Quad mesh simplification in Frostbite

Ashton Mason Senior Software Engineer

FROSTBITE

063

BAUER

lod3 triangles

- 63

BAUER

This triangulation matters for character models

The edge flow doesn't match the deformation

Let's get started

- 1. Topology
- 2. Priority
- 3. Symmetry
- 4. Results

Topology

Traditional generated LODs

after

Edge collapse candidates on a priority queue sorted by cost

Quadrilateral Mesh Simplification

Cláudio T. Silva Joel Daniels Jason Shepherd Elaine Cohen University of Utah University of Utah Sandia National Laboratories University of Utah

Figure 1: Our simplification algorithm can be used to generate a pure quad level-of-detail hierarchy. The algorithm preserves topology during simplification, and attempts to optimize geometric fidelity and quad structure (vertex valences near 4) throughout the process.

Abstract

We introduce a simplification algorithm for meshes composed of quadrilateral elements. It is reminiscent of edge-collapse based methods for triangle meshes, but takes a novel approach to the challenging problem of maintaining the quadrilateral connectivity during level-of-detail creation. The method consists of a set of unit operations applied to the dual of the mesh, each designed to improve mesh structure and maintain topological genus. Geometric shape is maintained by an extension of a quadric error metric to quad meshes. The technique is straightforward to implement and efficient enough to be applied to real-world models. Our technique can handle models with sharp features, and can be used to re-mesh general polygonal, i.e. tri- and quad-dominant, meshes into quadonly meshes.

The goal of mesh simplification, analogous to downsampling in digital signal processing, is to gracefully remove elements while maintaining mesh fidelity. Mesh simplification is an important geometry processing operation that has been used as a building block for many higher-level processing steps, including mesh compression, rendering, progressive transmission, editing operations, smoothing, parameterization, and shape reconstruction. It is for this reason that triangle mesh simplification techniques have been some of the most useful operations developed.

A major challenge associated with quadrilateral simplification, unlike triangle-based techniques, is the consideration of the structured nature of the quadrilateral elements that force global constraints on the mesh connectivity. For instance, it is not possible to create a quadrangulation of a planar surface region bounded by a polyline with an odd number of vertices. For triangle meshes it is possi

Polychord collapse

==

Polychords self-intersect

lod0

lod2

Results with just polychord collapse

Priority

 More detail retained in painted areas

Collapsing sub-polychords

Greedy sub-polychord search

Incremental update of collapse data structure

Merging of islands in the wild

Incremental update of nearby collapse candidates

Results with sub-polychord collapse

Symmetry

Priority painting can override symmetry

Pair of symmetric polychords found by symmetry identification

Result of symmetry identification is a per-edge symmetry map

Pair-wise sub-polychord search

Flocks of polychords related by per-edge symmetry

Flock of three polychords related by edge symmetries

Identified polychord pair

lod2

Results with symmetric sub-polychord collapse

Results

lod3 artist

tool

artist

lod0

lod1

