
Hi everyone, I’m Brian Venisky and I’m a Senior
Technical Animator at Avalanche Studios. I’m
located…

…in the NYC office right in the middle of
Manhattan…with our other 2 locations both being in
Sweden. There’s our OG studio in Stockholm and
then our newest studio, which officially opened last
year, in Malmo.

Our most recent games you may know about are the latest
installments in the Just Cause series of course, with Just
Cause 4 having been released this past December, Mad Max,
Rage2 which comes out on May 14 (2019) and notable self
published games with theHunter Call of the wild as well as
Generation Zero which comes out THIS Tuesday March 26
(2019)!

Today, I’ll be talking about the content workflows that we’ve
employed for both the gameplay and cinematic teams that
began from the ground up during Just Cause 3 and evolved
over the production of Just Cause 4.

The reason why I wanted to talk about the work we’ve been
doing over the last few years is because I truly believe that
what we’ve been able to do with the scope of our projects and
the team size we’ve had is quite remarkable. It’s not only a
testament to the tools and processes that have been
employed, but by the fantastic teams that I’ve had the
pleasure of working with.

I would like to set the expectations going into this to better help you all understand what I’m going to talk about.

Now, consumers look at your product and they see the shiny things. They rate your graphics, how you compare to
other games, and so on. But at the core of it all, we are producing content in very similar ways, using workflows and
methods underneath that shiny finish.

A large focus of mine over the years has involved a lot of process and with that said, I’m not going to give you a
groundbreaking new piece of tech during this talk as it is in fact about using and manipulating things that already
exist. And while I love sharing my thoughts and process, I’m not saying this is all the definitive way to do something,
but it worked well for us.

While a good portion of this talk is focused on cutscene work, it is not a narrative talk so I won’t be going into detail
about that side of cinematics, although certain parts of our pipeline were created to allow for the extra work that came
into narrative changes.

It’s also not a talk about the overall look of anything or the in-game tech behind it.

And It’s not a talk that discusses creating high quality content or how to hit a certain level of quality.

It IS about managing large quantities of content and making the lives of the animators a little easier through decisions
and work done to improve the process of content creation during production of Just Cause 4.

And I wanted to make sure that no matter the position you’re in, whether it be a small studio, large studio, or just
yourself…that you can take a few things back with you from this and without the need of a programmer or some
special tech, do any of the things that I’ve presented on your own as you don’t always have the luxury of
programming support or an army of tech artists or tech animators.

I also wanted to make sure that this talk was accessible for any level of knowledge. Because of this I’ll probably go
over things that some of you already know or have done yourselves, in order to better help out those who may not
know about particular topics. This is even more prominent when I get into MotionBuilder specifics because of the
greater lack of support and knowledge that you find out there compared to Maya, which has far more information to
be found as quickly and easily as typing any broad topic into a search engine.

Slight heads up, this talk is about to be a bit of a hodge-podge because I have some odds and ends that I want to
share amongst some of our bigger tasks, so hopefully you don’t mind a bit of random tips and/or tricks mixed in with
pipeline and workflow.

So in the effort of keeping this talk as accessible as possible, I want to define some terms
because I’ve found that different disciplines tend to not know some specific shorthand
verbiage.

DCC refers to digital content creation application and for this talk the DCCs that I’ll be
mentioning are Maya and MotionBuilder.

MoBu is shorthand for MotionBuilder.

JSON stands for JavaScript Object Notation, but simply put it’s a language independent data
format that lets you store data to be accessed in a very straightforward and logical manner. If
you’re aware of what a dictionary is in coding, json looks and behaves very similarly on the
surface.

Headless refers to running maya in standalone mode which means you’re using full on Maya
and all of it’s features, but it runs in the background without actually opening up it’s visual
component.

Baking and Plotting as animators and tech animators should already know is the process of
converting animation data to keyframes on every frame. Since this term is different between
applications, I want to make sure everyone knows that baking is the term for this process in
Maya, and plotting is the term in MotionBuilder.

TA is short for Tech Animator in this case

MoCap is short for Motion Capture

And JC3 and JC4 both mean Just Cause 3 and Just Cause 4

Now that you know some key terms, here’s brief
overview of what’s to come over the course of this
talk.

I’m going to examine the 2 main DCC packages that
we used, Maya and MotionBuilder. This includes what
we were working with from JC3 and then what we did
differently for JC4, additions made to the pipeline,
and tasks that we tried to automate as much as
possible.

And speaking of automation, I think it’s worth looking
at the batching process that was set up at the studio.
A standalone UI was created that allowed us to
quickly set up customized batch scripts for any tool or
process we had in Maya.

Finally, I’ll end by going over our
cutscene tools and how we set up the
content for running the pipeline, as
well as get a little in-depth on how
the actual transferring of content
between Maya and MotionBuilder was
achieved.

In order to better understand a bit about my job at Avalanche studios, it’s
important to define the role of a technical animator at the Studio as every
studio within the entire game development world seems to have a different
definition for what a tech animator or even a tech artist should be. To
illustrate this better I’ve thrown some buzz words up on the screen for you.

The Tech Animators at our studio all at the very least know a little bit of
everything and have proven the ability to pick up new unknowns and very
quickly adapt and learn. For myself alone, I’ve dug into everything involved
with the animation process to some degree. I’ve built a ton of python based
tools and scripts, supported both the gameplay and cutscene teams, dug into
state machines and in-editor content, and have worked with each and every
department in some way from the vehicle team, AI designers, graphics
programmers…almost everyone.

Because of this, a TA at our studio needs to be ready to roll with the punches
at any moment. They also need to solve the overall major problem that is
“how will we maintain so much content, when we are limited in our time and
personnel.”

Another aspect of being a TA at Avalanche studios is that each project, such
as Just Cause 4, theHunter: CoTW, or our upcoming titles Rage2 and
Generation Zero, they all utilize a different workflow with DCC specific
preferences. This leads me to the question for JC4 specifically…

Maya or MotionBuilder?

While we were mainly using Maya for Just Cause 3,
we did have some tools created during development
that allowed for animators to push an animation from
Maya into MoBu and also take an animation from
MoBu and bring that back into Maya, however this
was not extensive enough to have MoBu be anything
other than a supplemental tool as opposed to a
standalone. As a Maya guy, it did take me a while to
actually appreciate what MotionBuilder can do for an
animator, but I do now realize that the things it does
well compared to Maya it does REALLY well. I’ve also
seen first hand some passionate debates between
folks on which one is the superior product. You’d be
amazed at how heated they get.

I actually made a twitter poll recently while prepping
for this talk that showed heavy Maya
favoritism…however MoBu always has a passionate
fan base and if you go back and check out this thread
there ARE some great points made in favor of both
DCCs…

SO… with that in mind.

When asked Maya or MotionBuilder…

Why not both?

It almost seemed like a death sentence to say YES to building up a
pipeline that could truly support two DCCs, considering at the time,
there was only 1 tech animator, myself, and 6 animators to support in
2 pretty different pieces of software, BUT our team was split up on
preference and expertise enough that I decided it was more beneficial
to allow them all to work the way they wanted to and were
comfortable with considering the lack of time we actually had to
complete the project, especially since we were dealing with so many
different factors that worked better in one or the other.

Since many other studios out there do in fact use both MotionBuilder
and Maya, we knew that building up this pipeline wasn’t a crazy idea,
but the challenge would be to develop something that was robust
enough with our lack of people-power.

In order to try and explain how overloaded the team actually was in
working on a AAA open-world title such as JC4 I want to start off with
some quick facts.

On the gameplay side of animation, we had 6 animators to support. And no
this isn’t a King Solomon cut the baby in half situation where we employed
a half of a tech animator…1 and a half tech animators is my way to quantify
being the only Tech Animator for the first 2 years of the of production
before I had any sort of extra TA help later on.

In the end we had around 7,200 unique animations and amongst 6
animators that’s quite daunting to manage. It equates to about 1,200
animations per animator for the whole project, very roughly 2.7 animations
per working day over the course of 2 years (which is a rough estimate of
the actual production time). Factor in the amount of time necessary for
polish, things like xsens capturing, throwaway R&D work, and all those
meetings that everyone loves to be part of day to day…aaand OOF

Now as far as preference for those 6 animators, we had 1 who was 100%
motionbuilder and never touched maya, 1 who was 100% maya and never
touched motiobuilder, and the other 4 had varying preference where they
used both but each a bit differently.

But as far as pipeline goes, we did have to follow this
structure, which many studios who utilize both Maya
and MoBu tend to follow.

You start in MoBu to handle any sort of MoCap data
using the tools it has such as animation stitching,
pinning, and the takes system for organizing content.

You then move that content over to Maya for
animation polish and finaling, and then from Maya
you export to your game.

In our case, since we did have an animator that only
used MoBu, he would stay in MoBu until he was ready
to export to the game, and from there I had a
process set up that would allow him to pass his
content through Maya when exporting to the game
because we did need to make sure that all of our
correctives and custom rig features got picked up.
Keep in mind that we were not using any sort of run-
time animation, so it was extra important to stream
everything through Maya on export to ensure quality
control.

Let’s dig into Maya now.

I needed to think about what we already had from JC3 and what we needed
to do for JC4 that would get us where we needed to go. We already had many
basic tools you’d probably expect to have in a AAA game pipeline, but after
working with them for an entire project cycle, we were able to pinpoint the
pros and cons, figuring out what to improve on.

Matching parent spaces and ik/fk limbs, as well as setting up constraints have
been very standard for years, but how could we improve them or even use
them differently than before? Did the tools we had overcomplicate things?

In the case of foot planting, animators on JC3 had to manually tag in the
content when this was occurring. Could we automate that?

How about all those scripts and random tools that animators find online,
install or use, and then they end up breaking Maya. Was there a better way to
handle that and essentially “animator-proof” things a bit?

There were attachment tools that would help set up weapons and props for
animators, but they ended up being so cumbersome with too many buttons
and options that we actually…

…just got rid of them. Animators tended to have their own
workflows set up to set up attachments and a lot of this was
part of those outside tools they found so I already didn’t have
to worry about that.

We also had a file browser for the animators where they could
find and open Maya files from within Maya as well as multi-
select files and folders for batch exporting animation to the
game.

Finally, a tool to go from Maya to MotionBuilder and back to
Maya existed, but it was very limited and we didn’t have a good
system to transfer multiple takes back into Maya or multiple
files from Maya over to MoBu quickly.

Actually visualizing some of this now…

We had a lot of those processes broken down into 1
button clicks thinking it would be easy and awesome
for hotkeying, but in many places this wasn’t very
efficient. This did allow for a few things like space
and ik/fk matching to have the ability to be used as
hotkeys, but the physical UI was sort of a nightmare
and a hassle to navigate. All of our tools also had
their own dedicated UI window which was a pain to
keep track of as well as organize visually.

In addition to these tools it was sort of the wild west
when animators started to download those 3rd party
tools and install them themselves or create random
shelf buttons for mel and python scripts.

Going back a slide, we did have animator organized
3rd party tools, but they were completely
unsupported by tech animation. Essentially we gave
authority to 1 animator who oversaw this process. He
used a network folder to add scripts to and then
called them in a custom userSetup file that any
animator could grab.

It worked well enough but it wasn’t something I could
easily oversee myself and quality check.

Because of this, all of our supported as well as
unsupported tools…

…Came together like that shoebox full of cables and
wall chargers that you keep in the closet “just in
case” you need them someday.

For JC4 instead of trying to add more, the focus was
to see where we could scale back. Like those
constraint tools, what else didn’t we need? What
needed a restructure? What tools needed serious
code refactoring?

When it came down to it, we almost started from
scratch on many things. There was also a lot of
refactoring and some decisions made to either
completely get rid of things that were barely if ever
used, as well as a push to automate as many things
as possible.

This led us to a main goal. Instead of trying to solve
every little issue… we would give more power to the
animators!

We realized that we didn’t have to try and make
every little thing a button or try to solve every single
problem, and we also realized that the animators in
the end didn’t want to work that way. Simplicity
became the goal.

In order to reach our goal of simplicity we started
focusing on efficiency, speed, user preference, and
customization.

The first thing we did was tie all of our tools into one
main toolbar that can be set and customized as the
animators themselves want. After watching other
GDC talks or checking out online resources, I realized
that many other studios tie their tools into one
animation specific toolbar, so I wanted to set out to
first do that…but also give it a bit of something extra.

If the animation tools are open on Maya close, the
tools open when you reopen Maya. They can be
docked or undocked. You can pop tools out if you only
need one but don’t want the entire UI in your way. If
you like the UI but don’t use certain tools you can
completely hide them from the toolset. You can also
rearrange the order of the tools if you use one more
than others and prefer it at the top of the stack.

Instead of having animators click a ton of buttons or
use convoluted interfaces to set attachments, for JC4
we created a simple 1 button attach/detach system
that could easily setup specific attachments as you
can see here with the parachute and wingsuit.
Underneath the hood this process detects which rig is
active, and when the attach function is run, sets up
the active rig accordingly. Further, thanks to the
power of space switching, once attached you could
quickly set specifics as to how you wanted things like
handles or buckles to follow the character.

IK/Fk and Space matching are pretty standard these days, so what we set
out to do instead of reinventing all this, was to evaluate and refactor the way
we ran these tools to create quicker times for both running Ik/Fk matching
and Space Switching. Single frame matching now happened instantaneously
and if you wanted to match for the entire timeline, it only took a matter of
seconds.

Something that was introduced back on JC3 to our rigs and was further
enhanced by the quicker speeds of space matching was what we called the
“driver root” control. You can see it here being that giant control above the
character’s head that is controlling the entire character. Say you want to
animate the character here dangling, with both arms and legs in IK. You can
easily place the driver root to the position you want to rotate from, then set
the space for both hands, feet, and the COG control to this driver root,
animate it tilting left and right, and then space match all of these controls at
once back to world space when you can then polish each one individually. I
like to call this control a “locator on steroids” as it functions the same way
many animators use locators to bake and transfer animation, but having it
built into the rig and ready to work with space matching gives you immediate
out of the box functionality the second you reference a character in your
scene.

We also introduced rotation order
matching. The rigs themselves were
set up with best practice rotate
orders on all controls, but adding the
ability for an animator to change the
rotate orders of controls on the fly
gave them even more control.

We also gave the animators the ability to create
custom selection sets on the fly that were also simple
to make hot-keyable. Multi-Select the controls you’d
like to group together, click “create selection set” and
that’s it. Now you’ve got a custom group of controls
you can grab instantly.

Even more power was granted to the animators to be
able set up their own custom pickwalking for
ANYTHING.

On JC3 we had pickwalking on the character rigs only,
and in order to set those settings, we would have to
hard code it into the rig.

This time around, the character rigs DID have default
pickwalk settings, but animators could customize this
any way they’d like as well, and also add pickwalking
to whatever else they may choose to.

We also added a custom scripts tab to the toolset.
That tangled mess of 3rd party scripts and snippets
were turned into “official, unofficial scripts”.

The TAs can add 3rd party tools officially in perforce
for deployment and animators can locally add
anything they want to their Maya scripts folder and
then magically populate that tool nice and neatly
here. There’s no need to override or create a custom
userSetup file, it’s all here for you to use pretty much
out of the box.

All those random MEL and python scripts that were
now nice and neatly organized and labeled in a way
that anyone can easily see and understand.

All custom scripts have an auto-create shelf button.

The ability to hide/show what you want like our
official tools.

And a customized help popup that includes a unique
command.

Which through use of metadata, create runtime
commands when sourced to allow for the animators
to easily apply to hotkeys and marking menus.

I want to show you one specific example of workflow
improvements that actually took away power from the
animators, but it was not power that they really wanted.

On JC3 anytime we wanted to grab footstep data from a file we
needed to have an animator go and manually tag anytime a
footstep occurred. They had a tool that allowed them to easily
scrub through an animation and click left plant, right plant, left
plant, etc as they did so. You can see here the blue and red foot
placement markers that are getting set for all frames where a
foot hits the ground. While this was a very simple and easy to
do, it was monotonous took up lots of time. Time that took away
from say, actual animation work being done.

On JC4, I wanted to take this out of their hands and automate
the process completely.

All it took was a pretty small scrip.

Don’t worry about trying to read this, I’m about to
break this down so that you don’t have to try and
read through this whole thing, especially if you aren’t
a python coder.

The first thing that we need to do is find the distance
between the ankle joints within consecutive frames.
For example, let’s say you are looking at a run cycle
and the left leg of a character is swinging back down
to hit the ground. On frame 7 you grab the position
of the left ankle joint in world space, then you grab
the world space position of the left ankle joint on
frame 8, and you calculate the distance apart that the
ankle joint has traveled from frame to frame.

Here is a simple function that can return the
difference in distance of two points.

Here we are just saying we want to evaluate the left and
right foot joints and then depending on an animation being
a walk or a run, there’s a predetermined threshold that is
slightly different based on the fact that the distance each
foot moves depending on the gait of the character
locomotion is pretty different. If you look at a run cycle, the
ankle joint will have a further distance between frames than
a walk cycle.

So what did this threshold do?

We know that when the foot is actually planted, it’s position
doesn’t change a whole lot from frame to frame. This value
simply says, do not bother even looking at anything greater
than this. It was sort of a hacky but efficient way to filter
out any obvious non-planted values, as sometimes those
can otherwise mistakenly get tagged based on the
character’s leg movement when not planted.

And here’s the bulk of the script that takes these factors into
account.

We analyze twice here, one time for each foot. The
analyzation goes through the timeline, finds the current value
of the world space position of the foot on each frame, and
compares that value with the world space position of the foot
from the previous frame.

If a distance value is less than the frame before as well as less
than the frame after we tag that frame as “the foot is
planted.” By tagging the smallest value of movement in a
particular range of values, we assume that the script has
found a planted foot.

For walks, we also added a filter that made sure a foot wasn’t
too drastically rotated up and down or twisted since the slower
nature of walks meant that distances of the position of the
feet weren’t as drastic frame to frame, and surveying both the
pitch and roll of the foot gave us another good indication that
a foot was planted as it ensured that the foot itself was flat on
the ground.

Another really nice thing we could do from here is take the
footstep data, and depending on if an animation is a walk or a
run, determine when you’d hear a cloth sound.

The character almost always hits the point where their legs
cross each other after a step, at the same time on both runs or
walks. For runs this was 2 frames after a step and for walks it
was 5. Thanks to this consistent behavior we can automatically
gather cloth sound triggers and not only are we gathering
footstep data, but cloth sound data. This made the audio team
extra happy as they now did not have to worry about manually
tagging this in-game themselves…and they were also already
benefitting from the automatically tagged footsteps, as was VFX
too. So hey, we just made animators, the sound team, AND the
VFX team very happy with all this automation.

To the surprise of the animation, vfx, AND audio
teams, and honestly myself…this method had a good
success rate, I’d say 85-90% of footsteps and cloth
were tagged correctly just by this. The rest was
manually fixed, as sometimes extra footstep tags
snuck their way in or a tag here or there was missed.
However the amount of work to do that cleanup was
so much less than what anyone had to do before
when we were manually tagging footsteps.

So now it’s time to see this in action.

We have ourselves a run animation.

By quickly scrubbing we can see where the foot is
planted.

Now we run the script and it cycles through the
animation as it evaluates each foot. When it is done
evaluating, we get our auto-generated footstep tags.
Let’s see how accurate this really is.

And just for fun, let’s evaluate 4 feet and run this
script on a llama the newest animal heroes in the
Just Cause series.

Here’s our auto-generated data now…

And let’s check it out.

Oh daaaaang, that’s pretty good.

Moving over to MoBu now, here’s what we had
custom on JC3. Yep…nothing custom.

While we did have a way to send Maya content to
MoBu and then from MoBu to Maya, that entire
process on the MoBu side of things only involved
making sure that you save your MoBu file with the
take you want to transfer over to Maya saved as the
active one.

The only MoBu specific tools we had were really just
Maya tools that grabbed FBX files and transferred
animation onto our Maya rigs, or would bake down
and export animation content in Maya out to FBX.

Our goal for MoBu was to actually make some tools! Now, we did already
have some animation tools that my counterparts in Sweden have
developed over the years, but there was nothing that existed for project
and workflow specific needs for us on Just Cause.

So now that we were developing actual MoBu tools and allowing animators
to use it more as a standalone tool, we wanted to extend the default HIK
rigs to allow for more from within MoBu in terms of things such as
retaining root motion data, weapon/attach data, and any other reference
aside from the default HIK controls.

We also needed to drastically improve the process of sending content from
MoBu to Maya.

It became necessary to send multiple takes from within a MotionBuilder
file over to Maya which handled animation content on a 1 animation per
file structure. In addition to multiple takes we also had to send full
cinematic sequences from Motion Builder to Maya, just as we had to do
the same from Maya to MoBu. I’ll detail this more later when I also talk
about the cinematics.

What we had on JC3 was the basic default HIK rig
with no additional features. What we needed for JC4
was to add extensions to the HIK rigs so that we
could pull that data, retain it, and modify if
necessary.

We actually start off in Maya with the A-Pose
character, t-pose it, and characterize it. Now this is
our base to work on. From here we either build a
Maya rig or an HIK rig from within Maya that we’ll use
in MotionBuilder.

The Maya rig gets saved off as an MA, and the HIK
gets exported as an FBX file.

The FBX generated in Maya is then imported into
motionbuilder and we run an auto-build of sorts that
creates motionbuilder rig extensions to the root bone
and some key reference joints that we use for
character aiming and weapon or prop hand
attachments. This process also adds a namespace
and ensures that things that the Maya to MoBu
conversion misses such as hand and foot contact
values are properly set.

Now that the team has a custom MoBu rig that
they’re animating with, they need to be able to push
that content over to Maya. On JC3 animators would
have to save their MoBu file with the take they
wanted to transfer to Maya as the active take. Since
animators were utilizing MoBu much more this time
around, and especially for the animator on our team
that ONLY used MoBu, this wasn’t going to cut it.
Some files could contain many takes such as this
one, so we needed a way to quickly get any and all
content out of MoBu, so we developed this UI that
allows you to pick and choose whatever animations
you want…which then get plotted down and
completely stripped down so that the result is a
simple skeleton that is able to be very quickly
brought into Maya for transfer to the Maya rigs.

It may not be a ton, but these changes did make
MoBu much more accessible as more of a standalone
DCC for the team.

Also, I do have it listed here because it’s worth
mentioning. There is a batch import tool for Xsens
content into MoBu, but it’s literally just a button that
asks what directory you want to import from so for
sake of that visually not being too interesting, I’m
just listing it and telling you now…we have this.

This section isn’t quite as long as the others but it
was really at the core of making everything quicker
and more automated for both the tech animators and
animators.

This batch processing tool became our central core to running heavy
processes into and out of Maya. EVERYTHING was streamed through
here. The way this works is that the user selects a batch process from
a list of json files that we’ve made for them. This could be an animation
export, or a mobu to maya transfer. When they select the file, any
options pertaining to that file show up on the right. The user can tweak
those settings as necessary. When you load a script, any directories
with files that pertain to the script also pop up on the left. When you
select a folder, the files within that directory show up for you to multi-
select and run the batch on. When you run a batch, a tab pops up
within the UI that runs a Maya standalone thread and batches your
content headless. You are able to run multiple different processes at
once this way without ever opening up Maya directly. Optimal for
computer performance and speed of data processing. And very optimal
for being 100% animator friendly as they do not have to worry about
running anything from cmd line, and could potentially customize these
batch options themselves.

A quick look under the hood. We have a very simple
json dict where we state some rules and list out all of
our options for the user. In this case we’re looking at
our Maya animation exporter. We tell this file..

What filetypes to look for.

Which directory to look for them in.

Which batch process to actually run.

The version of Maya standalone to use.

And all of the options we want to list…

Here.

Using as an example… animation exporting, these
options let you create things such as toggles, for
maybe turning on or off the generation of a debug
animation file, or a line edit for customizing what you
want to call the perforce changelist that all your
animations get added to. We set the type of UI
widget, what to label it, the default behavior, and the
command that we will use to pass the state of each
option through to the python batch file when running
the process….

Which magically populates your options here as seen
a minute age, whenever you hit the select batch
script button…

And choose your specific batch. You can actually see
here that I have quite a few batch scripts. Some of
these are officially submitted into perforce for
“official” use and others …like
“cutscene_anim_export_02” and “03” here in the
middle are just local processes I set up to test
something out and maybe run a specific process that
I only to do once or twice.

So in the end thanks to this nifty Batch tool, not only
was I able to set up anything for myself really fast to
start churning out lots of content through headless
Maya, it opened up a ton of time saving possibilities
for the animators too, and not just for exporting
animations. In fact even though our pipeline called
for content to be passed through Maya before export
to the game, our MoBu only animator used this batch
tool in conjunction with the fbx takes batch exporting
tool we had for MoBu and he actually never once
opened up Maya. Not once. We just had batch script
set up for him to select all his fbx exports here and
then the tool would go through each file, throw the
animation on the applicable rig, and export that to
the game. And now just a few months
ago…MotionBuilder 2019 added headless mode as
well…

I plan on upgrading this baby soon and adding
headless MotionBuilder into the mix.

A world where we’re pushing our MotionBuilder
content to/and from Maya and exporting it out to the
game, all without the need of having to open up any
visual/physical DCC app unless necessary is a world I
certainly want to live in.

On to cinematics..

We had 2 full time team members as far as managing the actual animation
and camera content goes. One of these was myself, and the other was our
cinematic artist.

In the end we had 56 unique sequences. This number also doesn’t include
our single camera, single cut in-game scenes that were used to quickly set
up missions.

Our smallest sequence had 5 shots that made it up, and our largest
sequence had 60.

While all characters in cutscenes were bipedal humans, we had 12 unique
rigs of various heights and sizes to manage and make sure were correctly
used in all shots.

Between all these characters and sequences we were working with content
that made up about 65 minute of actual final cutscenes

Now, actual hands on production for cutscenes didn’t even start until half
way through the project, and we literally didn’t have actual content to work
with until about 6 months before we went gold…. Wuh-oh!

Looking at the process, this may not seem too daunting when you look at what we were
working with because it’s fairly straightforward on the surface.

In creating JC4, like any of our AAA projects at Avalanche studios, we work with outside
vendors for all Motion Capture and Content Solving when it comes to our cinematics.

To start the process, we have a narrative team at the studio as well as our cinematic artist who
worked on the story and dialogue.

Which then, those ideas were transferred into storyboards and animatics to try and lock down
things like pacing and camera work.

Once this was nailed down, and our actors signed on, we had a shoot. The shoot involved both
our Avalanche Studios cinematics team and our vendor working together with the actors to
best replicate all the factors that our animatics had tried to prove out.

When the shoot was done, the vendor provided us with all of the takes that were shot during
the shoot, and our team at the studio went through and selected which content they wanted to
use and have vendor to solve for us.

After this, there was some back and forth between us and the vendor to make sure that our
character rigs were set up nicely for things like good proportions based on the actor
proportions and then the content was solved on our rigs, polished, and delivered to us as
baked down skeletal animation in fbx file format.

Each shot was delivered as a separate FBX file with camera, characters, vehicles, weapons,
and props for that shot.

That content was brought straight into Maya, transferred onto our Maya rigs.

Then exported to the game from there. Sooo we’re done right? In a perfect world…yes…but
making games is hardly a perfect process.

Going back to the gameplay pipeline that we were
already working we had this pipeline.

And once we started getting cinematic content from
our vendor.

We added that content in a similar fashion to what we already
did with gameplay content.

This transfer is pretty easy to do. We set up a batch script that
takes all that delivered baked down skeletal MoCap data, and
since the skeletons are a perfect 1:1 match with the Maya
control rigs, we transfer and bake the animation over quite
easily.

However, since we’re making games, random emergencies or
unknown needs may come from out of nowhere. Needs that
with the luxury of time and a larger team can sometimes be
met handedly, but time and numbers was definitely not on our
side. For sake of brevity, I’m not going to go into a post-
mortem right now pertaining to this issue, but I will say as a
Technical Animator, my most important role is that of the
problem solver. When working out any issues the first thing
you do is assess the situation and come up with a viable
solution based off of that.

So…going back to our cinematic content integration
process.

We needed to be able to do this.

After we got our content into Maya on our game-ready rigs,
we needed a way to get our cutscenes back into MoBu to allow
for dealing with changes, tweaks, and critical fixes or updates.

Some of you may be asking, why would you go backwards?
And I get that it isn’t ideal…

But…simply put, our cinematic artist who handled all camera
work, sequence edits, and any cutscene setup was 100% a
motionbuilder guy. 100%. He tried Maya, he really gave it his
best effort to. But the amount of time to make edits using the
tools that MoBu has not to mention the great framerate that it
gives you for playback (remember, animation caching in Maya
JUST happened a few months ago)…well we couldn’t do what
we needed to without being able to take our Maya files with
that solved MoCap animation from the vendor, put it back into
MoBu, and then send that back out to Maya for final approval
and export to the game once any new edits and changes we
made.

In order to best explain how we tackled our
cinematics workflow, I want to break down one of our
cutscenes that we had put through its paces, so let’s
start by watching the full cutscene. (Here I played
the cutscene during the talk…it’s about 2 min long)

The cutscene shows our main hero Rico, meeting with
one of his supporting pals, Sargento, who gives him
the part that he adds to his grapple device that
allows the player to use the air lifter in game to turn
anything into a flying mass. This particular cutscene
has a good mix of characters, vehicles, weapons, and
props, so we’re managing a lot of different types of
content.

To start, let’s look at the process we needed to take
in order to get our Maya content into MotionBuilder.

We have our Maya files, shot by shot…but MoBu
doesn’t really work this way.

We needed to take these individual shots and transfer
them into Motionbuilder in one long sequence so that
they can be set up properly for editing in story mode.

So, I love json. I use it all the time to store data and
settings, for anything and everything I can. It’s
everywhere in our pipelines probably yours too even
if you don’t know it. It is the base at which the
cinematics content workflow is driven.

Using the power of json files to organize all of our
cutscenes was the solution that not only bridged the
gap between Maya and MoBu, but it organized our
content in a way that is easy to parse and locate with
a simple call. Every cutscene had a master json file
for the cutscene data as a whole that include

The scene name.

The campaign it was part of.

All characters.

Props.

Shots

Vehicles.

And weapons that appear in the entire cutscene at
any point.

Then we had a json file for each separate shot that
told us the specifics for that particular camera cut.

We again have the campaign and scene names.

The shot number.

The characters that are actually in that cut.

The props in that cut.

vehicles in that cut.

And weapons in that cut.

We also have the start and end frame numbers
stored.

Just to better illustrate what this means for us, lets
take a look at a few select shots within this
cutscene…

In the first shot, we have just Rico and this dirtbike.
Since there’s nothing else in this scene that isn’t
already part of the environment, only these 2 items
are stored in the json file for this particular shot.

The second shot is only Rico, so he’s the only thing
stored.

The third shot sets us back to a wide angle that
reintroduces the dirtbike and brings Sargento into the
scene with two trucks.

I’m skipping over the fourth shot to the fifth one
since this shot includes a little bit of everything. All 4
characters are seen, as are all 3 vehicles…the dirtbike
is actually hiding on the left behind the tree, I
promise, it includes a prop..which is the crate in the
back of the truck, and if you can’t tell, the rebel there
in the middle is holding a weapon.

In an effort to not completely force you to look at code, here’s what
this looks like in a more visually pleasing way.

Now, because we have all this finer detail stored the way we do, I
don’t have to open up Maya to actually find out what is in any given
shot, which I’ll say is far easier, quicker, and nicer than trying to find
this stuff on a spreedsheet.

I also can run a cutscene export headless, in our sweet batch tool and
filter it down to only export Sargento because maybe we made a small
rig update or added a secondary animation pass on his jacket. The
batch process that we set up will parse every json file for the scene,
and instead of wasting time opening up shots where Sargento doesn’t
exist to check that he’s there, it will immediately go straight for only
the files that he’s in, passing over those that he is not. For a small
team like ours, this time savings when you think about the number of
characters, scenes, and shots that we were working with was a
huuuuge huge win.

This also made it easier to shot by shot, deal with our Maya to MoBu
transfer.

Let’s start our content passing process on the Maya
side. It’s time to take our entire sequence that is cut
up into multiple files in Maya and stitch all that
together into one giant sequence of content so that it
is “MoBu Friendly” for our cinematic artist to use with
story mode and the camera switcher.

A short look into part of the script that does this for
us.

When we run our process, we open a fresh maya
scene, let’s call this the master file, and…

…immediately start at frame -15,000. This is to
ensure that as each individual shot file is having it’s
content transferred over, we don’t get clashing or
overlapping keyframes that screw things up.

Before this actually, the json file for the whole
cutscene itself is read and all cameras, characters,
etc that exist at any point in the cutscene are
referenced into the Maya scene.

Since everything we need exists in the master Maya
file, we loop through all the individual json file shots,
referencing in the corresponding Maya shot file for
each as we do and all relevant content for each shot
gets baked down to the rigs in our master file.

As each shot is transferred, the animation is baked down from the start
and end frames of that single shot, then all keyframes are grabbed and
moved in place behind the last shots end frame. By the time the last shot
is done transferring we have one long sequence with each shot having
been neatly placed one after another.

Once all shots are fully transferred into this master maya file, all keyframes
are grabbed and moved up to frame 101 so we’re not dealing with crazy
negative space on the timeline. You could easily just make 0 your start
frame but I personally like to leave frames 0-100 open in case of any
necessary padding that may be needed, but I digress.

As you can see we have all rigs and cameras here nice and neatly spliced
into one. There’s another script that bakes alllll this animation down then
cleans up and deletes everything but the models that are skinned to these
baked down skeletons that are also characterized, because remember way
back when in this very presentation I showed you that regardless of the
type of rig, all our rigs are characterized.

So now the file is exported to FBX and is ready for some story editing in
MoBu.

So picture this…The maya file you just saw that was
baked down and transferred into MoBu has made it’s
way to the cinematic artist and this person has made
all the necessary edits to cameras, character
positions, whatever else may have needed to be
fixed. This person saves this file and says “Hello
Brian, it is ready for you.”

So here’s that MoBu file all set up and ready to go.
Since we’re ready to send back to Maya we need to
split up every one of these individual clips that exist
in story….

…and then export them out into individual Maya files
as per our pipeline in order for us to finish off the
scene and get it in game.

In order to do this, we need to run some commands
in MoBu that export out data that can be brought into
Maya QUICKLY and with little to no load times. Using
the “Send to Maya” command or opening an FBX
straight up in MotionBuilder means that you send
EVERYTHING all at once into Maya, and it’s not
necessarily the cleanest result…so we don’t want
that. File sizes get HUGE (as evidenced by the FBX
scenes here on the right) and these can take forever
to even just open up in Maya. To avoid these long
and arduous transfer times, we break down the MoBu
scenes for transfer, then fit them back together in
Maya.

Not only do we have to break each of these clips
down and export them separately, but we need to
make sure we do so in a manner that doesn’t export
out large file sizes.

Since we’re getting close to the end here, I’ll spare
you long code explanations and briefly run through
this process.

We first create a component list for everything in the
scene and then gather all the start and end frame
data in a list for each shot.

Then we plot all animation to the skeletons.

Once we’ve plotted, we grab the root joints of all
skeletons using our component list to search from.

And we iterate though all that making sure to grab
the entire hierarchy of each individual skeleton as we
create separate clips per character and export out a
separate file per character per shot.

Our results look like this and include file sizes that
range from mere KBs for cameras and anywhere from
about 0.5 mb and 10mb per character depending on
complexity of skeleton and length of shot (Rico has
the largest files and background characters have
much less). MUCH more manageable now that we’ve
broken this down!

These files truly contain just skeletons with baked
animation data. They look exactly the same as the
skeleton only animation files that get created from
that batch export takes tool I showed. Shot by shot
we can now open up a fresh Maya file, reference in
only the rigs for the assets that actually exist in each
specific shot, and it only takes a matter of seconds to
reference these small files in which then we transfer
the animation onto the Maya rigs from, which then
obviously takes a bit more time than just mere
seconds to do.

And it’s all streamed through the batch tool! The
transfer script for taking these exported pieces from
MoBu does all the referencing, baking, and file
cleanup in a snap! We can process multiple shots,
scenes, whatever much more quickly than by using
default built in transfer setups.

I mentioned earlier that Maya was necessary for secondary
animation polish and here’s why.

One awesome content tool we had in Maya was the ”motion
generation” tool. It could use a number of different solvers
from Maya dynamics such as a spring or bounce and then take
in some user settings to then process that based off the root
motion of the characters. We could batch through entire
cutscenes in Maya and run an auto-secondary animation pass
on all characters very quickly. I think our first pass only took a
week to add secondary animation to ALL cutscenes.

The extra special thing about thing tool is that we could run it
through a playblast script we had in conjunction with batch
and we would get a directory of MP4 files of each Maya
file/shot to see the secondary animation. This was really
useful for going in and tweaking specific shots, whether it be
for secondary motion, cameras, or characters.

To wrap this all up, what we were able to accomplish
included…

-Better Workflows

-More power and customization

-A lot more automation and less manual work

-A full 360 degree pipeline between Maya and
MotionBuilder

-And all of this helped us churn out a ton of content
that wouldn’t have otherwise been possible unless we
had a small army to help us

-And while there are other studios that have some
similar tools and workflows, I hope that this talk at
the very least gave a new perspective to those of you
that are familiar, and for the rest I hope that you’ve
enjoyed a bit of the behind the scenes and under the
hood that I’ve presented to you

Before I REALLY conclude, I want to extend a huge thank you to these guys who
all helped me in some way to develop the core of a lot of the things I’ve
presented.

Brad Clark, co-founder of Rigging Dojo there on the left was always available to
help answer any specific MoBu question I had, and he still does anytime I have
anything to ask. He also made a quick demo video just for me on how the
camera switcher work.

John Malaska in the middle here, who actually gave a talk this past Monday at
the animation bootcamp about freelancing for animators (check it out on the
vault if you didn’t see), he come on board for a few months when I was cold,
alone, and in desperate need of TA help. He was integral in a lot of the MoBu
takes script work.

Finally Cole O’Brien on the right was responsible for many Maya optimizations
including being a big part of the custom script stuff as well as the motion
generation tool you saw.
You can find them all on twitter with these handles.

Also, they aren’t listed or shown here but I love my animation team, they’re
awesome and despite all their demands, they really make me a better TA.

Also thank you to..

The CAs! They work so hard all week, don’t get sleep,
always smile, and are genuinely the nicest people in
the world…GDC wouldn’t be GDC without your
volunteering so thank you so much!

And thank YOU so much for coming out to my talk
today! (If time permits have Q&A) I’ll stick around
outside in the designated post-talk area if you have
any more questions.

