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About Guy

● In games since 2002

● Owned the audio engine at (nearly) every 
company



About Guy

● …and shipped lots of games
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https://www.crcpress.com/Game-Audio-Programming-Principles-and-Practices/Somberg/p/book/9781498746731

https://www.crcpress.com/Game-Audio-Programming-2-Principles-and-Practices/Somberg/p/book/9781138068919



Shameless Plug

Coming Soon: Volume 3!





ARPGs are Hard

● Everything is happening on the screen in front of 
you

● See also: RTS, Adventure Games, etc.

● Chaotic action

● See also: FPS, MOBA, etc.

● Randomized level layout

● See also: Roguelikes, Strategy, etc.



Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation

Not talking about:

● Narrator

● Music

● Modified FMOD Studio Unreal Plugin

● Tool-time Bank Building
● Other cool stuff that we’ve done



Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation



Mixing Woes

● Fundamental Problem:

● Chaotic mix: dozens of events playing all at 
once

● Traditional mixing techniques: Snapshots, 
Prioritization, Culling, HDR

● All useful, and we use most of them

● All insufficient when faced with our game



Early Attempts

● Special case: “Nearby monster count”

● Offline: Categorization

● Didn’t really solve the problem







Solution: Importance

● In Torchlight 3, Importance is the most important 
mixing technique that we use

● Thanks to Tomas Neumann and Paul Lackey
from the Overwatch team!



Importance

● Assign each object an importance score

● Sort all objects by score

● Place sorted objects into buckets

● Apply effect to each sound in the bucket



Importance Scores

● Extremely game-specific

● In Torchlight 3:

● Identity

● Distance to player

● Relative “drama” score

● Skill target

● Total score = weighted sum of individual scores
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Importance Bucket Effects

● Volume, Peaking Filter, High Shelf Filter

● Implementation detail: Peaking and High Shelf 
Filters implemented using Multiband EQ

Priority Effect

1 Peaking Filter

2 No change

3 Volume Reduction

4 Volume Reduction, High Shelf

5 Volume Reduction, High Shelf



Importance in Action

● Live Demo



Debug Display



Debug Display



Debug Display



Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation



The Problem

● In one word: rivers





Failed Idea #1

● Single sound source at the river center





Nope!

● No control over attenuation

● No control over shape

● Doesn’t account for randomized levels



Failed Idea #2

● Many smaller sound sources





Nope!

● Control over attenuation

● Control over shape

● Deals with random levels

● But:

● Too many sound sources

● Phasing

● Mind-numbing setup



Failed Idea #3

● Nearest point on box





Promising!

● Control over attenuation

● Control over shape

● Deals with random levels

● Only one sound source

● Easy setup

● But…









Darn :(

● So close!



Take a Step Back

● We want one single sound source

● Position + Direction is insufficient to describe 
our sound source

● So what do we actually want to describe?



Working Solution

● Game Audio Programming 
Principles and Practices 
Volume 2

● Chapter 12: “Approximate 
Position of Ambient Sounds of 
Multiple Sources” by Nic Taylor

● Thanks, Nic!



Working Solution

● Direction

● Magnitude

● Spread



Analytical Solution

● Direction and Spread should be impacted less the farther a 
point is from the listener

● Spread of two parallel lines with listener equidistant should 
be 1 (full spread)

● Spread of a line segment that passes through the listener 
should be 0

● Small changes in listener position should result in small 
changes to Direction, Magnitude, and Spread

● Subdividing a line segment should not alter Magnitude, 
Direction, or Spread



Image Credit: Nic Taylor



Math!
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But…

● All of that is just for line segments

● Upgrading to two dimensions gets us both 
more features and more flexibility



More Math!

ො𝜎 = lim
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Details: Setup

● Setup is easy:



Details: Box Subdivision

● Two solutions:

● Subdivide boxes down

● Build up the shape using voxels

● Both are covered in Game Audio 
Programming 2

● TL3 subdivides
● (Minimum axis length – 0.5 meters)



Details: Edge Cases

● Near field

● As you get near to the volume, the sound needs to transition to 
full spread

● Popping

● Add a seek speed to the direction and spread so that sudden 
changes don’t pop

● Close to zero

● Certain edge cases are close to zero, and can cause strange 
values to pop up.

● TL3 still has a few of these unsolved



Details: FMOD Studio Setup



Details: Elevation



Details: Debug Display

● Show as much detail as possible:

● Subdivided Boxes

● Direction

● Spread arc



Volumetric Sounds in Action

● Live Demo



Today’s Topics

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation



A True Story

Sound DesignerMe



A True Story

I want an ‘is on screen’ 
parameter, please.

Sound DesignerMe



A True Story

No, I won’t do that for you.

Sound DesignerMe



A True Story

What problem are you 
trying to solve?

Sound DesignerMe



A True Story

I only want this sound to 
be audible if it’s on the 
screen.

Sound DesignerMe



A True Story

Isn’t that what distance 
attenuation is for?

Sound DesignerMe



A True Story

There is no meaningful 
value for max distance 
that will express the mix 
that I am trying to create.

Sound DesignerMe

?



A True Story

What?  Why not?

Sound DesignerMe



The Problem



The Problem



A True Story

…

Sound DesignerMe



A True Story

Oh.

Sound DesignerMe



A True Story

Well, @#$!@%.

Sound DesignerMe



This is a given:
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Original Listener Algorithm

● For each Channel

● Calculate distance (d) from Channel Position to 

Attenuation Position

● Find normalized vector (   ) from Listener 
Position (L) to Channel position

● Place actual playing Channel at NdL


+

N




Screen-Space Distance Attenuation

● Project points onto unclipped screen space.

● Make distance equal to the screen-space 
distance to attenuation position



Adjusted Listener Algorithm

● For each Channel

● Project Channel Position and Attenuation Position 
to screen space, and calculate 2D distance (d)

● Find normalized vector (   ) from Listener 
Position (L) to Channel position

● Place actual playing Channel at NdL


+

N




Implementation Details

● Scale is challenging

● Zooming in shouldn’t affect attenuation

● Debug Display

● Every sound’s distance attenuation must be 
re-authored



Scale Issues

● By default, screen-space projections give you either 0..1 or 
-1..+1

● Sound designer tools don’t like to work in such small scales

● Also: Sound designers don’t like to work in such small 
scales

● Multiply all positions/distances by an agreed-upon factor

● Torchlight 3 uses a scale of 20



Camera Zoom

● We can’t just call ProjectWorldToScreen()



Camera Zoom

● We can’t just call ProjectWorldToScreen()



Camera Zoom

● Project to where the camera would be if it were fully 
zoomed-out

● Need a function that will do the projection at a 
different location than the camera

● (This is particularly useful for debug info)



Debug Display

● Traditionally, we display a sphere of the 
appropriate radius.

● Not anymore: distance attenuation isn’t shaped 
like a sphere (or a circle) anymore

● How do we help the sound designers understand 
where in world space the sound will be audible?

● We need to invert the process of projection



Algorithm:

● Take the vector (Sx, Sy, Az) and project onto screen space

● Make a circle in screen-space at a radius of Distance/20 (or 
whatever your screen-space scale is), centered on the projected 
point

● Convert to pixel coordinates if necessary

● In Torchlight 3, we must first convert from -1..+1 to 0..1, then 
convert to pixel coordinates

● Deproject screen to world position + ray

● Intersect ray with the attenuation position’s plane

● Flip intersected X and Y around original sound location
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But wait…

● We’ve been doing all of this work in screen-
space

● What about the corners?
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Content Tendrils

● We have replaced a 3D world-space value with a 2D 
screen-space value

● Distance no longer means the same thing that it used 
to

● Every 3D sound event must be reauthored to account 
for this new idea of distance

● Every distance calculation must make a decision 
whether to use 3D or 2D distance



Screen-Space Distance Attenuation in Action

● Live Demo



Conclusion

● ARPGs have distinctive (but not unique) challenges

● Importance-Based Mixing is a fundamental feature

● Part of every audio engine from day 1

● Volumetric Sounds solve the river problem elegantly

● You don’t necessarily have to understand the math

● Screen-space distance attenuation is also a fundamental 
feature

● (If you have a fixed-camera game like an ARPG or RTS)



Conclusion

● Complex features are complex

● Debugging and visualization routines are 
critical

● Good visualization can be hard, but it’s 
always worthwhile



Questions

● Comments

● Compliments

● Complaints

● Queries

● Inquiries

● Inquests

● Observations

● Opinions

● Remarks

● Commendations

● Objections

● Impressions

● Thoughts

● Commentary

● Assertions
● (Just kidding!  Everybody 

knows that game devs
ignore asserts.)


