
The Audio Technology of

Guy Somberg



The Audio Technology of

Guy Somberg



About Guy

● In games since 2002

● Owned the audio engine at (nearly) every 
company



About Guy

● …and shipped lots of games



Shameless Plug



Shameless Plug

https://www.crcpress.com/Game-Audio-Programming-Principles-and-Practices/Somberg/p/book/9781498746731

https://www.crcpress.com/Game-Audio-Programming-2-Principles-and-Practices/Somberg/p/book/9781138068919



Shameless Plug
Coming Soon: Volume 3!

https://www.routledge.com/Game-Audio-Programming-3-Principles-and-Practices/Somberg/p/book/9780367348045

https://www.routledge.com/Game-Audio-Programming-3-Principles-and-Practices/Somberg/p/book/9780367348045




ARPGs are Hard

● Everything is happening on the screen in front of 
you

● See also: RTS, Adventure Games, etc.

● Chaotic action

● See also: FPS, MOBA, etc.

● Randomized level layout

● See also: Roguelikes, Strategy, etc.



See GDC2020

● Importance-Based Mixing

● Volumetric Sounds

● Screen-Space Distance Attenuation



3.0

0.65
0.5

0.84

1.54

1.63
1.58

1.53

1.99

0.88

2.13

0.64
2.27

1.7

1.72

1.5



Importance Bucket Effects

● Volume, Peaking Filter, High Shelf Filter

● Implementation detail: Peaking and High Shelf 
Filters implemented using Multiband EQ

Priority Effect

1 Peaking Filter

2 No change

3 Volume Reduction

4 Volume Reduction, High Shelf

5 Volume Reduction, High Shelf





Working Solution

● Game Audio Programming 
Principles and Practices 
Volume 2

● Chapter 12: “Approximate 
Position of Ambient Sounds of 
Multiple Sources” by Nic Taylor

● Thanks, Nic!



More Math!

ො𝜎 = lim
∆𝑠𝑖→0

෍

𝑖=1

𝑛
ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠𝑖 = න

𝐶

ො𝑣

ො𝑣
𝑊(ො𝑣)∆𝑠

Becomes:

ො𝜎 = ඵ
𝑅

𝑥, 𝑦

𝑥2 + 𝑦2
1 − 𝑥2 + 𝑦2 ∆𝑥∆𝑦



Image Credit: Nic Taylor











The Problem



The Problem



















Today’s Topics

● Music

● Timed ADSRs



Topics

● Music

● Timed ADSRs



Music

● Composer from Day 1

● Matt Uelmen – credits include Diablo, Diablo 2, 
Torchlight, Torchlight 2, and Hob.



Initial Proposal

Action

Medium

Idle



Where We Ended Up



Where We Ended Up



Music Demo



Music Track Features

● 10-44 Individual Tracks

● Day/Night cycle

● Three intensity levels



Calculating Intensity, First Pass

● Find monsters in radius
● Calculate “near drama” and “far drama”
● Low Drama – If near drama is above this, 

upgrade to medium intensity.
● Medium Drama – If far drama is above this, 

upgrade intensity (low->med or med->high)
● Min/Max time at each intensity
● Hold time at Medium intensity
● Player Health Percent Low->Med and Med->High



It worked!

● Music changed intensity

● Felt pretty good

● But nobody ever tweaked the numbers

● Why?

● Too complex

● Too many dials



Also, it didn’t work

● Noise that didn’t matter (i.e. player health)

● Confusing why it went up and down in 
intensity

● Game balance changes could affect the 
music inadvertently



New Hotness

● Each monster assigned a category:

● Popcorn – 1 point

● Standard – 3 points

● Brute – 5 points

● Champion – Treated as though it were a 
champion

● Popcorn, Medium, and Brute values for 
Medium and High intensities



New Hotness

● Find all monsters within radius

● Count the number for each category, but also 
convert to all other categories

● If any of these conversions is over the limits, 
then upgrade the music



Example

● Goblin Warrior – Popcorn

● Goblin Gunner – Standard

● Goblin Brute – Brute

● Medium:

● 8 Popcorn, 3 Standard, 1 Brute

● High:

● 15 Popcorn, 5 Standard, 2 Brute



Example

Warriors Gunners Brutes Total Counts As Popcorn As Standard As Brute Intensity

3 0 0 3P 0S 0B 3 1 0 Low

3 2 0 3P 2S 0B 9 3 1 Medium

3 0 1 3P 0S 1B 8 2 1 Medium

15 0 0 15P 0S 0B 15 5 3 High

0 4 1 0P 4S 1B 17 5 3 High

𝑃 + 3𝑆 + 5𝐵 𝑃 + 3𝑆 + 5𝐵

3

𝑃 + 3𝑆 + 5𝐵

5

P=1, S=3, B=5 Med: 8P 3S 1B High: 15P 5S 2B



Extra Rules

● Champions:

● 1 Champion => Medium

● 2+ Champions => High

● Player is Dead => Low

● Loading Screen => Low

● Bosses => Override music



Time Limits

● Low intensity silence timer

● Min time at Low intensity

● Min time at Medium intensity

● Hold time at Medium intensity

● Can upgrade to High, but not downgrade to 
Low

● Min/Max time at High intensity



Topics

● Music

● Timed ADSRs



What is an A(H)DSR?



ADSRs

● Fade in/Fade out

● Hold + Fade

● Automatic

● But:

● Only apply to a single event



The Problem

● AHDSR works fine for Holy Fury

● Beam skill, looped sound

● AHDSR doesn’t work for Holy Bolt

● Need a solution that works for repeated one-
shot sounds



Solution: Timed ADSRs



Timed ADSR Curve



Timed ADSRs

Reset

TimedADSR



Timed ADSR Parameters

● Parameter
● TimedADSR

● Properties:
● Attack Time – How long to leave TimedADSR

parameter at value 0.0

● Fade Time – Time taken to lerp TimedADSR
parameter to value 1.0

● Reset Time – How long to wait since the last 
instance was played before resetting Timed ADSR 
back to 0.0



Timed ADSR Curve



Timed ADSR Demo



Details

● Timed ADSRs must be per-actor, per event

● Most events don’t have TimedADSRs



Implementation Details

● Audio Engine:

● Stores a mapping between events and 
TimedADSRContexts

● TimedADSRContext:

● Caches attack, fade, and reset times

● Stores an array of TimedADSRs

● TimedADSR:

● Stores instigator, start time, and last trigger time



TimedADSR Implementation

struct TimedADSR {

TWeakObjectPtr<const AActor> Instigator;

float StartTime;

float LastPlayTime;

float GetParameterValue(

const FTimedADSRContext& Context,

float CurrentTime) const;

bool IsExpired(const FTimedADSRContext& Context,

float CurrentTime) const;

}



TimedADSR Implementation

float GetParameterValue(

const FTimedADSRContext& Context,

float CurrentTime) const {

auto TimeSinceStart = CurrentTime – StartTime;

if (TimeSinceStart < Context.AttackTimeSeconds)

return 0.0f;

...



TimedADSR Implementation

...

TimeSinceStart -= Context.AttackTimeSeconds;

if(TimeSinceStart < Context.FadeTimeSeconds)

return

Lerp(0.0f, 1.0f,

TimeSinceStart / Context.FadeTimeSeconds);

...



TimedADSR Implementation

...

return 1.0f;

}



TimedADSR Implementation

bool IsExpired(const FTimedADSRContext& Context,

float CurrentTime)

{

auto TimeSinceLastPlay =

CurrentTime – LastPlayTime;

return

TimeSinceLastPlay > Context.ResetTimeSeconds;

}



Conclusion

● ARPGs have distinctive (but not unique) challenges

● Dynamic Music is hard to get right

● Occam’s Razor applies: simpler solutions are usually better

● Even the simple solution can have complexities

● Be eager to trigger action music

● But be mindful of ear fatigue – set limits!

● Timed ADSRs are a good solution for ADSRs for one-shot sounds

● Track per-event, per actor

● No ticks!


