
New Ideas for Any-Angle Pathfinding

Daniel D. Harabor

GDC 18th March 2019

1 / 22



Bona Fiedes

Senior Research Fellow

Faculty of Information Technology

Monash University (Australia)

Research focus: pathfinding search

Single agent and multi-agent problems.
On grids and navigation meshes.
On roads and in public transportation networks.
Subject to constraints.

http://harabor.net/daniel

2 / 22

http://harabor.net/daniel


Any-angle Pathfinding

Find a Euclidean-path of minimum cost between two traversable points,
on a grid or on a navigation mesh.

StartTarget

3 / 22



Any-angle Pathfinding

Find a Euclidean-path of minimum cost between two traversable points,
on a grid or on a navigation mesh.

3 / 22



Any-angle Pathfinding

Find a Euclidean-path of minimum cost between two traversable points,
on a grid or on a navigation mesh.

3 / 22



Any-angle Pathfinding (2)

Problem

Find a Euclidean-path of minimum cost between two traversable points,
on a grid or on a navigation mesh.

Simplifying assumptions

Single-size agents

Two terrain types: traversable and non-traversable.

Desirable algorithmic properties

Paths should be short (no detours)

Paths should be smooth (no unnecessary turns)

Paths should be computed fast (microseconds, not milliseconds).

For static and dynamically changing maps
(i.e. no large precomputes)

4 / 22



Established ideas for Any-angle Pathfinding

5 / 22



Established idea #1: String Pulling

M. Pinter. Toward More Realistic Pathfinding. In Game Developer Magazine, 2001.

Compute a grid-optimal path (e.g. using A*) then “smooth” the path to
remove unnecessary turns.

6 / 22



Established idea #1: String Pulling

M. Pinter. Toward More Realistic Pathfinding. In Game Developer Magazine, 2001.

Compute a grid-optimal path (e.g. using A*) then “smooth” the path to
remove unnecessary turns.

6 / 22



Established idea #1: String Pulling

M. Pinter. Toward More Realistic Pathfinding. In Game Developer Magazine, 2001.

Compute a grid-optimal path (e.g. using A*) then “smooth” the path to
remove unnecessary turns.

6 / 22



Established idea #1: String Pulling

M. Pinter. Toward More Realistic Pathfinding. In Game Developer Magazine, 2001.

Compute a grid-optimal path (e.g. using A*) then “smooth” the path to
remove unnecessary turns.

6 / 22



The problem with String Pulling

Sometimes the string gets pulled “the wrong way” around an obstacle.

This path is grid optimal and cannot be improved.

7 / 22



The problem with String Pulling

Sometimes the string gets pulled “the wrong way” around an obstacle.

This path is also grid optimal but can be improved.

7 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

Only showing selected node expansions

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

(and so on, until the target)

8 / 22



Established idea #2: Theta*

A. Nash et. al. Theta*: Any-Angle Path Planning on Grids. In AAAI, 2007

Pull the string during search (instead of post-processing the path).

The path returned by Theta*

8 / 22



The problem with Theta*

Problem #1

Constantly checking for visibility slows pathfinding search.

9 / 22



The problem with Theta*

Problem #1

Constantly checking for visibility slows pathfinding search.

Problem #2

Theta* expands nodes out of order and is suboptimal in general.

Start

Target

9 / 22



The problem with Theta*

Problem #1

Constantly checking for visibility slows pathfinding search.

Problem #2

Theta* expands nodes out of order and is suboptimal in general.

f=3.6
Start

Target

f=3.82

f=3.65 f=3.82

f=3.82

f=3.65

9 / 22



The problem with Theta*

Problem #1

Constantly checking for visibility slows pathfinding search.

Problem #2

Theta* expands nodes out of order and is suboptimal in general.

f=3.6
Start

Target

f=3.82

f=3.65 f=3.82

f=3.82

f=3.65

f=3.65

9 / 22



New Idea #1: Anya

Daniel D. Harabor and Alban Grastien. An Optimal Any-Angle
Pathfinding Algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), 2013.

Daniel D. Harabor, Alban Grastien, Dindar Öz , and Vural Aksakalli.
Optimal Any-angle Pathfinding in Practice. Journal of Artificial
Intelligence Research, Vol 56 Issue 1, pp89–118, May 2016.

10 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

[E0, E8]

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

[E0, E8]

[D0, D8]

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

[E0, E8]

[D0, D8]

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

Target

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

[E0, E8]

[D0, D8]

[C0, C4) (C4, C8]

11 / 22



Anya in broad strokes

Anya is a fast, optimal and online algorithm for any-angle pathfinding
on a grid. It works by expanding sets of nodes together at one time.

Start

Start

[F0, F2) (F2, F8]

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

[E0, E8]

[D0, D8]

[C0, C4) (C4, C8]

(B.4.66, B8]
Target

11 / 22



Definition #1: Search Nodes

Every node is a tuple (I , r) where:

r is a root; the most recent turning point.

I is an interval of contiguous points, all visible from r .

The start node has a point interval and a root “off the grid”

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

12 / 22



Definition #2: Successors

Successors of node (I , r) are found by travelling from r and through
I along a locally taut path.

Two kinds of successors: observable and non-observable

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

13 / 22



Definition #2: Successors

Successors of node (I , r) are found by travelling from r and through
I along a locally taut path.

Two kinds of successors: observable and non-observable

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

(r,[B1, B5)) 

13 / 22



Definition #2: Successors

Successors of node (I , r) are found by travelling from r and through
I along a locally taut path.

Two kinds of successors: observable and non-observable

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

(r,[B1, B5)) 

r' = [C4]

(r',(B5, B8]) 

13 / 22



Definition #2: Successors

Successors of node (I , r) are found by travelling from r and through
I along a locally taut path.

Two kinds of successors: observable and non-observable

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

(r,[B1, B5)) 

r' = [C4]

(r',(B5, B8]) 

(r',(C4, C8]) 

13 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

A

B

C

D

E

F

0

Start

1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

A

B

C

D

E

F

0

Start

1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Evaluation Function

From each interval I we choose a single point p which minimises the
cost-to-go (i.e. the f -value of the node).

Start

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8

I = [D1, D4]

r = [F1]

14 / 22



Theoretical properties

Completeness (Sketch)

Every point is a corner or belongs to an interval.

Every interval is visible from some predecessor.

Optimality (Sketch)

Each representative point has a minimum f -value.

The f -value of each successor is monotonically increasing.

A node whose interval contains the target is eventually expanded.

Online

Each search is performed entirely online and without reference to any
pre-computed data structures or heuristics.

Full technical details in the 2016 JAIR paper!

15 / 22



Results on Games Maps

Speedup (time) vs grid A* on a range of game benchmarks appearing in
Nathan Sturtevant’s repository at http:://movingai.com.

75 maps, 93,160 problem instances.

16 / 22

http:://movingai.com


Results on Games Maps

Speedup (time) vs grid A* on a range of game benchmarks appearing in
Nathan Sturtevant’s repository at http:://movingai.com.

156 maps, 159,465 problem instances.

16 / 22

http:://movingai.com


Results on Games Maps

Speedup (time) vs grid A* on a range of game benchmarks appearing in
Nathan Sturtevant’s repository at http:://movingai.com.

75 maps, 198,230 problem instances.

16 / 22

http:://movingai.com


New Idea #2: Polyanya

Michael L. Cui, Daniel D. Harabor, and Alban Grastien.
Compromise-free Pathfinding on a Navigation Mesh. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI),
2017.

17 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Polyanya in broad strokes

Polyanya is an optimal algorithm that extends and generalises Anya, from
grids to navigation meshes.

18 / 22



Further optimisations

Dead-end pruning

Prune all nodes that “push” into obstacles or into polygons that have
only one entry edge.

19 / 22



Further optimisations

Dead-end pruning

Prune all nodes that “push” into obstacles or into polygons that have
only one entry edge.

19 / 22



Further optimisations

Dead-end pruning

Prune all nodes that “push” into obstacles or into polygons that have
only one entry edge.

19 / 22



Further optimisations

Dead-end pruning

Prune all nodes that “push” into obstacles or into polygons that have
only one entry edge.

19 / 22



Further optimisations

Dead-end pruning

Prune all nodes that “push” into obstacles or into polygons that have
only one entry edge.

19 / 22



Further optimisations

Intermediate Pruning

Immediately and recursively expand any node that has only a single
successor.

19 / 22



Further optimisations

Intermediate Pruning

Immediately and recursively expand any node that has only a single
successor.

19 / 22



Mesh selection

We generted a variety of meshes including: grids, rectangles, Constrained
Delaunay Triangulations (CDT), and greedily merged CDTs. Bigger
polys means better performance

20 / 22



Results on Game Maps

y-axis:
speedup (time) vs
grid A*.

x-axis:
problem instances,
ordered by difficulty
(measured as node
expansions required
by grid A*).

21 / 22



Results on Game Maps

y-axis:
speedup (time) vs
grid A*.

x-axis:
problem instances,
ordered by difficulty
(measured as node
expansions required
by grid A*).

21 / 22



Results on Game Maps

y-axis:
speedup (time) vs
grid A*.

x-axis:
problem instances,
ordered by difficulty
(measured as node
expansions required
by grid A*).

21 / 22



Wrap Up

Any-angle pathfinding has come a long way!

Performance has increased dramatically.

We’re making fewer tradeoffs.

We can now solve a much broader range of problems.

But more work is needed!

Kinematic constraints remain challenging.

Weighted terrains remain challenging.

3D pathfinding and flying AI.

It’s not yet clear to what degree new algorithms like Anya and Polyanya
can help improve the state-of-the-art in these areas.

For more info (including papers and links to experimental source code)
please visit my homepage at http://harabor.net/daniel.

22 / 22

http://harabor.net/daniel

