
Scaling to 10 Concurrent Users:
Online Services for Indies

Dru Erridge
Engineer & Cofounder @ Gamebreaking Studios

Why do Indies Need Online Services?

My Background & Project Timeline

2012

2013

2018

2019

Start Ship

“We’re Making an RTS”

Featuring
- 3v3 Online Multiplayer
- Dedicated Servers
- Built in Unreal 3 “UDK”

-- No rational 21 year old, ever

Team Size
Phase 1

9 months

Full Team: 45

Engineers: 15

Service Engineers: 2

Phase 2
4 years

Full Team: 7

Engineers: 4

Service Engineers: 2

We need to support...

Dedicated Server
ManagementLogin + Accounts

Lobbies + Chat

And some other stuff...
Analytics

Player Stats
Admin Pages

Load Balancing
Health Monitoring

Multi-box logging
In-memory caching

Player Progression
Database/Persistence

Deploying Servers
Installing & Patching

Rewind to 2013
Dru Erridge Sean Saleh

Rewind to 2013
Game Dev

- Unity is hot
- No Unreal 4
- No Playfab / Gamesparks
- Pre-Steam Greenlight
- No Itch.io downloader

Services Dev

- Node.js is hot
- Cloud Wars heating up
- No Lambda
- No Kubernetes

“What should we use?”

Java

“What should we use?”

“What should we use?”

Indie Approved?

“What should we use?”

Indie Approved?

Why Node Worked
Express - easy web framework

Fewer hard problems (Multithreading, Async I/O)

We were excited, so we worked harder!

Some obstacles with Node

Very immature at the time (Pre-1.0)

Lack of static typing (we added TypeScript)

Awesome - Let’s do some work!

Step 1 - Log in
Let’s make an HTTP call
For security, make it HTTPS!

HTTP POST
https://maestrosgame.com/game/

{
“name” : ”stopthief”
“password” : ”hunter2”
}

Step 2 - Host a game
Easy, another HTTP call

HTTP POST
maestrosgame.com/game/

{“name” : ”stopthief’s Game”}

Step 3 - Notify Map was Changed
Shoot...

How do we “notify” people?

HTTP POSTs & GETs Aren’t Enough
Unidirectional

Polling for updates (inefficient and latent)

Concept of a “session” is weak & non-native

HTTP POSTs & GETs Aren’t Enough

You need another protocol for sending updates w/o request

How do we talk to our services?

UDP

TCP

WebSockets

HTTP
Polling

gRPC

How do we talk to our services?

UDP

TCP

WebSockets

HTTPgRPC

How do we talk to our services?

UDP

TCP

WebSockets

HTTPgRPC

Indie Approved?

How do we talk to our services?

UDP

TCP

WebSockets

HTTPgRPC

Indie Approved?

How should we talk to our services?

UDP

TCP

WebSockets

HTTP
Polling

gRPC

Criteria
Bidirectional
supports out-of-band communication

Easy to set up
native support in common services languages

Native Sessions
Are you connected? You’ve got a session!*

*it’s definitely more complicated, but easier than HTTP “connectivity”

How should we talk to our services?

UDP

TCP

WebSockets

HTTPgRPC

What do we put in each message?

Only the
changes

The entire
state

A hybrid

Message Contents - Only Changes
HTTP POST to maestrosgame.com/game/

{
“action”: “MapUpdated”
“newMap” : ”Tera”
}

Message Contents - Entire State
HTTP POST to maestrosgame.com/game/

{
“gameType” : ”RoundBased”
“map” : ”Tera”
“players”: [

“player1”,
“bot1”
]

}

What do we put in each message?

The entire
state

What do we put in each message?

The entire
state

Indie Approved?

What do we put in each message?

The entire
state

Indie Approved?

What should our architecture be?

Serverless

Architecture - organic first pass

Reviewing our Architecture

Not enough redundancy

Buggy game server management

Very manual deployment (copying folders)

Probably won’t scale (single box)

Solution? Microservice Clusters!

Or was it?

- Months of tooling
- Unifying deployment & logging
- Unifying project structure
- Sharing code (DB connections, HTTP calls, etc.)

- Complicated Code
- DB race conditions
- Data residency issues

Microservices vs Monolith vs Serverless

Which is Indie Approved?

Microservices vs Monolith

Which is Indie Approved?

I’m not sure.

Microservices vs Monolith

Listen to some smart people

Martin Fowler’s MicroservicePremium
https://martinfowler.com/bliki/MicroservicePremium.html

Paul Hammant’s Cookie-Cutter Scaling
https://paulhammant.com/2011/11/29/cookie-cutter-scaling/

https://martinfowler.com/bliki/MicroservicePremium.html
https://paulhammant.com/2011/11/29/cookie-cutter-scaling/

Take-aways

Your most limited resource is time

Motivation is an important decision-making criteria

Beware the hype train, there be dragons

