
Handling Network
Latency Variation

in Modern Warfare

Mitch Sanborn

Director of Online Engineering

Infinity Ward

Consequences of latent connections

• Client input is stamped with
world client time it was
generated for

• Server receives input at a later
world clock time

• The difference is approximately
round trip latency

• For accurate bullet fire, the
server rewinds time to the input
time to process hit detection

Latent connectivity: A visual

Shot behind a
wall

• It is important to think about how
the victim perceives antilag

• For victim, death occurs at a
different location than where they
were actually shot

• They may perceive themselves
being shot while behind cover

• Latency exacerbates this effect

Shoot first, die first

• Latent connectivity means that players
are seeing the world as it was in the past

• If two players fire their weapons
simultaneously in wall clock time, the
result of that weapon fire is not known
until later

• Both players see themselves as having
fired first but latent connectivity means
the observation of the other player is
delayed

Keeping latency low

• Latency impacts gameplay in numerous ways, directly and indirectly

• This means that keeping total system latency small has an outsized
impact on the overall feel of the game

• The systems we build to mitigate issues on the network impact overall
system latency and must be built with care.

Network latency variation

• Variation in the rate of delivery of server state to the client has
multiple causes

• Network related: ISP packet shaping, user router throttling, noise in
the communication medium (WiFi, or collisions on a hub)

• Compute related: Server compute, Client compute

• Packet loss

Network problems break the client

• Client interpolates between
server states

• Variation in packet delivery
impacts the availability of server
state the client can interpolate
toward

• The client expects that the next
server frame will be there when
it needs it.

• When the client fails to find the
next state when it needs it, it
must guess where the objects
might go (extrapolate)

Networking problems break client

Mitigating problems on the client

• Avoid running out of server data to render

• The client cannot change the rate the server delivers data

• The throttle: step the world clock faster or slower than the wall clock

• In effect, speed up or slow down the consumption of the server state

• Note that as we alter the rate of the world clock, we are also
impacting the rate of input generation

• Apply throttle to minimize buffering but not so much that we induce
error.

Network problems break the server

• The server simulates all player movement every step

• The server expects to receive approximately enough input to
integrate player over the elapsed simulation time

• When the server fails to find input from a client, the server doesn't
know how to move the client.

Network problems break the server

Mitigating problems on the server:
Extrapolation
• Avoid running out of client input to simulate, but should data not

arrive, what to do?

• The server can extrapolate client position

• Resulting position/orientation is stored in the world state and sent to
clients so they perceive smooth movement

• It is not committed to the players' view of themselves.

Server Input Extrapolation

Mitigating problems on the server: Prediction

• When data doesn't arrive, just run the last command authoritatively

• Because the server is authoritative, the server can commit this
position to the world state

• Position and orientation are stored both for the players own view and
the world state sent to other players

• This will induce misprediction for the client that experiences the
network anomaly

Server Input Prediction

Mitigating problems on the server: Buffering

• When data doesn't arrive, retain knowledge of this and attempt to
commit input to a buffer

• Remember that the client's input is determined by its wall clock in
conjunction with its throttle, so the client input generation is locked
to the rate of world state generation

• So if we decide to buffer, we have to delay input instead of executing
it

• This also comes with the drawback of inducing latency, as all buffering
does.

• However, no misprediction or extrapolation. All input is correct.

Server Input Buffering

Mitigating
problems on

the server:
Infinite Warfare

• Infinite Warfare had no throttle to apply to
client input

• Sustained network anomalies would result
in sustained extrapolation or prediction,
which was not desirable

• Infinite Warfare had a 20hz server with
clients targeted at 60hz, so throttling input
consumption on the server was less
impactful because the client would
interpolate results over a coarse sample
set

Mitigating
problems on

the server:
Modern
Warfare

• The lack of a throttle was troublesome. So we
decided to change everything to make one.

• Instead of basing the integration over the
period of world clock time elapsed, generate a
new input clock independent of world time.

• The client integrates over the new input clock
for movement and sends the clock time to the
server

• A single input command quanta is fixed to
some value that is less than a 60hz vsync
frame (we chose 16ms)

• The client then generates a new command
only when the new clock elapses one or more
command quanta.

Client Input: Infinite Warfare

Client input: Modern Warfare

Creating an input throttle

• With the new clock in place, we can now allow the server to adjust
the rate of the client’s command clock.

• The client sends the server the offset of the command clock from wall
clock with every input.

• The server then requests more or less command data by sending the
client a new target offset

• If the server is happy, the target offset is equal to the input offset

• With that change, the server can request exactly the amount of data
it is missing

Controlling the throttle

• The idea of a throttle is simple, need more = throttle up, need less =
throttle down

• The unknown variable is actually "need"

• It is simple enough to say we lack data and need more, or have
buffered data and need less

• This instantaneous value is quantifiable: howMuchData =
bufferedData - missingData

Measuring
error over time

• Difference between the amount of
data buffered less the amount of
data needed forms a timeseries

• Positive areas in the series
represent periods of surplus data

• Negative areas in the series
represent areas of deficit

Measuring error over time

When to
throttle

• A connection with sustained
problems in packet delivery rate
(as in noisy wifi) will have
variations in the error signal over
time

• In such a case, an instantaneous
throttle may prematurely drain the
buffer

• Ideal solution is a predictive model
that can anticipate the future need
for data.

Throttling offsets the signal

Finding the throttle
magnitude

• A possible goal may be to eliminate
extrapolation, preferring “correct”
visualization

• For such a solution, the goal is to shift
the signal up so that no deficit is
incurred

• However, to minimize latency, shift no
more than is required

• Shift signal so the minimum is at the
zero point

Characterizing the signal: Fixed window

• Finding the minimum of a signal
is easy to see, harder to define
when the signal is continuous

• One solution: Pick a reasonable
fixed window size

• Too short and you fail to catch
the minimum, applying the
throttle incorrectly.

• Too long and you catch the
minimum but the system
becomes unresponsive

Characterizing the signal: Zero crossings

• If we can derive the periodicity
of the signal, we can make the
window equal to the period.

• One simple way to do this is to
mark where the signal crosses
the zero point

• The signal's period is double the
average difference between the
zero crossing points.

Characterizing the signal: Autocorrelation

• Can also use autocorrelation
function.

• The autocorrelation
function (ACF) at lag k:
ρk = γk/γ0
γk = covariance(yi, yi+k) for any i.
γ0 = variance

• Covariance:

• Variance:

Characterizing the signal: PSD

• Power spectral density is a transform that indicates the power of the
signal at different frequencies.

• The simplest way to get the power spectral density is to perform the
DFT on the autocorrelation

• In this domain, we need only take the maximum of the signal. This is
the frequency at which the signal is strongest

• Power spectral density is even less free that autocorrelation, adding a
DFT to the mix.

Characterizing the signal: In practice

• The autocorrelation and power spectral density require a reasonable
timeframe to sample from in order to derive the period

• The PSD is computationally expensive and doing this work for every
client can put significant load on the server

• In the case of autocorrelation, there's a lot of handwaving that needs
to be done

• Both PSD and ACF require reasonable sample size and thus retain
memory longer than zero crossings, making them less responsive

• PSD and ACF are more accurate

The throttle applied

Measuring failure: The public Beta

• We had made a rather fundamental change to the network stack in
adding the client input throttle and the Beta was a big test.

• One industrious user did his homework and put out a youtube video
declaring the "netcode" was worse than several similar titles.

• The claim leveled was that latency was much worse

• The claim could be the correct if certain algorithms did not behave
themselves

• Could also be the case that the algorithms were behaving themselves
just fine and something was actually wrong with the connection

• The answer needed data. Which we had.

Measuring error

A closer look: buffering input induces latency

Now what?

• The backlash from the internet was fierce and the pressure to fix a
phantom issue was tremendous.

• Some players were buffering a little bit. A little bit is expected, but
maybe unnecessary.

• The mandate was clear. Take the latency and kill it dead. Take
correctness and bin it.

• Time to rethink things a bit

Flip flopping

• The throttle had been tuned to
eliminate error at the expense of
latency

• If we prefer to minimize latency we
want to minimize buffering, not
minimize error

• This is simple enough, just flip the
problem on its head: throttle down so
the maximum surplus is at the zero
point

Dialing it back

• Extrapolation is not awesome and
starts to break down at some point

• Prediction is also not awesome as
it induces client problems

• Define limit where extrapolation
stops and prediction begins

• Throttle down to avoid buffering
for the fast majority of players, but
throttle up to avoid prediction

Reworking throttle to eliminate latency

More to do: Zero crossings

• What about the periodicity. Did we get it right?

• Detecting signal period is predicated on the signal being periodic. Is
it?

• Is there some window that would serve us better than what we
dynamically generate?

• Hypothesis: Generally speaking a larger window size results in less
extrapolation at the expense of greater latency

• We developed an experimental framework to test a multitude of
hypothesis in the live game. This seemed like a good way to stretch its
legs.

What we found: console extrapolation

• For console players, our hypothesis is largely
correct.

• The dynamic window is the purple control of
the experiment

• The dynamic window ends up being... not
the best or the worst.

• It isn't a bad compromise. But it's less than
ideal.

What we found: PC extrapolation

• For PC, the story is different

• For PC players, a 16ms window, an
instantaneous response, is clearly superior
which is contrary to the consoles.

• The curve is also non-linear

• The dynamic window performs admirably
here, but is still not as good as a 16ms
instantaneous window.

What we found: Buffering

Console Buffering PC Buffering

Moving forward

• Dynamic window is kinda ok, certainly a reasonable compromise for
consoles.

• PC is its own beast and work remains there to understand the
problem space better, but the data clearly indicates an instantaneous
throttle is superior.

• Research into the kinds of signals being observed is maybe warranted.

• The overall system latency here is pretty low given the architecture
we have. Without dramatic architectural changes, improving it will be
incremental at best.

Final Thoughts

• Constraining the evaluation of a network stack to latency is reductive
and counter productive

• Use telemetry to validate assumptions

• Use telemetry to guide further inquiry

Special thanks

• John Dennison
• Data Guru

• Geoff Evans
• He made me do it

• IW Gameplay team
• I made so… many… bugs…

