
Hello everyone, my name is Koray Hagen …



And I work at Santa Monica Studio on the development team for God of War contributing as a senior programmer on 
many of our core technology efforts. Today we’re going to be talking our studio’s current thinking and philosophy 
surrounding the design of data in games.



Historically, God of War games have dealt with much less data than our most recent title.



In fact, having worked on the game for the past five years of my life I can tell you that we had huge scalability problems 
across the board when it came to managing the sheer amount of content that was required to produce the final game.



This scalability problem manifested itself in the form of impacted iteration times for everyone who was actively 
contributing to the game’s development. 
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So what’s the cause of this problem? As a programmer contributing to the pipelining of this data around our studio, I 
can tell you that content in games is quite heterogenous – meaning that it originates from a variety of tools and 
workflows for different purposes. 

…



But the differences don’t end there. If you were to look at any particular piece of data in isolation, it has unique 
intrinsic characteristics such as its format, disk-space impact, even quantity of usage. In games our data can also often 
be hierarchical, or at least contain referencing semantics to other data – which further complicates their role in the 
pipeline.



Games also have this strange data duality where the source data we ask our content creators to make isn’t what we 
end up shipping to our players. We have to transform that data into something useable by our engines and hardware, 
which has the cost of time and complexity in the overall pipeline.
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Historically for our own studio, the source data and run-time data have nothing in common, especially their quantity . 
As an example, on God of War we shipped maybe a dozen PlayStation PlayGos which were comprised of hundreds 
wads -- our custom binary run-time format – and all of this originating from a million source assets.
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So where does that leave us? Enumerating the effects of data in our games is a complex topic. And the role of our 
game’s pipeline is in marshalling that data from a developer’s workstation to a player’s hands.



Another way to look at it, is that the problem domain is about transforming our source data (that isn’t meaningful to 
our players) into production data (which is). What we have seen in our own experience is that as our source data and 
production data diverge further and further away, the time and complexity gap to transform it continues to increase 
dramatically – ultimately impacting our ability to create the games we want.
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Like all large engineering challenges there are a lot of dimensions of optimization that can be applied to a problem 
space like this. But about 4-5 years ago when God of War’s production began, we started to think about this problem 
in a new way.
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We started to think that our source data and production data didn’t have to be a radically different in characteristics 
than we had thought in the past. In fact, to tackle this larger scalability problem we would have leverage the one 
characteristic they both had in common – they both required an explicit and sound design. 



And because they both required a sound design, that suggested that perhaps there was not only a common design 
language between them (in how we describe their structure and behavior), but also a common set of design primitives 
and principles from which they could be built. And this set of commonality could be tailored for the requirements of 
data in real-time games.
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Over the years we have been particularly inspired by efforts that are occurring inside the computer graphics industry 
for film to tackle a similar problem, which has been coined as “scene description.” In particular, the philosophy of 
Universal Scene Description resonated with us.



Author in USD. Render in USD.



It powerfully suggests USD as a core ecosystem, meant to address the full scope of the end-to-end pipeline. So there’s 
a simple question – could there be a similar philosophy and ecosystem for real-time games? What would be the 
requirements? And what problems do we care about?



Towards that end, today we will explore the story of our thought process alongside a technology and design showcase. 
My goal is to present how we reconciled the familiar development constraints of creating a large game, while staying 
true to our vision for improving God of War’s pipeline and technology. 

With that said, let’s get started.



We’re going to cover just three stories. The first story is about our past, and how the everyday stresses of delivering a 
high quality game product influenced our thinking and desire to tackle an interesting and important problem with early 
experiments. 



The second story is about the present, and where our design and engineering philosophy have taken us.



And the last story, is about our future. Our message is that there is so much opportunity in this space to explore, and 
our own lived experience tells us that we’re just at the beginning.



So let’s start at the beginning.



When God of War: Ascension was close to finishing development, an engineer on our team was tasked with testing 
our patching infrastructure for the live game.  The test was simple, make a small, inconsequential change; create a 
patch; measure the delta.



We were surprised to find out that the patch was the size of the entire game disk.



With that extreme of a result there was only one question:



What factors could have possibly led to this situation? 



Well, we found that there were two heavy hitters.



For one, our usage of the Playstation packaging system for the live product was an after-thought – something that was 
solved only when it had to be. But some aspects regarding the design of the run-time data had been an after-thought 
as well. While we did have a common binary chunk format for the run-time structures of the engine, the contents of 
any particular chunk were far more loose – leading to sporadic cases of indeterminism in the data.
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With Ascension we were able to achieve acceptable levels of data determinism for the final game – it wasn’t perfect, 
but it was shippable.
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Indeterminism can be caused by a wide-range of issues, even shockingly easy mistakes. A very common mistake is 
uninitialized padding in serialized data – and this can also be a nightmare to triage depending on where it occurs in 
your pipeline. I have been personally shocked by what information programmers inadvertently ship with production 
data – for example, local timestamps, usernames, the name of a Jenkins node – there seems to be no shortage of 
opportunity.



From that experience, two truths were clear. We needed to get a handle on our data, and we never wanted to work on 
these types of problems ever again.



So we started looking into what solutions existed for explicit data formats. What we found was that there were two 
broad categories of technologies to choose from. There were low-level libraries (such as FlatBuffers and 
ProtocolBuffers) that gave a desirable level of granularity for control and abstraction. And then larger systems such as 
USD and COLLADA that had clear paths of integration into our Maya pipeline and content authoring. Unfortunately 
none of these solutions fulfilled all the requirements that we had.
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For example, COLLADA made sense as a source or intermediate format, but it was less clear how it would integrate 
into our run-time technology. On the opposite spectrum, Protocol Buffers gave us the granularity we wanted for data 
definition but it was less clear how tightly we could control properties such as the in-memory layout or allocation 
scheme. These were very different categories of solutions.
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Over time we saw that there could be a lot of advantages to controlling data definition in-house if we were willing to 
make the investment. So we began an early experiment to create a schema-based data definition language called 
SmSchema – or Santa Monica Schema. With a restricted set of functionality, it would serve as a proof of concept for 
the features we thought we might need in the future.



The schema of any given type was defined in a simplified JSON notation called SJSON. We supported a small range of 
native types, containers, and primitives that were appropriate yet restricted for the domain of data that we wanted to 
represent. For example we had native support for mathematical types such as Vectors and Quaternions, alongside our 
most commonly encountered data structures such as arrays, sets, and maps. Again the goal of the type system and 
early experiments was to be pragmatic regarding anything’s inclusion.



The pipeline for this system was implemented in Python and leveraged a templating engine called Jinja that could 
render generated C++ code for user defined types. It was an easy system to understand – types were defined, the code 
generator created C++ code consistent with what you would expect, and at the time we only supported JSON as a 
serialization format.



As a proof of concept the experiment was a big success. Using JSON as a language directly had a lot of advantages 
despite the verbosity. For one, it meant that the system didn’t really require a parser or well-defined grammar, which 
allowed for quick iteration and experimentation on the system itself. Writing algorithms to use Jinja for introspecting 
the JSON schema directly during code generation was trivial due to Python’s object and dictionary semantics.
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Even in it’s prototype state, SmSchema eliminated an entire class of determinism problems, since we could encode 
whatever rules we wanted in the code generation directly. We had a better understanding of SmSchema’s properties 
and we were ready to test it at scale on a larger part of the pipeline.



Santa Monica Studio is a Maya-shop. What that means is that most of the workflows for creating game content have 
Maya as an entry point. A historically painful Maya-based workflow has been our world-building, so it seemed like a 
good place to start applying ourselves.



As a first use case, we wanted to use the SmSchema DDL as a means to represent our own proxy scene format inside 
of Maya.

→



God of War’s world building workflow segments the entire game world into layered network of Maya binary scenes.



Within this network, an artist has the opportunity to work in a particular section of the game with context. As an 
example, if you decided to work in the highlighted river layer, our custom plugin will render higher layers and lower 
layers as unchangeable proxy geometry.



The in-memory proxy representation of any particular Maya file is known as the X3D Scene.



The X3D Scene seemed like an ideal candidate to stress SmSchema’s capabilities for many reasons. It was the source of 
a lot of technical debt such as an isolated and fully custom serialization system, numerous performance problems, 
indeterminism, and abandoned asset referencing capabilities amongst used ones. 

But it also presented a restricted set of problems that we had to solve. It had this nice property of being an 
intermediate file which was regenerated any time a source Maya file was changed or created. And it matched our 
mental model of where we thought SmSchema could provide value.
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We could see the path … all we had to do was represent all the necessary Maya primitives, automatically generate the 
Maya import code, formalize a referencing system amongst the scenes to define the scene graph, improve rendering 
and loading performance for some political buy-in from the artists.



In fact with SmSchema we can potentially solve all the problems. Simple enough! 

…



That’s not what happened. Reality began to sink in – SmSchema was not ready. Here’s an example of the monstrosity it 
took to define a partial schema for the Maya transform.



The previous prototype JSON syntax for the schema language was now far too verbose and practically unauthorable. 
The serialization was also way too inefficient to support the amount of content in any production level. And SmSchema 
as a language was far too sparse in features to represent all of the concepts we needed. Features like type inheritance 
and enumerations were too cumbersome and didn’t make sense.



To make matters worse, we struggled for a long time about how to represent the scene graph itself. How would we 
express a scene reference? Should we use a string file path? Maybe a GUID? It wasn’t clear.



Through all of the struggles and questions it began to dawn on us that our mental model of SmSchema was far more 
incomplete than we had first thought. Up until this point we had treated the X3D scene as a serialization problem, 
requiring only a robust set of technology around data definition and data formats.



But the necessity for referencing and expanded code generation was directing us in a different way. The X3D scene 
project suggested the need for a broader set of interconnected technologies. And while the DDL and the serialization 
were an important aspect of that system, they seemed to be only components of a larger vision. And while we had 
been spending time thinking about the design of X3D itself …

?

?

?

??
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With this new experience, it was now time to think about the design of SmSchema.



As engineers, designing can sometimes be a painful process. With SmSchema we knew there was a lot of ground to 
cover and so we decided to pick the design of serialization as an anchor point for our thinking. Plus, serialization had 
been particularly painful with X3D scene project, so it was a good starting point.

?
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With our newfound experience we established a set of first principles regarding the design of serialization – all of these 
were must-haves. If SmSchema was to be successful we needed automatic serialization, a native binary and text data 
format, full random access of fields within the serialized data, and complete binary memory mappability. In addition to 
these serialization goals, we would need to invest in redesigning and expanding our schema language.



In our previous experiments, we had seen the value of the Jinja code rendering templates in pushing serialization 
complexity away from any user-defined code and we wanted to keep this.

…



Supporting different serialization formats meant that we could potentially use SmSchema in various capacities. Our 
previous experience with JSON serialization initially led us to believe that JSON was a poor serialization format. 
However it was clear that text-based formats had a lot of advantages for human interaction, such as diffing and 
triaging of data issues. While a packed binary format had the advantage of speed and other properties such as 
information density. 

…



In our research of binary formats, we concluded that striving for full binary memory mappability had lot of 
performance and design advantages. Loading SmSchema binary files would be as simple as calling mmap or memcpy, 
with no deserialization step. We knew that this would have a profound effect on the design of pointers, but it seemed 
feasible and a worthy goal.



JSON wasn’t working as a schema language – we needed to get rid of it. Our philosophy was simple, it should be a joy 
to use the schema but also feel familiar. Our pipe-dream was either to design or find something that felt like a 
modernized, C-style language – but with an expanded set of types and primitives that contextually made sense when 
designing data for games. 



Focusing on the DDL and serialization of SmSchema was a big of part of what made the X3D proxy a big success. 
Investing in a binary serialization format eventually did pay dividends in terms of performance and stability. But the 
existing JSON format also allowed us to triage the data of the proxy much more easily than in the past.



At this point in time, the DDL and serialization formats were becoming much more robust. We understood their 
requirements quite well, and the proxy was now in use. But this bigger picture of what SmSchema could be still eluded 
us. For example, we still didn’t understand how features such as referencing could be modeled in this system beyond 
string paths to other Maya files.
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As our production progressed, we began to run into new issues. Maya is a very powerful ecosystem to invest in and 
has a lot of advantages for smaller engineering teams. But having Maya files as the authored source for most game 
content was proving to be a very problematic historical artifact.



By imposing too much responsibility on the format, what could our expectation be other than this? 



It was a tricky situation. Despite all these problems the game was in production and our studio was acclimated to 
Maya as a workflow. It’s a classic scenario where you begin to ask yourself “How do you fix the plane that is mid-
flight?” But there is a silver lining …



Having the experience of stretching Maya to its limits gave us the acumen and experience to refine our own thinking 
and design with important questions. 



Questions that allowed us to see the bigger picture of what a technology like this could become. 



So with that, let’s fast forward to the present and explore where our experience has taken us.



SmSchema is a set of interconnected technologies surrounding the domain of data description. What we’ve chosen to 
include as part of our design is equally as important as the things we’ve left out. 



Let’s start here at the DDL.



Our current data definition language was heavily inspired by the Insomniac DDL due to its clarity and aesthetic. The 
DDL’s grammar and parser are implemented using a language technology stack known as ANTLR.



While we support many of the features that we would all come to expect from a data definition system, I’d like to focus 
our time on a particular aspect that has proven invaluable. As game programmers often we are at the mercy of 
interfacing with third party formats and data structures that are outside of our control. With SmSchema we didn’t 
want to ignore this problem, so features such as foreign type aliasing, raw buffers, and code generation overrides are 
designed to allow this interop natively.



Here’s an example where we have an existing math library – SMath – that we want to use directly in SmSchema. 



With foreign type aliasing, we can annotate and define the type meta-data needed by the system directly in the 
schema, in order to produce the correct serialization behavior. This type of solution is applicable to so many different 
scenarios, such as introducing SDK texture formats and animation formats.



Following the DDL we have the CTTI, or the compile-time type information. The CTTI is the core of SmSchema, as it is 
the schema definition of the language itself. It defines all of the meta-data properties associated with our type and 
declaration system, and is reflect-able at a few points in the SmSchema ecosystem.



Conceptually, a CTTI type instance is associated with any native or user-defined type. Within the CTTI definition we can 
specify whatever attributes matter to us, but it’s dependent on our use case. While having the CTTI opens up the 
opportunity to implement a wide range features and analytics such as RTTI,  it currently has a very specific function.



The CTTI is the primary input into the code generation process. Given the schema of a set of types, we parse the DDL, 
generate the CTTI, and feed it into the code rendering templates in order to create the expected C++ behavior that we 
want.



By organizing our rendering templates into a set of segmented functionality, we can express behavior such as deciding 
between the generation of Maya import code or serialization code. 



This type of staging architecture allows for a lot of flexibility at various points in the system. It would be accurate to say 
that the currently chosen DDL design and code generation capabilities are really just artifacts of our chosen problem 
domain. But the CTTI is the ground truth for the entire system.



Having invested quite in a bit into our pipeline for code generation, with SmSchema we wanted to expose the ability to 
drive this behavior with an easier mechanism that didn’t require changing the parser or language.



Some of your alarms might be going off in fear that we introduced C++ style templates, but don’t worry, there would 
need to be a strong justification for doing so and we haven’t found it yet.



Instead we decided to try out an appropriate and simple meta-programming construct called annotations, which 
augment and sit on top of the DDL and CTTI.



Annotations are a fast path to tagging types with arbitrary properties that are only visible at the point of code 
generation and do not survive to the actual type definition. For example this TriggerableNode from our level scripting 
system has an annotation of a node display color, which is consumed by our editor’s code template for establishing a 
visual color.



Our code generation templates are quite powerful but not without their fair share of nuance and problems. For one, 
looking at a template for the first time it can be difficult to immediately discern the actual code being rendered versus 
the input incoming from the annotations and CTTI. The templates also have a very loose contract between what 
properties the CTTI provides and what is expected during rendering. This is still an area of research where we would 
like to improve usability.



And finally with serialization we support formats that each have a specific purpose. For example JSON serves an 
important function of being human readable, repairable, but also allows SmSchema to take advantage of the entire 
open-source ecosystem. We pursued memory-mappable binary specifically to address our requirements for the run-
time.



To show some numbers, our X3D scene loader used by Maya and the content build system increased performance of 
loading and saving of scenes by nearly an order of magnitude – even without capitalizing on known optimization 
techniques that we are still pursuing.



We’ve talked a lot about serialization and data definition. But as stated before, it was clear even from our early 
experiments that challenges such as referencing went beyond this domain. So with the DDL, CTTI, annotations, and the 
serialization backend … 



There’s a fair question – where does this path lead? What connects them?



Together, all of the previous technologies manifest and are connected by the defining structure of SmSchema – known 
as the document. The document is the fundamental unit of data, and serialization does not happen a finer granularity.
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The document is not an asset, it’s not a prefab, it’s not a scene. It’s not an abstraction …
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The document is just sections of data with a header, and a starting root type driven by the storable annotation. But the 
most important property that the document provides is a context that defines the semantics of pointers – which serve 
as the basis of our referencing solution.
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The document is a relatively simple data structure, but treating the document as a context of data that’s connected 
and has placement in the outside world had a profound impact on the design of SmSchema. It made sense to be able 
to say statements such as “document’s contain internal referencing” or “document’s may externally reference – or 
point to – other documents”. 



Supporting pointers introduces some complexity to a system like this, so I’d like to switch gears and talk about how 
they works. Pointers were a very popular request, but if we wanted to tackle them we absolutely could not break the 
original invariants we had imposed. This meant that pointers had to fully support all of our serialization formats, 
alongside maintaining binary memory mappability.
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SmSchema pointers are defined as a space of orthogonal features that intersect between ownership and locality 
semantics.



Ownership semantics are connected to serialization behavior. For example during serialization a unique pointer’s 
content’s will be serialized alongside the pointer itself. Whereas a weak pointer only defines a loose reference, relying 
on the actual content to serialize by some other means. 



Locality semantics are connected to referencing behavior. For example, a local pointer specifically means that this 
pointer references content in the current section of the current document. Whereas an external pointer means that 
we reference content in a different document.



To encode these rules and achieve binary memory mappability, pointers are implemented as a 64 bit, tagged union 
containing an active alive or frozen state. The heavy-lifting occurs in the overloaded deference and arrow operators. By 
reading the high 2 bits of the pointer encoding, we can determine how the pointer should be resolved. For example 
the pointer may be alive in the current process address space. Alternatively it may be in a frozen, serialized state 
described by one of our three encodings. During deserialization, transforming a frozen pointer into an alive pointer is 
done through an optional process on the document known as unfreezing.



Frozen encodings vary by the degree of outside information needed for resolution. The FrozenLocal pointer is 
completely self-contained in that it stores the relative signed offset from the pointer itself to the referenced content. 
But the FrozenExternal pointer needs the document since it contains an unsigned offset to a published external 
reference table that exists in the document’s header. Our most complex encoding, is the FrozenSection pointer.



Document’s are segmented into a fixed number of memory blocks known as sections. Each section is conceptually 
connected with a run-time allocator that mirrors it’s use case. And all documents are required to have a main section –
mapped to the general root address space – with subsequent optional sections for different purposes, such as the 
storage of development-only debug data or GPU data.
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Allowing pointers to stride the document boundaries and reference resources in other sections, is a powerful 
mechanism for describing the layout of specialized run-time resources. But including sections as a concept in 
SmSchema, did impose some limitations in order to maintain binary memory mappability. 
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Document sections had to be limited in size due to the strict space constraints of frozen pointers. Currently we support 
a maximum size of 4 GB per section, which is driven by the resolution behavior of the FrozenSection encoding. Section 
traversal is achieved as following:
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Given the discovery of a frozen section pointer defined in the type.
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We follow a 30 bit unsigned offset from the location of the current pointer, to our section’s copy of the global section 
table.
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In this table, the pointer’s section index will map to a document-space offset corresponding to the location of the 
destination section.
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And finally, we resolve the pointer by following the unsigned offset leading from the entry of the destination section.
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Pointers are powerful, but they certainly come with tradeoffs. Their existence complicates the serialization model 
quite a bit. I call this the “Hello World” of pointer serialization. In this schema, a pointer in Payload to an arbitrary 
chunk is defined before the array of chunks itself. 



But during serialization, we will encounter the pointer before the array. This creates a problem, because it would be 
useful to know the physical address of where the array will be serialized before we establish the pointer’s frozen 
encoding. It’s true that problems like this complicate the serialization of the document -- due to requiring multiple 
passes – for our purposes it was the correct tradeoff to make; because it allowed for a zero-cost deserialization step in 
the run-time due to binary memory mappability. 



With pointers, documents are a very powerful way to represent general networks of interconnected data.



Longstanding problems such as content dependency resolution and discovery are a natural part of the data model, 
since external pointers are globally published.



By leveraging investments made in annotations and the DDL, we can now push programmers to establish referencing 
contracts that are enforceable.



By segmenting the data into discreet sections, we have a place to put development only information so we can reason 
about it’s cost and impact, and connect it easily to allocation behavior in our run-time.



With the document, we’re now designing workflows where our source data and run-time data are almost the same 
thing. Often only requiring a minimum subset of transformations we needed before such as …



Automatically converting from source json to run-time binary as a format. Or potentially rearranging the data into 
structures that make sense for our run-time behavior. Or stripping fields and entire sections that don’t have use in our 
shipping product. 



The document gives us all of these capabilities, but if it’s not an asset, a prefab or scene …



Then what is it? Well, that’s the deeper point.



The document can be a set of shipping streaming resources for the game.



It can be a string hash look-up table only used in our development workflows.



Or it can even be the X3D Scene, carrying all the semantics we would need for a source data format.



SmSchema’s first step into God of War was the X3D Scene project. And through that experience we defined a 
restricted set of technology that is currently powering the design of our data for many different systems, including AI 
behaviors, level scripting, animation, and beyond for our future products …

Pointers



But there are still many opportunities that remain in this space, as we look towards our current and future research.



In the space of an hour it isn’t possible for me to go through all of the current efforts we are tackling with SmSchema –
as much as I’d love to.

…

…

…



Instead, I’d like to focus on one particular topic – external pointer resolution – as an anecdote to showcase where we 
are headed.

…

…

…



As a reminder, God of War’s world-building workflow has an in-memory representation as a directed acyclic graph of 
X3D Scenes. But if the connections between scenes are defined by external pointers …



Who is responsible for the resolution of that pointer? Should it be document Foo? Document Bar? It’s not clear, 
because an external pointer closely resembles both a reference and contract between the two documents. Their states 
are connected to one another, for example …



Foo may be present in memory, but Bar may still be frozen and currently unloaded.



Alternatively, while Bar may not be currently loaded, it will be in the future – requiring a deferred unfreezing of Foo’s 
external pointer.



The resolution of Foo’s external pointer is connected to Bar’s state – which suggests that we need a way to express this 
as a transaction.



This necessity to arbitrate across a range of documents led to the creation of the document store. The document store 
is a data structure that maintains a set of in-memory document images, and specifically has the authority to establish 
and resolve external pointers given a resolution policy by the user.



In our current usage and experiments, we’ve modeled document arbitration as a set of transactions that can be 
applied. For example we may want to unload and view a sub-graph of the X3D Scene graph during a level artist’s 
workflow. 



Or we may want to disconnect referencing between certain scenes …



Alongside establishing new connections and views of the data.



Our documents don’t necessarily need to be hierarchal or describe a sophisticated network such as a scene graph.



Policies may describe complex decision behavior, but arbitrate much simpler ranges of documents that are related only 
by type. 



Pretty cool … but does the document store make sense to include in our new ecosystem? It’s hard to say … it speaks to 
a broader point regarding the design and behavior of source data, production data and any system in between. 

Pointers

…



Are solutions have to be driven by use case, introduced with scrutiny, and solve a domain of problems evidently and 
clearly. As we move into the future, content will only continue to increase in volume and complexity.

Pointers



If we are to introduce sophisticated technologies such as the document store and beyond …

Pointers



We need to hold steadfast and rely on the hard lessons we’ve learned that have brought us to this point.



When we started on this journey and the X3D Scene project, there was a question that was posed early on, that in 
truth I haven’t addressed directly – what is the future of scene description for God of War? In our attempts to answer 
that question …



We encountered a deeper question – one that spoke to the nature of modeling data itself for our games. What is the 
set of primitives that make sense for building our future products? How will those primitives make our technology 
simpler, coherent, and power the next generation of workflows, engines, and formats?



Our goal was never to predispose ourselves to a particular design. The future of scene description is not a data 
structure, it’s not a design pattern; it’s a set questions that we need must be able to answer about our content. 
Questions such as …

Pointers



What is the design of the data, what tradeoffs make sense today versus tomorrow?

Pointers



What behavior should the data have? Driven by context and usage. 

Pointers



How is the data represented, if it exists in Perforce or our player’s home console?

Pointers



And how is the data connected, what are the relationships and granularity?

Pointers



With SmSchema we prioritized flexibility and nimbleness with the technology, since it closely modeled our aspired 
method of decision making. In fact, future proofing any particular design seemed like a trap. And if we did invest in a 
technology solution, our goal has always been to try and solve the right problem.



I feel fortunate to have worked on this project with so many incredible engineers who contributed their expertise to 
this very interesting and fundamental problem domain for games. Specifically I would like to mention John Calsbeek, 
Paolo Costabel, Alexandre de Pereya, Bob Soper, and Sam Willis for their work throughout the years on this project. 
And a very special thank you to my dear friend Federico Bianco Prevot who pioneered much of this work from its 
inception, and challenged all of us to dig deeper.



Thank you very much.






