

• Thank everyone for coming

• Survey and phones

• My name is Doug Sheahan, I’m one

of the lead gameplay programmers

at Insomniac Games and we’re here

to talk about building traversal in

“Marvel’s Spider-Man”.

• So, let’s get into it

• In the fall of 2014 I found out

Insomniac Games was making a

Spider-Man game and that I was

assigned the task of bringing his

traversal to life.

• This would not only be the biggest

game Insomniac had ever made,

but it was using a legendary IP

with a heavily invested fanbase and

an unrivaled expectation of quality.

• As someone who was once a poor

college student holed up in

bookstores reading Spider-Man

comics, the idea of making Spider-

Man swing was super exciting.

• It also scared the hell out of me.

• Fortunately, we had the game’s vision

statement as a starting point: “Play

like a superhero movie feels”.

• So we set upon a journey to, as the

saying goes, make you feel like Spider-

Man.

• So what does “Play Like a Superhero

Movie Feels” even mean for

traversal?

• With swinging as our starting point,

we decided on a few core beliefs

that would guide the feature’s

development.

• The first thing we acknowledged was

that we wanted to target a broad

audience.

• Spider-Man has a worldwide

following and we wanted as many

people as possible to be able to

play and enjoy the game.

• However, we knew we had the

issue that most gamers didn’t really

have any muscle memory for swinging.

• Unlike, say, a third or first person

shooter, most folks don’t really have a

brain map for how to make swinging

go.

• To add to the challenge, we start the

game by chucking you out a window,

giving you control and saying, “Alright,

swing time, go”

• Wanting that first moment to feel just

right, we knew we had to get the

controls to a point that were easy to

learn, but hard to master.

• Next, we wanted traversal, and

swinging in particular, to be rooted in

physics.

• This was vital to give players a

sense of believability, a feeling

that swinging through New York

as a superhero was actually

possible.

• Following that, swing lines had to

attach to in-world geometry.

• This was extremely important in

order to ground the simulation

correctly but mostly we were

terrified of an angry fans telling us

we’d ruined their childhood.

• Finally, we wanted to have a dynamic

camera.

• The look and feel of swinging

needed to be fluid, fast, exciting,

and cinematic.

• We needed a camera that helped

translate all the high-flying

acrobatics and velocity into a

visceral experience for the player

• Today, I’m going to show you how we

achieved those core principals by

taking you through the process by

which we created traversal.

• The biggest key to our success is

iteration.

• For many elements I’ll show you

not just what we ended up

shipping, but also where we

started, failed, learned, and

improved.

• However, knowing when we needed

to improve wasn’t always obvious, it

came from a steady diet of

playtesting and learning how player’s

interacted with the game and where

it failed them.

• This meant we had to stay flexible on

our execution and always look to be

greater.

• Now, before we can swing, we have

to have something to attach to!

• As stated, we wanted swinging to be

accessible and this meant we need to

think about attach points from the

player’s perspective.

• Namely, what is the player actually

responsible for when it comes to

13

picking an attach point and what is the

system responsible for.

• We first decided that we wanted

players thinking more about where

they wanted to go rather than where

they were attaching.

• This removed a significant burden

from the player and let them focus

on additional layers of gameplay

like chasing cars and dodging

14

bullets, rockets, and the occasional

pigeon.

• The player would communicate their

directional intent with the left stick and

the system would take it from there.

Our first attempt at finding attach

points was to comb the environment

using an array of ray casts.

• This would minimize the required

effort from the design and

environment teams

• And ensure that we are finding and

attaching to geometry

However, this approach presented a

number of problems that we could not

overcome…

• The biggest issue is that ray casts

simply did not provide enough

resolution.

• Our line lengths would often

exceed 50m and even with a

respectable density of ray casts

we were getting 20m square gaps

at full range.

• This was enough to not only miss

smaller objects we wanted to swing

from like flagpoles and radio towers,

but completely miss large sections of

buildings entirely

• As an additional issue, we recognized

that corners were often optimal

swing points but ray-casts were

miserable at finding them.

• A more obvious problem is that ray

casts can’t hit geometry with no

collision.

• This was particularly problematic

with trees in areas like central

park

• Even if those objects did have

some small bit of collision we

could swing from, the ray casts were

still terrible at finding them.

• Finally, as we’ll outline later, many

points require additional fixups to hit

optimal slopes and lengths.

• Doing these adjustments via

collision checks could prove

extremely costly when trying to

process dozens of potential attach

points and still may not be

accurate.

• With ray-casts coming up short, we decided to

use a markup based approach by wrapping our

buildings in box volumes that approximated the

shape of the building.

• We would find nearby volumes and process

them on a face-by-face basis

• Then perform a final raycast only on the best

point to get our true attach point.

Moving to markup provided a number

of advantages that were absent when

using ray-casts.

• First, point collection was really fast.

• Using a cache-friendly sphere

database of just our data

significantly helps scalability.

• By using shape information, we

effectively had infinite resolution for

point placement on each face of the

volume.

• This allows us to easily find edges

and corners and never have to

worry about missing smaller

objects

• Finally, by using markup we are able

to afford designers additional control

over various gameplay aspects like

custom swing parameters

• The main drawback with markup was

one of placement scalability.

• We have a huge world full of

things that require markup.

• Placing all of this by hand and

maintaining it as the environment

kept changing posed an

enormous amount of upkeep and

potential bugs.

• Our solution involved two primary

tools:

• First, we had to handle buildings.

Fortunately we were using a system

called Houdini to help us generate

the geometry for our environment

out of building blocks.

• This software could also be

leveraged to analyze the geometry

and procedurally place volumes to

approximate our building shapes.

• For objects outside of Houdini’s

operation, we deployed our engine’s

prefab system to bundle markup with

those objects so that any time an

instance was placed it automatically

brought the markup with it.

• With our markup now populating

the world, we need to actually do

something useful with it.

• At any point the immediate area

can be filled with hundreds of

volumes that are potential swing

points and we need to find the

best one.

28

• In order to pick our final attach point,

we need to start with a reasonable

reference point as our ideal position.

• Here we have a top-down view of

our hero surrounded by buildings.

• Player influence over point

selection comes from input on

the left-stick and…

• as stated before, we want the player

thinking about where they’re going,

not specifically where they are

attaching, so the input direction just

provides a starting point.

• From that input direction, we apply

an ideal slope and line length to

transform the input direction into a

position in the world that represents

our ideal swing attach point.

Moving back to a top-down view here,

we then use that position and

direction to generate two more points

on each face

• The point on the plane closest to our

reference point and a ray-cast point

along our ideal line direction, which

is clamped to the volume bounds

• We can then blend between these

two points to get our output point

• The closest point is useful when

we are traveling parallel to the

plane

• The ray-cast point is useful when

we are traveling towards the

plane

• We blend between the two points

based on the difference between the

input direction and the plane normal

of the face

• Now that we have our point, we need

to refine it a bit in order to make it

more effective.

• Our blended point can change the

slope and line length significantly

leading to longer, flatter lines,

shorter, steeper lines, and

everything in between.

• In order to try and give the player as

consistent a swinging rhythm as

possible, we want to try and get

closer to the ideal.

• This is an example of shifting the

attach point up a bit in order to get

closer to the ideal slope which had

gotten overly flattened by the closest

point.

• By moving more towards the ideal

slope we prevent the player from

an excessive drop during the swing,

keeping things more consistent for the

player.

• Now that we’ve generated a field of

points across the various markup

faces, we need to actually decide

which one will be our swing point.

We do this by scoring each of the

points and taking the best one.

• Scores are geared to fulfill the desire

of translating stick input to a point

that moves us in that direction.

• Our first scoring element is how the

face normal relates to the input

direction.

• We are looking for normals that are

perpendicular to the input direction

as this means that the player will be

able to swing along that surface in

the direction they desire.

• Because corners provide players the

most control, we try and snap attach

points to edges when nearby.

• We can then use the best normal

available to input for our score

calculation.

• We can also give corners a bonus

when trying to turn.

When taking input into account we:

• Start with the angle between the

input direction and the direction to

the attach point and score the delta

[BONUS INFO]

• We can also dynamically adjust the score

when we want to turn

• When turning, we don’t care as much

about precise accuracy, just that the

attach point is in the right general

direction.

• Using a angle-to-score curve improves

over our original implementation using a

dot-product because the delta resolution

for small angles can be better controlled.

• This becomes important for long lines

where small angular differences can

have a big impact on final swing

result.

For range, we are looking for points

that match our ideal line length and

have the score fall off as the distance

deviates from it.

[BONUS INFO]

• Similar to input direction, we also adjust

slightly to be more forgiving while

turning

• When going straight, we prefer longer

lines

• When turning, shorter lines are given a

slight bump to try and let us hook

corners more effectively

• We apply a similar falloff method for

slope as the angle moves away from

our ideal.

• With all of our individual scores

calculated we then do a weighted

sum and the highest score wins.

[BONUS INFO]

• Using a weighting scheme on the
normalized element scores helped us to
quickly adjust one elements influence
versus another’s without needing to
mess with the individual elements.

• Here you can see it all coming

together in-game

• [PLAY VIDEO]

• The blue boxes drawn over buildings

are the markup volumes with

horizontal probes representing points

above us.

• You can see a little bit of debug info

about each point’s score floating above it

as well.

• A quick note about debugging tools,

here you can see our swing history

display

• This shows us not only the player

path and attach points during their

swings but also arrows for the input

direction, camera direction, and

velocity direction at the moment of

attach point selection.

• This proved incredibly useful in usability

testing where we could have players

swing around and just stop when a line

felt weird.

• We could then take a look at the

debug history, see what the input

parameters were, look at the scoring

for all the surrounding points, and

see if we needed to adjust the

scoring algorithm.

Finally, we injected a number of

additional influences to help improve

the overall experience as we continued

development. These small items help

smooth out rough edges in a variety of

places while still working with the core

selection process.

• [ADVANCE] We can adjust the slope

based on fall direction or ground

proximity to help with flow.

• [ADVANCE] We increase the line length

at high speeds so that your time on the

line stays more consistent.

• [ADVANCE] We throw away a number of

points we deem bad because they would

deviate the player away from their

intended direction too much.

• Generally speaking, we found that

getting no line was better than

getting a bad line as falling provided

more continuity than the sudden

change created by a bad swing line.

• Now that we have our attach point,

we can talk about what happens

when you are actually on the line.

• As stated, we wanted to have a

physics based system that we

modify the results of so let’s start

with physics and then proceed to

mess with the universe a bit.

45

• The two basic forces involved in the

pendulum are gravity and tension.

• As you can see here, tension is a

factor of line length, angle, and

gravity in the direction of the line

• It is responsible for pulling the

bob of the pendulum in a circle

around the center of the system.

• We also break gravity up into it’s two

component vectors here, one parallel to

the line, one perpendicular

• The perpendicular portion of gravity

represents the restoring force. This is

the part that causes the pendulum to

oscillate back and forth

• The parallel portion is what’s left and,

in our calculations can actually cancel

out part of the tension force to

simplify the math a bit.

• When actually calculating this in

code, we set mass to one for

simplicity as we aren’t dealing with

variable mass systems.

• After a bit of simplification, we apply

the remaining forces of tension and

perpendicular gravity to our velocity

• In order to increase the accuracy of

the simulation, we do four iterations

each frame to run at a total of 120Hz

[BONUS INFO]

• In actual implementation, we apply these
forces only to the portion of velocity that
are tangent to the line. We then apply
full gravity to the remaining velocity and
recombine for a final velocity.

When we were talking about how we

wanted swinging to feel the number

one thing that came up was that

swings should feel fluid. This lead to a

couple of rules that droves a variety of

other elements.

• First, we wanted to avoid slack lines

• We wanted to keep the player

feeling like they were swinging,

not falling.

• By keeping the line taut at all

times it gave the player a much

more predictable experience and

prevented bounciness and

sudden changes in direction as a

slack line goes taut from a free fall.

• This lead to the need that once a line

is shortened, it generally stays that

length.

• We do look for opportunities to

try and restore lost line length

when possible but doing so too

quickly feels physically wrong so it

must be done with caution.

Our first goal on getting a new line is

giving the player a good experience of

getting into the swing. However, the

initial set up poses an immediate

challenge:

• The incoming velocity is nearly

always very different than the

velocity that is tangent to the swing

arc

• We don’t want to snap the velocity

because that will feel like a sudden

change in direction

• However, if we just let the simulation

play out, you get something that

looks like this.

• Because of our rule that we don’t

allow the line to lengthen again, the

velocity running into the center of

the swing arc shortens the line

considerably.

• This can result in losing the swing’s dip

as well as causing a rapid acceleration

in angular velocity that is hard for

players to react to.

• To improve, we blend the incoming

velocity towards the tangent

direction of the swing arc a little bit

each iteration.

• This helps maintain healthier line

lengths and improves expected

behavior in angular velocity.

• The player can also now feel a much

more significant drop in the swing arc

compared to the previous motion path.

Once they’re into the swing, the player

is going to want to further influence

their motion in order to move

themselves around.

• We do this with a simple accelerated

rotation of the total velocity.

• We scale the turn speed so that you
have maximum control through the
trough of the swing but much less

ability to turn at the swing’s apex.
• We also adjust turn speed based on

whether the player is turning with the
natural attachment or away from it.

[BONUS INFO]

• We blend it in over the first few frames

of the swing so that the player can

straighten out the move stick if they

choose and to make it feel more natural

• When it comes to managing speed

while on the line, things vary greatly

from swing to swing

• The two biggest influences on the

speed for any given swing will be

the amount of speed the hero

brings in and the gravity applied

during the swing

• Due to streaming considerations we

also need to stay below an average

speed of 30m/s to avoid loading stalls.

• We start be deciding what our

horizontal terminal velocity is for any

given swing.

• As a baseline, this is done by

translating fall speed into max speed

while never letting it slow you down.

• This feels pretty natural to players

because they are using gravity to

help generate speed.

• As a bonus, it helps on the streaming

side because to build up that fall

speed you need to be dropping for

awhile which will dampen your

horizontal speed.

• We then let normal swing physics

accelerate you up to that max speed.

• To enforce the terminal velocity, we

only cap the hero’s horizontal speed.

• This can have an odd side effect

where you can actually slow down in

3D through the downswing but it

helps you get through a long swing

arc much faster

• The slowdown doesn’t come into play

too often and most players are

completely unaware it’s happening due

to other speed cues like camera rotation,

environment motion, and screen fx

On the up-swing, gravity will be

slowing the hero down. However, we

have a few things we want to take into

account on the up-swing

• We want players to feel like gravity is

appropriately slowing them down

• However, line lengths are highly

variable, which creates inconsistent

timing to the various release levels.

• We also don’t want to slow the player

down too much when near the trough,

instead letting them keep their hard-

earned speed a bit longer.

• To account for all this, we

implemented a variable gravity up-

swing.

• At any given point on the up-

swing, your gravity is determined

by a combination of your current

speed and where you are on the

swing-arc.

• This helps make swing timing more

consistent as well as allowing more

swings to move through the full range of

release points

• With the basics now in place, I want

to talk about our experience of

refining the swinging mechanics over

the course of production.

• Again we go back to our usability-

driven iterative approach.

• Per our initial goals, we wanted

players to feel the momentum

60

and physics but also wanted swinging

to be accessible.

• Usability testing proves a critical

element in iterating on accessibility.

• This is because developers quickly

become their own worst testers

• We know too much about how

things work and are generally

quick to forgive ourselves

because our code is amazing and

shame on you for suggesting

otherwise.

• Also, developers tend to play the

game a particular way, the way it was

designed.

• Real players will interact with the

game in a number of unexpected,

and sometimes confounding

ways, stressing elements of the

system that a developer may

never encounter

• Finally, you need to make sure

functionality lines up with player

expectations.

• As a developer, we may have a

perfectly rational explanation for

why something works the way it

does, but to a player it will just

seem weird, broken, confusing, or

simply not very fun.

• So, what did we find?

• [ADVANCE] Players suck at managing

physics

• Forces will often act against their

desires

• Attach points are not directly

player driven leading to a lot of

variability

• World geometry is complex and

difficult for many players to

effectively navigate while tethered to

an attach point

• The end result was that players felt they

lacked control over in-game results.

• This was despite everything working

“as intended” when we made the

initial version of swinging.

So, how did we approach solving this

problem?

• We injected a number of assists to

swinging to help smooth out the

experience, giving them a few less

things to worry about and moving the

system’s behavior closer to player

expectations where possible.

• Our goal was to keep these as invisible to

the player as possible

• We found that if you deviated too far

from real physics, players would

notice and often react negatively.

• Our first major usability problem was

that players felt like it was impossible

to swing in a straight line

• The results of the simulation were

creating a mismatch between

player input intent and the

character motion results that

confused and frustrated many

players.

• The reason this was happening is that

forces were conspiring to move the

character in a way that it would settle

underneath the attach point.

• The tension force has a

component that moves towards

the attach point with gravity

working to reinforce it.

In this video you can see you what

happens when the tension forces are

in full effect.

• [PLAY VIDEO]

• The player is trying to swing straight

down the middle of the street but is

consistently pulled sideways towards

the attach point

• When they counter-steer to get back in

the middle it is likely their next attach

point is on the other side and they get

pulled quickly in that direction,

increasing frustration

• To top it all off, this zig-zagging motion

will also slow down a player’s straight-

line speed

• So, how do you fight gravity? Cheat.

• We move the simulation pivot away

from the wall into a position that will

help us swing straighter while leaving

the visible attach point on the wall.

• We then blend the pivot back into

position over time or when the player

is turning.

• This helps ensure that turns pivot on

the correct position and that if you

settle you settle under the visible

attach point.

• This motion was detectable to players

but we found that most felt it actually

worked more as they expected, aligning

input desire to results.

In this video, pivot tweaking is fully

active.

• [PLAY VIDEO]

• The player can maintain a more

consistent center line and build

speed more easily.

• Directional intent is transferred more

cleanly to motion allowing the player to

focus on other aspects of traversal as

desired

• The next usability problem was that

players felt they were not able to get

a swing line when their body is at or

near the top of a building.

• This was happening because we

required an attach point to be a

minimum height above you.

• We do this because it prevents

you from flying over the pivot or

requiring a velocity change that

would feel unnatural and sudden.

• However, this rule was

completely hidden from the player

and there was no reason for them to

expect or anticipate it.

• Some additional reasons this can

occur is that player perception of the

character position versus the world

can be pretty murky when in the air.

• Also, players are just impatient when

falling without being able to attach to

something.

• So what did we do? Well, once a

cheater, always a cheater…

• We secretly allow the simulation

attach point to rise above the

building edge

• This would raise the valid attach

point ceiling and let people attach

sooner.

• It also had the nice side effect of

improving lines that were previously

valid but not great.

• Player awareness of this move was nearly

zero. It’s actually pretty hard to notice a

vertical shift in the pivot point when

swinging under it.

• Our next usability problem is that

players were often oversteering

when trying to turn and clipping the

edges of buildings.

Our solution here is to do a number of

collision tests to scan the world for

problem cases.

• We send a cone of checks forward to

look for things we might run into so

that we can nudge the player slightly

left or right around them

• We also send a series of checks

sideways looking for upcoming gaps in

surrounding walls.

• This gives us a clue that there we

might want to dampen steering

values so that players don’t oversteer

in anticipation of making a turn and

slam themselves into the wall

instead.

• These two assists combine to give players

a hugely empowering feeling of “just

made it!” without really noticing how we

were helping them.

• Yet another consistent problem was

that players would often have a line

that was just long enough to smack

them into the top off a building they

were hoping to clear.

• This was particularly bad because
players had no control over their
line length so they were quick to
blame us for their troubles.

• The solution here is to shorten the

line dynamically in order to get it just

short enough to clear the building.

• We would use collision to scan

ahead for the maximum

upcoming height and then slowly

raise the player until the new line

length was short enough to clear

the building.

• One final element to talk about is

how we shorten the line to keep

players above the ground.

• We do this because both our

ground and rooftops are so

littered with cars and props that

trying to navigate a swing through

them would be impossible at

speed.

• We also didn’t want players face-

planting into the ground all the time,

instead getting that street-sweeping

swing that can feel so good.

• Similar to clearing buildings, we would

use collision to get the ground height and

then scale vertical motion to keep you

above the ground.

• Players were pretty aware this was

happening but the vast majority

preferred continued motion over

slamming into windshieds.

• Once a player’s time on the line is

complete it’s time for what ends up

being one of the most satisfying

elements of swinging: Flinging

yourself off the line and across the

world.

• When doing so, we have two sets of

data for letting go of a line: releasing

80

and jumping

• Jumping allows players to generate

more height and speed while getting

more acrobatic animations

• Releasing has simpler animations and

allows the player to take a follow-up

action more quickly

• One of the really nice gameplay

features of swinging is the inherent

analog nature of how a release point

translates to an exit direction.

• A player can choose to release at

a low point to get more speed or

hold on a bit longer for more

height.

• Our first approach to swing releases

was very metric driven, something

that seemed sane based on

Insomniac’s platforming history.

• We would define the desired

jump height and time-to-peak for

various release points and speeds

along the swing arc and blend

those values for any release point.

• The goal was to make jumps feel

predictable and consistent.

• We had this model for nearly two

years and were getting mostly

positive feedback but there was

always an undercurrent pointing at a

lack of player satisfaction.

• Players were feeling like jumps

were too “heavy” and that their

momentum on the swing line was

not translating to their jumps.

• This was because the metric defined

approach was changing gravity

significantly for any given release

point based on player speed to hit

that jump-height target.

• Instead of feeling rewarded with an

expected amount of “fling” players

physics-feel was being disrupted and

they felt like they were being

penalized somehow

• To fix this, we moved to a more free-

release model that let go of the

controlling metrics in order to keep a

fixed gravity for each release point.

• This was the only design-driven factor

into the jump simulation as we

wanted to remove anything else that

felt artificial

• Once implemented, the change

created a much more natural

translation of swing speed to jump

size that better matched player

expectations.

• We saw an immediate increase in fun

factor as players were now able to

fling themselves across the world

with abandon which lead to a greatly

increased sense of speed and joy.

Moving on from the simulation, I want

to talk a bit about how the animation

for swinging is implemented on the

code side. This will cover the

mechanics of how we pick animations

to play and adjust them to more

accurately represent the underlying

simulation.

86

• When we first started talking about

swinging the gameplay and

animation groups laid out some high

level goals for how we wanted the

animation to look and feel. This

included:

• [ADVANCE] Having fluid

animation over the course of the

swinging arc.

• [ADVANCE] A clean entry animation

from our in-air pose through the sling

and into the swing

• [ADVANCE] The character’s body
needed to properly align to the web
line.

• [ADVANCE] We needed a well-timed

kick at the trough to sell momentum

and as a player cue for where they

were in the swing arc.

• In our first iteration of animating the

swing we approached the seamless

animation through the swing arc by

actually using a single animation for

the entire swing

• The animator created an on-the-

line animation that started at the

drop-horizon and went all the

way to the apex horizon

• In code we would then drive the

animation time based on where the

player was in the swing arc on a given

frame

• In order to get our clean entry

animations we created separate

swing-intro animations for different

points along the swing arc

• These animations would end

pose-matched with the full-swing

animation so that the blend to

the swing would be seamless

• When a player began a swing, we

would calculate where they were in

the arc and blend between those

different animations to get an intro

for that angle

• We would then continue to

dynamically update that blend so

that the final pose was a match for

the swing animation we would play

after

• In order to get the body to align

without having to make duplicate

swing-arc animations, we deployed

partial animations to adjust the final

body angle

• We would apply a similar process

to adjust the character’s arms for

final fixups

• After iterating with this model for

most of production, we had some

things that worked just as expected.

These include:

• The entry animation system

worked well, allowing smooth

entry and timing into the swing

animation

• Our adjustment partials did a good

job at aligning the character to the

swing line with minimal additional

animation required

• And finally, the animation through

the swing arc was fluid.

• However, the system presented a few

limitations that were capping the

animator’s creativity

• First, we had limited variability in

the a swing.

• Getting any variation in this

model required animating an

entirely new swing-arc from start

to finish

• Next, we had very perceptible

animation time scaling

• Line lengths and players speeds

are highly variable which was

born out in highly variable arc-

speeds.

• With a fixed number of

animation frames scaling over a

variable time range we would get

easy to feel time scaling.

• This was especially evident when

we would get slow kick throughs

that lacked impact on longer lines

and slower swings.

• So now we had new goals, enable

variety and reduce time scaling.

• We did this by breaking the swing arc

up into pieces that we could animate

separately.

• We would animate the down-

swing and up-swing separately all

the way to the trough letting us

overlap the kick whenever we

wanted.

• We continued to drive the animation

time as before on the up-and-down

swing animations as they weren’t as

susceptible to visible scaling.

• Once in a swing, we would estimate

the time-to-trough during the

down-swing and trigger the kick

animation at just the right time in

order to be able to play it at full

speed. This instantly made our kicks

feel more powerful and consistent.

• It also meant that we could plug in

a variety of animations into the kick

portion without needing to re-animate

the rest of the swing.

• But we weren’t done yet, our animators

still wanted more.

• By breaking the swing animation into

pieces it allowed us to have more

variety in animation construction.

• We were able to introduce

custom kicks and spins with

custom upswings and hard

“catch” variations of the

downswing all of which could be

played with or without one another.

• This new iteration help us solve our

major problems by allowing us to

create a lot more animation variety

• It also helped us eliminate the

animation scaling from the most

notable portions of the swing

• One final problem worth noting was

that with all the various moves that

Spider-Man can do he would often

end up in poses that did not play

nicely with our swing intro

animations.

• We needed to either wait until the

character got to a better pose or be

okay with some really bad looking

blends.

• To solve this, animation wanted to add

more variety for swing intros but

programming didn’t want to manage

each of those clips manually.

• To push the work to the content

creators, we added a data-driven

setup that allowed animators to tell

the game what the next animation

would be from the current time in

the active animation

• They would mark up sections of

the jump animations with data

that would point to custom sling

animations.

• This allowed animators to cleanly get

out of acrobatic poses with custom

slings making the traversal feel more

seamless and the character feel more

dynamic.

Moving on from animation, I want to

talk a bit about our approach to the

traversal camera. We knew from

previous games that good motion and

animation only goes so far in

translating the experience to the

player. The camera is often the most

important aspect in conveying

101

elements of speed and translation in a way

that gives the player a visceral connection

to the action on screen.

When we started talking about our

top-level goals for the traversal

camera, we came up with three main

items that we found important after

early prototyping with a mostly static

camera

• First, we wanted to minimize the

amount of player input that was

required.

• This is because the player would

need to be engaging with the face

buttons frequently and could not

afford constant camera

management.

• Next we needed to accentuate the

pendulum motion and forces of the

line.

• Finally, we wanted to communicate a

sense of speed to the player

• We have a pretty long history of third

person games at Insomniac and have

generally started with a follow

camera model that tries to have the

camera looking in the same direction

as the hero’s velocity. While

successful in other contexts, it

presented a few problems for Spider-

Man.

• The biggest issue was that when

tuned to effectively show you where

you were going, it was extremely

susceptible to sudden changes in

velocity causing large changes in view

direction.

• In order to fix our problem, we

moved to a model based on the

player “dragging” the camera around.

• This was done by predicting the

player’s position based on their

current speed and using it to

calculate how that would drag the

camera boom.

• This ended up be much less noisy

with velocity changes as the frame-

to-frame delta was generally a lot

smaller.

• With the camera now following us

more appropriately I want to talk

about how we accentuate the

pendulum motion of the player

through camera motion.

• In addition to just feeling better,

this also helped us address two

major usability issues that a more

static camera was presenting

• First, as stated before, players were

not really noticing the full extent of

vertical translation the character was

actually performing.

• Players were also presenting a poor

level of comprehension of where

they were in the swing arc.

• They were frequently hanging on too

long, releasing high, and losing all

their forward momentum.

• The first thing we manipulate to help

sell the swing arc is the camera’s

pitch.

• We try and roughly match the

swing-arcs pitch in order to feel

that motion.

• As you can see here, we want to

keep the pitch a little flattened off

on the down-swing so that it’s still

enough to feel but not so much that

players lose sight of the horizon line.

• After the trough we then exaggerate

the pitch early in the up-swing in

order to communicate rise more

effectively.

• The next element we added to help

players feel the swing arc more was

to move the character’s position in

screen space down and then up over

the course of the swing.

• This created a real-world physical

tracking response from the player

that would reinforce the in-game

motion.

• When it came to turning we wanted

to get the player to feel like they

were whipping around a corner at

high speed and bring the same

sensations you might have in a

turning car.

• To get this affect we apply a little

bit of roll to the camera when

turning and scale it based on the line

angle and turn speed

• However, we had to be careful not to

push it too far due to motion sickness

concerns.

• Now that we have players feeling the

translation in traversal, we need to

make sure that the speed is being

properly conveyed.

• This means we needed to layer as

many visual cues as possible to

help sell not just the current

speed but changes in speed.

• Probably the most impactful thing to

sensing speed through the world is

the field of view.

• A wider field of view elongates

objects in front of the player

making it feel like you are

covering more ground

• It also brings more nearby,

peripheral objects into view that will

move very fast by the player.

• In order to really sell the changes in

speed we are constantly updating the

game’s field of view while traversing.

• To deal with sudden speed changes,

we rely more on adjusting the

camera’s follow distance.

• We have certain explosive moves

create a spring action on the camera

so that it falls back before blending

closer again

• This gives those moves a much

bigger sense of impact, like the

character is boosting away

suddenly, leaving the camera

behind.

• We can apply similar ideas to other

moves like web zip and point launch

to add impact.

• [BONUS INFO]

• We can also use camera distance to sell

anticipation.

• When swinging, the camera will

slowly close the distance to the

player. Then, on a jump release, the

camera will fall back suddenly

creating the overall sensation that

the character really threw himself off

the line with power.

• Here you can see that all come

together to show the sense of speed

• [ADVANCE]

• There is some debug draw on the

side to give you a better idea of

how the field-of-view and follow

distance are changing with the

action

• The final bit of camera development I

want to talk about is related to how

the camera is handled as we perform

a variety of traversal moves.

• Our first version of the traversal

camera treated each move as a

special, unique item.

• This was driven by a desire to

make every move as cinematic as

possible with the thought that

stringing together a bunch of cool

cinematic moves would look extra

cinematic.

However, this presented a few

problems…

• This is a video from an early vertical

slice demo that will present some of

the issues with how the “every move

gets a special camera” method

works.

• [PLAY VIDEO]

• You’ll see that going from move-to-move

would cause a change in framing and

FOV that could muddle the perception of

speed.

• Rapid sequencing of moves would also

create a very noisy relationship between

the world, character, and view.

• So, how did we get better?

• We started with a more unified

model for all traversal moves that

had speed-driven FOV and follow

distances that would stay

consistent across multiple different

moves.

• We also smoothed out any

adjustments we were doing to

offsets and made those changes

less aggressive.

[PLAY VIDEO]
• From those changes we got some

pretty good results.
• You can see here that there is a

much more consistent perception
of speed when moving from one
move to another.

• The camera ends up being a lot
more predictable to the player
and one move flows into the next
without feeling like there is a

major state change for the player to
adjust to.

• This proved a lot more fun and
predictable to players and gave an
overall better experience.

• As we started to get a full set of

traversal moves in the game and

playing with them more, both

internally and through usability, we

found that, unsurprisingly, our first

version was rarely good enough.

• This lead to a lot of feedback that

motion felt stiff and imprecise.

126

• Players weren’t able to navigate as

well as they wanted, many moves

weren’t matching expectations, and

they were unable to land where they

wanted.

• So, we started re-visiting them.

• Starting with wall run, our first pass

was set up to be locked as either

horizontal or vertical with no in

between.

• Entry was based on a combination of

character velocity, input direction,

and the wall’s facing with a heavy

bias towards maintaining the current

momentum and direction.

• The single biggest problem we had

was that wall run entry direction was

poorly mapped to player

expectations.

• They never really understood the

concept of momentum driving

the entry direction and

overwhelming their input

• This was made even worse because

there was no ability to switch from

horizontal to vertical to correct

problems

• On top of that, camera direction

versus a vertical wall was making

input-to-entry mapping even more

confusing.

• In this image is up on the stick

supposed to mean “go forward”

or “go up”?

• Players would often try and

compensate for this by pointing the

camera where they wanted to go but

the system wasn’t paying attention to

the camera.

• So, with our big problems identified,

we set out to make some changes.

• The first thing we did was add

analog steering. This created

more in-between values for the

entry direction as well as giving

players the ability to adjust on the

fly from an entry direction they

weren’t happy with

• Then we revisited our entry

direction process.

• We added a camera-driven

influence to help translate player

intent to in-game results.

• We then amped up the effect of

player input on direction over

momentum.

• These combined to result in a

significant reduction in player

frustration.

• For in-air control, when the player is

off the line and airborne, our initial

approach was to again heavily favor

momentum.

• This meant that in-air steering

was fairly stiff and players needed

to rely on web moves like swing

and web zip for rapid directional

change.

• The idea was that it would make your

swing releases more meaningful and

consequential.

• However, this model presented a

number of problems in playtesting.

• First, swing speeds amplify small

differences in angle over large

distances.

• This made it almost impossible to

be precise.

• In addition, players are just really

terrible at thinking ahead to

manage their speed.

• While there are tools to slow

down, they will generally go as

fast as possible to their

destination and only then try and

stop.

• This usually ends with the player

fumbling around, orbiting their

destination as they try and get closer.

• Finally, players were having a lot of

difficulty reacting quickly to changes

in situation or geometry.

• In order to help solve these problems

we had to put more control back in

the players hands and let go of some

of our strict momentum-based

concepts.

• [ADVANCE] To start, we significantly

increased the in-air turn speeds.

• This immediately helped players

react much more quickly to dynamic

elements.

• It also allowed people to more

effectively set up their next move,

increasing their ability to chain moves

• Later on we massively increased

the amount of drag applied to the

player when pulling back on the

stick.

• This let players feel a lot more

precise when reaching their

destination because they could go

from 60 to 0 in a very short time.

• Overall, this lead to a lot fewer

instances of players fumbling around

their destination and let people feel

like they could stick the landing.

• Next we needed to address our more

specific world interaction moves.

• When we started making the game

we knew we wanted to make the

city feel like a big part of traversal

and Spider-Man’s interaction with

the world needed to be tangible.

However, while swing and web zip

required geometry to work you were

still mid-air when using them.

• We wanted something more tactile.

• Our first version of this was zipping

through the legs of a water tower with

our web tunnel move.

• This was very cinematic from a

presentation standpoint and

definitely fulfilled the fantasy of

interacting with specific objects bit it

had a few drawbacks

• The first problem is that the move

had pretty rigid directionality. There

wasn’t a lot of room for players to

modify their direction going through

the objects.

• In addition, the entry angles were

rather limited. You could only engage

the web tunnel from a limited angle

range before it started to look and feel

really strange to get sucked into the

tunnel.

• In this case, we recognized that web

tunnel had some inherent limitations

that we weren’t going to be able to

break. In addition, we liked having

the move as it was for certain

situations.

• Instead, we created point launch, a

move where you could zip to a point

on top of an object and spring back off it

instantly with a big jump.

• We were able to get the desired

world interaction we were looking for

with web tunnels along with a

number of additional benefits.

• First, The player could enter and

exit a point launch from any

direction

• Next, because we just needed a

point, the opportunity for

placement in the world increased

dramatically.

• Once point launch was

implemented, we started to notice

that we had a lot of traversal moves

that we were treating as unique

moves but to players felt like the

same action.

• In this case, that action was “go to a

thing”.

• As you can see, we had separate,

unique button combinations for

zipping to a perch, point launching,

and zipping to a wall

• To make matters worse, point launch

only worked on perches while a

similar move worked on perches AND

ledges

• Ultimately, this led to a lot of

problems with players’ ability to

mentally map a variety of controls to

what felt like the same action.

• Our solution then was to merge them

all into a single input space using L2

and R2

• This helped ensure that the button-

to-action mapping in players’ brains

was more 1-to-1.

• However, it wasn’t just a matter of

merging buttons, it required us to

adapt some of the moves as well.

• First, we expanded point launch to

work from all edges and merged it

with zip-to-perch.

• We then moved zip-to-wall to be an

aim-mode only action so that its

targeting didn’t conflict with the

other moves it was sharing buttons

with.

• So, after iterating on our controls by

doing things like changing buttons

and adding moves, there are a few

major takeaways that I feel are

important.

• First, if player expectations and

system design are not aligned then

controls fail and player experience

drops.

• We spent a lot of time giving

long-winded design reasons why

our controls were the way they

started but ultimately players will

never get the most out of a system

they have trouble using.

• The next lesson would be that trying

to add analog input and behavior to

our moves helped add depth, utility,

freedom, and flow to our moves.

• As we were getting towards the end

of production and our core

mechanics were all in place, we

started to drive down to the next

level of usability feedback.

• We found that players were still

feeling like the experience had a

somewhat stuttered rhythm

152

where it would feel incredibly

smooth at times but they were

constantly finding little snags to

break their momentum

• As we kept gathering information, we

found that most of the problems

boiled down to a few cases repeated

across the city.

• In response, we created a small

pallet of moves that would help

maintain flow around those rough

edges.

• Many of these moves were

designed to be a natural extension

from the character’s current action

and so required no input.

• We wanted the player to feel

like they were expertly

executing these moves that

would often require unnatural

reflexes to execute manually.

• My first example shows one of our

biggest issues: Clipping corners

causing a short wall run that would

eject the player sideways.

• This sudden change in direction

would often surprise players and

frequently create situations that

were difficult to recover from as

they were exiting at a high enough

velocity to often cross the street

before realizing what happened.

• We fixed this by adding a small move

to redirect you parallel to your

incoming velocity if you were only

wall running for a short time.

• This very quickly got the player back

in action with a consistent reference

direction.

• The next example looks more at a

case where players did not have a

tool to change direction easily.

• If a player was wall running up a

building and wanted to corner

over it, they would have to clear

the building and then figure out

their next move.

• This lead to a gap in flow while the

player processed the new view.

• To fix this we added a move that

players could trigger before clearing

the wall to get over the edge and

redirect their velocity forward all in

one move.

• This added a small layer of skill

and depth while letting players

much more efficiently navigate

over buildings.

• A lot of our additional moves are

centered around trying to traverse

through space near walls and how

that conflicts with our art team’s

desire to have a lot of stuff sticking

out of those walls.

• The biggest factor here was fire

escapes. It just didn’t feel like New

York without them but they were

basically the arch nemesis of the

traversal team.

• We ended up making vaulting moves

both from the air and from wall run to

get around them as well as a

completely custom ladder-climbing

web move to run up a fire escape stack.

• We also needed to deal with signs

hanging off buildings and a lot of small

outcroppings in the construction of

buildings that were too small to really

wall run on but too big to just run over.

• That wraps up the journey we went

on creating traversal for Marvel’s

Spider-Man. We had a lot of fun

along the way working with such a

great character but there are

definitely a few key things I believe

any developer can learn from our

experience

• First, when creating mechanics, start

with a simple implementation and

add complexity as you uncover new

problems.

• By keeping things simple early we

were able to avoid going too far

down a path that our players

wouldn’t respond to which in

many cases kept us from wasting

work.

• We ended up with a system with a lot

of features but many of the best

additions were things we could have

never anticipated needing or wanting

ahead of time.

• Second, you have to stay flexible in

your approach to creating mechanics.

• We were initially resistant to

some of the best changes

because we had all the design

reasons listed out why it was

working like it was supposed to,

clearly it was the feedback that

was wrong!

• By allowing the game to evolve we

came to a final product that was far

superior to what we thought was the

right approach earlier in

development.

• And finally, you are your own worst

tester!

• Developers know exactly how

their systems work and the way

they’re supposed to be used so

when you play the game it will

often work exactly as expected.

• Different players will play the

game in wildly different ways and you

will never know where the real

problems and edge cases are until

you let them loose on your game.

• Even without external playtesters,

you should always challenge yourself

and others to try and play the game

in different ways.

• And that’s it for me. Thanks so much

for coming.

164

