Quad mesh simplification in Frostbite

Ashton Mason
Senior Software Engineer

Bioware hand-authored their character LODs
(E) WFROStBIte

Traditional tools generate triangulated LODs

This triangulation matters for character models
(ت) FFROSTBITE
GOC

The edge flow doesn't match the deformation
(ت) FFROSTBITE $^{\text {F }}$
GOC

Let's get started

1. Topology
2. Priority
3. Symmetry
4. Results

Topology

GOC

Traditional generated LODs

(2) BFrastbite 2

(2). ${ }^{3}$ frostatite

GOC

GOC

Quadrilateral Mesh Simplification

Joel Daniels University of Utah

Cláudio T. Silva University of Utah

Jason Shepherd Sandia National Laboratories

Elaine Cohen University of Utah

Figure 1: Our simplification algorithm can be used to generate a pure quad level-of-detail hierarchy. The algorithm preserves topology during simplification, and attempts to optimize geometric fidelity and quad structure (vertex valences near 4) throughout the process.

Abstract

We introduce a simplification algorithm for meshes composed of quadrilateral elements. It is reminiscent of edge-collapse based methods for triangle meshes, but takes a novel approach to the challenging problem of maintaining the quadrilateral connectivity during level-of-detail creation. The method consists of a set of unit operations applied to the dual of the mesh, each designed to improve mesh structure and maintain topological genus. Geometric shape is maintained by an extension of a quadric error metric to quad meshes. The technique is straightforward to implement and efficient enough to be applied to real-world models. Our technique can handle models with sharp features, and can be used to re-mesh general polygonal, i.e. tri- and quad-dominant, meshes into quadonly meshes.

The goal of mesh simplification, analogous to downsampling in digital signal processing, is to gracefully remove elements while maintaining mesh fidelity. Mesh simplification is an important geometry processing operation that has been used as a building block for many higher-level processing steps, including mesh compression, rendering, progressive transmission, editing operations, smoothing, parameterization, and shape reconstruction. It is for this reason that triangle mesh simplification techniques have been some of the most useful operations developed.

A major challenge associated with quadrilateral simplification, unlike triangle-based techniques, is the consideration of the structured nature of the quadrilateral elements that force global constraints on the mesh connectivity. For instance, it is not possible to create a quadrangulation of a planar surface region bounded by a polyline

Polychord collapse

(2) Wrfostatte 2

(E) $\mathrm{VFrastaite}^{2}$

GOC

One long polychord
$\Rightarrow \psi_{\text {FROStBIte }}$
GOC

GOC

Results with just polychord collapse

Priority

GOC
lod1

GOC

GOC

New edge causes existing islands to merge
(ت) "丷FROSTBITE
GOC

Incremental update of nearby collapse candidates

GOC

Symmetry

(EA) $\forall_{\text {Frostbite }}$
GOC

GOC

Result of symmetry identification is a per-edge symmetry map
(2) BFrastbite 2 GOC

Flocks of polychords related by per-edge symmetry

(E) WFROStBITE

GOC

Flock of three polychords related by edge symmetries
(2) *FROStBite

(2) *FROStBite GOC

Results

(z) YFROSTBITE 2

GOC

lod3
tool

lod3
artist

(2) * ${ }_{\text {Frostitite }}$

GOC

(ت) 新FROSTBITE
GOC

(2) YFROSTBITE $^{\text {Fithen }}$

GOC

(2) Wrfostatit 2

GOC
lod0

lod1

(E) WFROSTBITE $^{\text {a }}$

GOC

lod3
simplygon

$\begin{array}{ll}\text { lod3 } & \text { lod3 } \\ \text { tool } & \text { artist }\end{array}$

(E) WFROStBite

The end
Thanks for watching

