
AUTOMATED TESTING
USING AI CONTROLLED PLAYERS TO TEST THE DIVISION

JOSE PAREDES

SENIOR TECHNICAL DIRECTOR, UBISOFT REFLECTIONS

PETE JONES

LEAD GAMEPLAY PROGRAMMER, UBISOFT REFLECTIONS



AGENDA

● MOTIVATION

● SYSTEM DESIGN

● IMPLEMENTATION

● DIVISION 1 & 2

● PERFORMANCE TRACKING

● NEXT STEPS

● CONCLUSION



PART 1 - MOTIVATION



THE DIVISION UNDERGROUND DLC

● Dungeon crawler.

● Procedurally generated.

● 8x5 km2 / 256 dungeons / 100 hours.



THE TESTING CHALLENGE

● 100 hours of play.

● 100 hours of testing!

and…

● The Division is a live game!



A LIVE GAME NEEDS…

● Constant maintenance.

● With every patch → new code and data.

● With new code and data → budgets and behaviour are challenged.

● QA passes during the life of the product.



AND ON TOP OF THAT…

Our worlds 

are BIG!



OUR GRAND VISION - AUTOMATION

● Bots that take control of the 

input and play.

● Test all Main Missions overnight.

● World crawling and performance 

statistics gathering.

● Support ‘player-like’ follow bots 

to assist developers and QA.



OUR GRAND VISION - AUTOMATION

● The Client Bots were born!



PART 2 – SYSTEM DESIGN



OBJECTIVES

● Unattended play, functioning as close to a human as possible.

● Exercising client-side code.

● Adhering to game rules.

● Able to run on PC or any target console.

● No modifications to memory usage, minimal CPU overhead.

● Pragmatic development – Reuse & Repurpose.



OPTIONS

● Repurpose an existing NPC.

● Create a Player AI from scratch.



REPURPOSED NPC

● Create an NPC behaviour to mimic a human player.

● Modify all necessary systems to consider this NPC a human player.

+ Faster to get a complex behaviour up and running.

- Bypasses many systems which a human player would normally 

use like player animations, camera, UI, etc.

- Needs support for AI to run on the client.



BESPOKE PLAYER AI

Create a layer allowing an AI to directly control player inputs.

+ Every system considers it to be a human player.

+ All client code exercised.

- Significantly longer development time.

This was the option we selected!



PART 3 - IMPLEMENTATION

IMPLEMENTING CLIENTBOTS INTO A STABLE CODEBASE



BASIC MOVEMENT

● 100% Nav-Mesh coverage.

● Player constrained to it.

● Repurpose Cover to Cover

● Add support for ladders 

and ropes.



FOLLOW BEHAVIOUR

● Add grouping 

support.

● Path-find to leader.

● Yields a very 

useful basic 

behaviour.

ClientBot (Follower) Human (Leader)



TRIGGERING PLAYER ACTIONS

● Game Action System.

● Input actions / state conditions which must 

be valid.

● Inject actions directly

● Bypassing only the controller layer



TRIGGERING PLAYER ACTIONS

● Added a simple interface 

through the debug console.

● Basic commands

• Move to / Is close to

• Inject Game action

• Wait



AUTOMATED GYM PLAYTHROUGH

● Human play-through 

required for every 

check-in to test core 

functionality.

● Automate it!



SIMPLE COMBAT BEHAVIOUR

● Manipulate camera.

● Aim for the head!

● Inject Game Actions 

for Shoot & Reload.

● No health 

management / hazard 

avoidance.



AUTONOMOUS MISSION COMPLETION

Big step up in difficulty!

Query systems to fathom how to progress:

● Mission System.

● Friendly and Hostile NPC’s.

● Interaction Markers.

● Destructible Objects.



INTERROGATING THE MISSION SYSTEM

● A mixture of bespoke and general purpose nodes.

● Too complex to static analyse.

● Use the outputs and treat it as a ‘Black Box’.



PLAYING A MISSION



We encountered many problems along the way:

● Physics/NavMesh resident radius.

● Entities/Interactions not created until you are close.

● Mission objectives ‘evolve’ as you progress.

● AND the game was released so data needed to be treated as 

“immutable”.

IT WORKED! … EVENTUALLY!



ITERATIVE DISCOVERY

● Path-find to destination often fails.

• Doors can be closed, interactions must be triggered to progress.

● Objectives update based on proximity.

● Iterate toward destination and exhaust all options.



THE PROCESS

Priority List:

1. Kill Enemies.

2. Follow path to objective (if one exists).

3. Trigger useful interactions.

4. Destroy specific destructibles.

5. Travel directly toward.

6. Wander.

ClientBot

Interaction
Objective 

Marker

Door

Query 

Radius



OVERALL ARCHITECTURE

● All access through a stub

● Compiled out for retail

● 6 queries for Client Bot 

state

● 9 Invocations

● No additional ‘checkers’

● Code bloat was a concern



USAGE IN THE DIVISION

● Used for mission smokes.

● All Manhattan missions every night.

● Completed in 5 hours

● Underground content on week-ends.

● Completed in 7 hours

More hardware – faster results!



WORKING WITH A GAME UNDER DEVELOPMENT

PART 4 - IMPLEMENTATION



MISSIONS: LESS HAND-HOLDING

Division 2 Missions have less explicit 

objectives.

Player needs to use their initiative more.

Bots have significantly less guidance.



A CHANGE OF APPROACH

Iterative discovery only gets you so far.

● Results can be unreliable.

● Need for multiple runs to confirm results.

● Mission completion times vary.

● Was our only option for Division 1.



A PARTNERSHIP WITH LEVEL DESIGNERS

● Embed information in missions to assist.

● Aim for reliable validation.

● Both sides benefit.

• Embedded information helps the 

development process.

• Level Designers benefit by having their 

missions automatically testable.



HIDDEN TRACKED ENTITIES

Add hidden objectives.

● Gives information about 

the next objective.

● 1 hour for initial setup 

per mission.

● Invisible to player.

● Requires minor 

maintenance.



DIVISION 2 MISSIONS



CHALLENGES IN DEVELOPMENT
● Only get mission success when *EVERYTHING* works!

● The 3 Main Breakages

• Issues with Mission Content

• Work with LD to fix / add tracked entities

• Game Systems behaving incorrectly

• Test in isolation to mission & fix

• Client Bot behaviour insufficient

• Improve as necessary

● Aim to get dashboard green, then keep it that way.



TESTING GAME SYSTEMS

● Creation of bot gyms:

• Tests bot functionality.

• Tests core gameplay 

mechanics.

• Aim to integrate into Build 

System.



CLIENT PERFORMANCE TRACKING

Wandering around the game world, logging performance statistics.



PERFORMANCE TRACKING

● Wandering level behaviour.

● Bots visit all playable space (engaging in combat or not).

● Collect performance information on our tracking framework.

● Results inspected by QA / Tech Art and Bugs are created from that.

● A nice method for avoiding ‘automated bug spam’.



WORLD COVERAGE



WORLD COVERAGE



PERFORMANCE ANALYTICS

FPS < 25



PERFORMANCE ANALYTICS

FPS < 25



PERFORMANCE ANALYTICS

Mesh Count



3D PERFORMANCE RECORDING

● 3D Performance tracking within missions:



WANDERING BEHAVIOUR STEPS

● Queries 

neighbouring go-to 

positions.

● Chooses the most 

distant.

● Validates that 

return path-find 

succeeds.

● Repeats.



STUCK DETECTION

Areas which can be entered into but not returned from 



BOTS CONSPIRACY THEORIES…



PERFORMANCE TRACKING – WHEN?

● Nightly

● Weekend

● 48 hour non stop runs.



PART 5 – NEXT STEPS



NEW FUNCTIONALITY

● Improved Wandering.

● Loot.

● Engage in game activities.

● Support for testing new content.



PART 6 – CONCLUSION



DOESN’T HAVE TO BE COMPLEX

● Complex AI is not always needed.

● Reuse what is available for you.

● Game systems (NavMesh, player actions, etc).

● Tracking framework.



DEVELOPMENT CHALLENGES

● Mission smoke testing.

● On Division 1

● Game was “immutable” -> easier to develop.

● On Division 2

● Game was changing -> not very resilient to every day changes.

● False positives issue.



DEVELOPMENT CHALLENGES

● Performance testing.

● Very resilient to every day changes.

● We could cover most of the world in every run.



AD-HOC USAGES

● Once the system is running…

● Awareness of usefulness raises dramatically!

● Memory reports in long hours.

● Bots sending fake VOIP data to test VOIP.

● And much more!



DATA CHALLENGE

● Lots of data!

● Mission smoke reports.

● Performance statistics dashboards.

● GBs of Memory Reports.

● Data generation automated.

● Data consumption not automated.



FINAL CONCLUSION

● Big worlds.

● Live for years.

● Ongoing testing 

needed.

● We NEED 

Automated Testing!



SPECIAL THANKS

● PABLO RODRIGUEZ CODES

● ARTHUR VAN-CEULEN



THANK YOU!

QUESTIONS?




