
The Audio Technology of

Guy Somberg

The Audio Technology of

Guy Somberg

Short and Snappy Title
Long and Boring Subtitle

???
The Audio Technology of Torchlight 3

Your Pet Has Returned
The Audio Technology of Torchlight 3

Taming the Chaos
The Audio Technology of Torchlight 3

???
The Audio Technology of Torchlight 3

About Guy

● In games since 2002

● Owned the audio engine at (nearly) every
company

About Guy

● …and shipped lots of games

Shameless Plug

Shameless Plug

https://www.crcpress.com/Game-Audio-Programming-Principles-and-Practices/Somberg/p/book/9781498746731

https://www.crcpress.com/Game-Audio-Programming-2-Principles-and-Practices/Somberg/p/book/9781138068919

Shameless Plug

Coming Soon: Volume 3!

ARPGs are Hard

● Everything is happening on the screen in front of
you

● See also: RTS, Adventure Games, etc.

● Chaotic action

● See also: FPS, MOBA, etc.

● Randomized level layout

● See also: Roguelikes, Strategy, etc.

Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation

Not talking about:

● Narrator

● Music

● Modified FMOD Studio Unreal Plugin

● Tool-time Bank Building
● Other cool stuff that we’ve done

Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation

Mixing Woes

● Fundamental Problem:

● Chaotic mix: dozens of events playing all at
once

● Traditional mixing techniques: Snapshots,
Prioritization, Culling, HDR

● All useful, and we use most of them

● All insufficient when faced with our game

Early Attempts

● Special case: “Nearby monster count”

● Offline: Categorization

● Didn’t really solve the problem

Solution: Importance

● In Torchlight 3, Importance is the most important
mixing technique that we use

● Thanks to Tomas Neumann and Paul Lackey
from the Overwatch team!

Importance

● Assign each object an importance score

● Sort all objects by score

● Place sorted objects into buckets

● Apply effect to each sound in the bucket

Importance Scores

● Extremely game-specific

● In Torchlight 3:

● Identity

● Distance to player

● Relative “drama” score

● Skill target

● Total score = weighted sum of individual scores

3.0

0.65
0.5

0.84

1.54

1.63
1.58

1.53

1.99

0.88

2.13

0.64
2.27

1.7

1.72

1.5

3.0 2.27 2.13 1.99 1.72 1.7 1.63 1.58 1.54 1.53 1.5 0.88 0.84 0.65 0.64 0.5

3.0 2.27 2.13 1.99 1.72 1.7 1.63 1.58 1.54 1.53 1.5 0.88

0.84 0.65 0.64 0.5

3.0

0.65
0.5

0.84

1.54

1.63
1.58

1.53

1.99

0.88

2.13

0.64
2.27

1.7

1.72

1.5

Importance Bucket Effects

● Volume, Peaking Filter, High Shelf Filter

● Implementation detail: Peaking and High Shelf
Filters implemented using Multiband EQ

Priority Effect

1 Peaking Filter

2 No change

3 Volume Reduction

4 Volume Reduction, High Shelf

5 Volume Reduction, High Shelf

Importance in Action

● Live Demo

Debug Display

Debug Display

Debug Display

Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation

The Problem

● In one word: rivers

Failed Idea #1

● Single sound source at the river center

Nope!

● No control over attenuation

● No control over shape

● Doesn’t account for randomized levels

Failed Idea #2

● Many smaller sound sources

Nope!

● Control over attenuation

● Control over shape

● Deals with random levels

● But:

● Too many sound sources

● Phasing

● Mind-numbing setup

Failed Idea #3

● Nearest point on box

Promising!

● Control over attenuation

● Control over shape

● Deals with random levels

● Only one sound source

● Easy setup

● But…

Darn :(

● So close!

Take a Step Back

● We want one single sound source

● Position + Direction is insufficient to describe
our sound source

● So what do we actually want to describe?

Working Solution

● Game Audio Programming
Principles and Practices
Volume 2

● Chapter 12: “Approximate
Position of Ambient Sounds of
Multiple Sources” by Nic Taylor

● Thanks, Nic!

Working Solution

● Direction

● Magnitude

● Spread

Analytical Solution

● Direction and Spread should be impacted less the farther a
point is from the listener

● Spread of two parallel lines with listener equidistant should
be 1 (full spread)

● Spread of a line segment that passes through the listener
should be 0

● Small changes in listener position should result in small
changes to Direction, Magnitude, and Spread

● Subdividing a line segment should not alter Magnitude,
Direction, or Spread

Image Credit: Nic Taylor

Math!

ො𝜎 = lim
∆𝑠𝑖→0

෍

𝑖=1

𝑛
ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠𝑖 = න

𝐶

ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠

But…

● All of that is just for line segments

● Upgrading to two dimensions gets us both
more features and more flexibility

More Math!

ො𝜎 = lim
∆𝑠𝑖→0

෍

𝑖=1

𝑛
ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠𝑖 = න

𝐶

ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠

Becomes:

ො𝜎 = ඵ
𝑅

𝑥, 𝑦

𝑥2 + 𝑦2
1 − 𝑥2 + 𝑦2 ∆𝑥∆𝑦

Image Credit: Nic Taylor

Details: Setup

● Setup is easy:

Details: Box Subdivision

● Two solutions:

● Subdivide boxes down

● Build up the shape using voxels

● Both are covered in Game Audio
Programming 2

● TL3 subdivides
● (Minimum axis length – 0.5 meters)

Details: Edge Cases

● Near field

● As you get near to the volume, the sound needs to transition to
full spread

● Popping

● Add a seek speed to the direction and spread so that sudden
changes don’t pop

● Close to zero

● Certain edge cases are close to zero, and can cause strange
values to pop up.

● TL3 still has a few of these unsolved

Details: FMOD Studio Setup

Details: Elevation

Details: Debug Display

● Show as much detail as possible:

● Subdivided Boxes

● Direction

● Spread arc

Volumetric Sounds in Action

● Live Demo

Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation

A True Story

Sound DesignerMe

A True Story

I want an ‘is on screen’
parameter, please.

Sound DesignerMe

A True Story

No, I won’t do that for you.

Sound DesignerMe

A True Story

What problem are you
trying to solve?

Sound DesignerMe

A True Story

I only want this sound to
be audible if it’s on the
screen.

Sound DesignerMe

A True Story

Isn’t that what distance
attenuation is for?

Sound DesignerMe

A True Story

There is no meaningful
value for max distance
that will express the mix
that I am trying to create.

Sound DesignerMe

?

A True Story

What? Why not?

Sound DesignerMe

The Problem

The Problem

A True Story

…

Sound DesignerMe

A True Story

Oh.

Sound DesignerMe

A True Story

Well, @#$!@%.

Sound DesignerMe

This is a given:

A B

C

L

A

A’

B’

C’

DC

DA DB

Original Listener Algorithm

● For each Channel

● Calculate distance (d) from Channel Position to

Attenuation Position

● Find normalized vector () from Listener
Position (L) to Channel position

● Place actual playing Channel at NdL


+

N


Screen-Space Distance Attenuation

● Project points onto unclipped screen space.

● Make distance equal to the screen-space
distance to attenuation position

Adjusted Listener Algorithm

● For each Channel

● Project Channel Position and Attenuation Position
to screen space, and calculate 2D distance (d)

● Find normalized vector () from Listener
Position (L) to Channel position

● Place actual playing Channel at NdL


+

N


Implementation Details

● Scale is challenging

● Zooming in shouldn’t affect attenuation

● Debug Display

● Every sound’s distance attenuation must be
re-authored

Scale Issues

● By default, screen-space projections give you either 0..1 or
-1..+1

● Sound designer tools don’t like to work in such small scales

● Also: Sound designers don’t like to work in such small
scales

● Multiply all positions/distances by an agreed-upon factor

● Torchlight 3 uses a scale of 20

Camera Zoom

● We can’t just call ProjectWorldToScreen()

Camera Zoom

● We can’t just call ProjectWorldToScreen()

Camera Zoom

● Project to where the camera would be if it were fully
zoomed-out

● Need a function that will do the projection at a
different location than the camera

● (This is particularly useful for debug info)

Debug Display

● Traditionally, we display a sphere of the
appropriate radius.

● Not anymore: distance attenuation isn’t shaped
like a sphere (or a circle) anymore

● How do we help the sound designers understand
where in world space the sound will be audible?

● We need to invert the process of projection

Algorithm:

● Take the vector (Sx, Sy, Az) and project onto screen space

● Make a circle in screen-space at a radius of Distance/20 (or
whatever your screen-space scale is), centered on the projected
point

● Convert to pixel coordinates if necessary

● In Torchlight 3, we must first convert from -1..+1 to 0..1, then
convert to pixel coordinates

● Deproject screen to world position + ray

● Intersect ray with the attenuation position’s plane

● Flip intersected X and Y around original sound location

-1, 0 1, 0

0, -1

0, 1

-1, 0 1, 0

0, -1

0, 1

-1, 0 1, 0

0, -1

0, 1

But wait…

● We’ve been doing all of this work in screen-
space

● What about the corners?

-20, 0 20, 0

0, -20

0, 20

-20, 0 20, 0

0, -20

0, 20

Content Tendrils

● We have replaced a 3D world-space value with a 2D
screen-space value

● Distance no longer means the same thing that it used
to

● Every 3D sound event must be reauthored to account
for this new idea of distance

● Every distance calculation must make a decision
whether to use 3D or 2D distance

Screen-Space Distance Attenuation in Action

● Live Demo

Conclusion

● ARPGs have distinctive (but not unique) challenges

● Importance-Based Mixing is a fundamental feature

● Part of every audio engine from day 1

● Volumetric Sounds solve the river problem elegantly

● You don’t necessarily have to understand the math

● Screen-space distance attenuation is also a fundamental
feature

● (If you have a fixed-camera game like an ARPG or RTS)

Conclusion

● Complex features are complex

● Debugging and visualization routines are
critical

● Good visualization can be hard, but it’s
always worthwhile

Questions

● Comments

● Compliments

● Complaints

● Queries

● Inquiries

● Inquests

● Observations

● Opinions

● Remarks

● Commendations

● Objections

● Impressions

● Thoughts

● Commentary

● Assertions
● (Just kidding! Everybody

knows that game devs
ignore asserts.)

