
Dr. Russell Campbell
Vancouver Island University
Computer Science Faculty

Technical Artist Summit:
Real-Time Level-Surface Volumetric 

Simulation Reductions

Eli Landa
Vancouver Island University



Dr. Russell Campbell

● Teaching computer science:

○ Vancouver Island University

○ University of the Fraser Valley

Eli Landa

● Studying computer science at VIU

● KCP Japanese Language Speech Contest 
winner (2017 Aug 5)

SimChop 
Introduction

Open Source Project



Description 
of Our Model



Colliders as Particles
No geometry for particles and only 
sphere colliders and vector positions. 
The particles are interactive with the 
game world.

Layers of Meshes as 
“Level Surfaces”
Visualization of particles via 
intersection with many planes sliced 
through the volume in front of the 
camera. The planes stay 
perpendicular to the camera view.

Data Structures and 
Shaders
Collisions are managed with 
commonly used graphics data 
structures, such as octrees or 
Z-order curve represented by 
interleaved position data.

Parts of the System



● Blender with Cycles renderer

● Sphere level surfaces with shader 
editor and nodes

● Tested interaction with other 
geometry

● Normals perpendicular to camera 
more transparent

Mock-up Test



Mock-up Test



http://www.youtube.com/watch?v=MQfTnhU6gYM


Prototype Demo

http://www.youtube.com/watch?v=ijzz6V9HZg4


System Overview



● Different level surface geometry design

● Data structures:

○ Arrays
○ Octrees
○ Interleaving

● Passing data structures to shader code

● Volume mapping

● Exploring Use Cases

Summary of Development
● Culling vertices of level-surface geometry

● Sorting using Unity’s Job System

● Interactivity with Unity’s Physics Engine

● Advantages of data structures in the shader 
code for design possibilities

http://www.youtube.com/watch?v=ZOoAGzgrSgg


Planes

Four vertices for a plane means 
almost all the visualization is 
calculated in the fragment shader, 
which results in a slower system 
than the other geometries.

Tessellated Planes

More vertices in each plane allows 
for culling any geometry that does 
not intersect nearby the particle 
positions. This saves the fragment 
shader from executing needlessly.

Concentric Spheres

Different geometries could be used 
for visualizing, depending on the 
desired application. In some uses, 
the geometry itself could remain 
more visible.

Level-Surface Geometries



Data Structures: Arrays

http://www.youtube.com/watch?v=qi_3celQLEY


Data Structures: Octrees



● GPU Gems 2, edited by Matt Pharr
Chapter 37. Octree Textures on the GPU

● Passed in to shader via Texture3D

● Indirection uses texture lookup function tex3D

● Octree cell has eight octants, stored as 2x2x2 pixels

● Texture lookup takes a vector (x, y, z)

○ texture has normalized dimensions

○ (x, y, z) has 0 ≤ x, y, z ≤ 1

● About log8 number of steps to traverse from root to leaf node

Data Structures: Octrees



● GPU Octrees and Optimized Search
D. Madeira and L. Thomas
http://www.ic.uff.br/~esteban/files/papers/SBGames09_Madeira.pdf

● Dealing with hash collisions using linear probing reduces performance, so...

...we do not use parent nodes!

Data Structures: Octrees with Hash Indexing (1)

http://www.ic.uff.br/~esteban/files/papers/SBGames09_Madeira.pdf


● Morton codes (describes Z-order curve) are used as hash table keys

● Faster access in shader than indirection pool tree traversal

● Another speed-up:

○ more vertices in planes

○ vertex shader sends
distance calculation for
the closest particle to the
fragment shader

Data Structures: Octrees with Hash Indexing (2)



● Z-order curve of particles based on interleaving binary digits for x, y, and z values
https://redis.io/topics/indexes#multi-dimensional-indexes
(accessed: 2021 May 12)

● Queries through a subvolume are restricted to similar octants as octrees
e.g.: set the last 3 digits to 0 and iterate / increment until the last 3 digits are all 1

● Using binary means we can split a volume, each dimension in half recursively, similar to octants

Data Structures: Interleaving (1)

https://redis.io/topics/indexes#multi-dimensional-indexes


● Morton codes give indices (describes Z-order curve)

● Quicksort with Unity Jobs / binary search in shader

● Left figure visualizes binary search for 250 particles

○ More than 32 bits means splitting across colours

○ Volume side-length divided by 2k for cell size

■ Morton code would then have 3k bits

● Level surfaces were quite useful for debugging shader!

Data Structures: Interleaving (2)

● Slight speed-up with double interleaving: pass in two Texture3D, one shifted half a cell



Data Structures: Interleaving (3)

http://www.youtube.com/watch?v=Pt0psmA6TxU


● In isolation, octree with indirection pool:

○ 900 collidable particles and 20 level surfaces, ~30 fps (NVIDIA RTX 2060)

● In isolation, octree with hashed indexing:

○ 2500 collidable particles and 50 level surfaces, ~40 fps (NVIDIA RTX 3070)

● In isolation, double interleaving:

○ 3000 collidable particles and 30 level surfaces, ~50 fps (NVIDIA RTX 3070)

● Estimates above heavily depend on configuration of radius, resolution of data structures, etc.

System Configurations



● The radius of particles is limited by the octant sizes (and currently only one size particle)

● Colliders interact with Unity Physics, but these calculations add up for large numbers of particles

● Global arrays with a maximum number of elements, or forced values across colour channels

Limitations

● Intersections with other flat 
geometry show sharp edges

● Camera zoom-in and -out 
causes change in FPS



Demo Examples



● all particles rendering the same raymarched scene with Voronoi-cell transparency

Fuzzy and Interactive Portals



● For a copy of geometry at each particle, we use a local coordinate system for each particle

Raymarched Particles (1)

Scene view Camera/Game view



● An example of raymarching the same SDF local to each particle

Raymarched Particles (2)



● Textures on surfaces underneath can be shaded with the particle positions, for a refractive effect

Caustics



● An example of caustics together with shading particles for a more water-like result

Water



Variations



Variations



¿ Thoughts on Design ?



● Tyriq Plummer’s previous GDC presentation adapts Scott McCloud’s
triangle continuum from the graphic novel Understanding Comics
(GDC 2016, Made Out Of Meat: Health Systems In Video Games)

● Consider a further abstraction of this continuum that places 
our system in a broader context of design.

Continuum of Design

● We could place our system closer to the “simplification” corner.

● Simplification is useful for educational purposes, or perhaps as a quick test as part of a 
larger more complex system, or building more detail on top for structural support, etc.



Future Work



● Optimizations with more culling

● More configurations through UI Editing

● Occlusion mask as a transparency to blend with intersecting geometry better

● A version of our system for DOTS when Unity releases its packages out of preview

○ early testing seems to allow ~15000 collidable particles in a subscene

● Combining with other systems

● Applications, such as atomic, chemical visualizations without the need for large file sizes

● More demo packages

Future Work



Contact

screenshot: Yael Oosthuizen 
(VIU CSCI 161 student)

Dr. Russell Campbell

Eli Landa

✉ Email: Russell.Campbell@viu.ca
🐤Twitter: @RussCampell
▶ YouTube channel: Russell Campbell
🖌 https://www.artstation.com/russellcampbell

✉ eliplanda@gmail.com
🐤@eli_landa_
🖌 ShaderToy: https://www.shadertoy.com/user/intrakits

mailto:Russell.Campbell@viu.ca

