openai-five/
https://medium.com/oracledevs/lessons-from-alpha-zero-part-6-hyperparameter-tuning-b1cfcbe4ca9a

OpenAI Five Lesson #3: watch your wallet

OpenAI Five (2018)

https://blog.openai.com/openai-five/

Learning from game state: compute cost

Computational requirements can remain prohibitive:
• Complex gameplay

• Many states and actions
• Long-term strategy
• Varied playstyles
• Multiplayer interactions

• CPU & GPU-intensive game

[source]

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

For Honor prototype’s main limitations

● Training instability

For Honor prototype’s main limitations

➔Stochastic policies

➔Game theory

➔Opponent modeling

(“mind games”)

● Training instability

● Predictability

[source]

https://www.polygon.com/2014/7/7/5876983/how-to-play-street-fighter-fighting-game-primer

Prototyping & training

Runtime

Direct transfer from simulation to game

Efficient prototyping loop

Fast model training

Simulator must perfectly match

game behavior

rl.py
sim.py

Model

game.exe

Game
settings

RuntimeRe-training

Prototyping & training

Prototype in simulation, re-train in game

rl.py
sim.py

Model#2

game.exe

rl.py

Quick prototyping loop

Re-training may be slow

Re-training may need tweaks

game.exe

Model#1

Prototyping & pre-training

Finetuning

Runtime

Pre-train in simulation, fine-tune in game

Quick iteration loop

Efficient pre-training

Fast fine-tuning

Trickier to implement

rl.py
sim.py

Model#1

game.exe

finetune.py Model#2 game.exe

Sim2Real

Sim2Real View Invariant Visual Servoing by Recurrent Control (Sadeghi et al. 2017)

https://arxiv.org/abs/1712.07642

Sim2Game From Sim (Arcade Car Physics –
Vehicle Simulation for Unity3D)…

… to AAA Game
(WIP: automated tests in The Crew 2)

Early prototype not using Sim2Game transfer yet

https://assetstore.unity.com/packages/tools/physics/arcade-car-physics-119484

