
From Motion Matching 

to Motion Synthesis

Fabio Zinno

Sr. Software Engineer – Electronic Arts



Why are you here?

Motion Synthesis state of the art:

● PFNN paper/MANN paper

o spelled out details

o tips to avoid common pitfalls

● experiments

Discussion:

● Motion Synthesis in development

● research in the game industry



The problem

● moCap is high quality data but…

o …we can’t capture everything!

● motion trees:

o time consuming…

o …and complicated

● blending, IK, procedural animation:

o this is where we lose quality!





Motion Matching

● knn over database of poses

● query: pose + future/past trajectory

● new choice (possibly) every frame



Motion Matching - query

● pose:

o joints positions + velocities

o root facing and velocities

o everything in character root space!

● trajectory:

o 1 second samples in the future

o 1 second samples in the past

o all relative to current character root space



Real Player Motion



Motion Matching

● no more motion trees

● no more logic

● higher quality transitions

● more details



Motion Matching

● can’t create new motion

● original animation in memory

● can’t generalize



Motion Synthesis

● learn from examples

● generalize to new situations

● no animation data in memory

● that sounds like Machine Learning…



Neural Network

● simple: fully connected, feed forward

● in: pose + future/past trajectory

● out: next pose + future/past trajectory



What’s in the “pose”?

● Input:

o joint positions – 3D points

o joints velocities – 3D vectors

● Output:

o joint positions – 3D points

o joints velocities – 3D vectors

o joint orientations – ?



Animation Data encoding

● why not local joint transforms?

o error propagates!

● rotations encoding

o quaternions - complex algebra

o axis-angle - euler angles are discontinuous

● alternatives?

o vector difference

o 3x3 matrices! (2 axes suffice)

αβ

𝜶 − 𝜷 = 20𝑜 𝑜𝑟 340𝑜?

350𝑜 10𝑜



Vanilla Network

Phase-Functioned Neural Networks for Character Animation – Daniel 

Holden



What’s wrong?

● input is not uniquely defined

● more than 1 output for each input

● MSE will average to minimize error

● result is floaty, frozen pose



Phase-
Functioned 

Neural 
Networks

SIGGRAPH 2017



Phase for locomotion
0 2π



Φ

Let’s add phase!

● a bit better but…

● phase is one drop in an ocean

● no guarantees the network will use it

● dropout doesn’t help…



Phase-binning

● divide phase in n sections

● train n separate networks

● switch NN according to phase

+ works better than vanilla!

− can stutter when switching NN

x n











Cubic Interpolator Gating Network

Different approach



In theory…

Cubic Spline:

● data needs phase annotation

● interpolator is cyclic by design

● function of phase alone

Gating Network:

● no phase annotation required

● arbitrary function

● more info as input



MANN with humans?

● phase annotation is annoying…

● …and prevents skipping/hopping

● MANN seems more generic…

● …and not limited by phase



…in practice

● full feature vector as Gating input

o floaty, frozen pose

● selecting few features helps…

o feet position, desired root velocity

● …but doesn’t solve the issues



Dogs don’t need phase?

● well defined modes +

● complex foot patterns =

● less ambiguity?



MANN with phase?

● “…there are many potential choices for

[phase function]…could be another neural

network…”

● use gating network as phase function

● phase is discontinuous: [sin(ϕ), cos(ϕ)]



Architecture

● dropout every layer (0.3)

● loss: 𝑴𝑺𝑬(𝒚, ෝ𝒚)

● training time: ~6 hours

o GTX 1080

o 20 mins of MoCap



EA VIDEO HERE!



Performance

● real-time (CPU):

o 3x Motion Matching

o not optimized yet

● no training data in memory

o only memory for network weights

o (from PFNN) ~10 MB with 4 experts



Motion Quality

● comparable to Motion Matching

● Motion Matching: more details

● NN: generalizes better



Motion Quality

● Motion Matching shows more details:

o leaning in acceleration

o more precise foot steps

Neural Network

Motion MatchingNeural Network

Motion Matching



Better generalization

● NN generalizes to new situations

● like unrealistic trajectories…

o …that games often need!

● smoother motion

● more sliding – feet IK helps

Neural Network Motion Matching



What’s next?

● smaller, specialized networks

● how do we combine them:

o heuristics

o gating hierarchies



Road to production

Challenges:

● integration in pipelines

● usability and artistic control

● fast iteration

● runtime efficiency



New approach?

● games are getting bigger

● brute force takes us only that far

● we will have to let go a bit



Research in the industry

● applied research please!

● it’s on us to make this usable

● (most) academics will not care about it



Thank you!

Fabio Zinno – fzinno@ea.com


