
Where The $@*&% Are Your Tests?!
Kevin Dill

Senior Solutions Engineer
kevind@kythera.ai

Background & Agenda
• AI developer for 20+ years
• “Unit test curious” for ~15 years…
• But unit testing just didn’t seem to work

well for games!
• Around 6 or 7 years ago, it finally

“clicked”

• This talk is about:
• Why you should test
• What I’m doing differently
• Some tips and tricks that work for me
• A few takeaways

Definitions
GAIA: Game AI Architecture

• Modular AI architecture developed at Lockheed Martin
• Used for numerous different problems on numerous different simulations & game engines
• 2016 AI Summit talk
• Game AI Pro 3 article

Definitions
CSN: City Scale Navigation

• New feature under development at Kythera AI
• Fill large open worlds with ambient vehicles &

pedestrians
• Graph-based spatial representation

Unit Tests (According to Conventional Wisdom)

A good unit test is:
• Fully automated
• Readable
• Maintainable
• Consistent
• Order-agnostic
• Fast
• Runs in memory
• Atomic

Source: www.artofunittesting.com/definition-of-a-unit-test

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work.

Your unit test library
• Is written alongside the code, in C++
• Covers as much code as possible
• Runs every time you build, every time

you push, and again every night

http://www.artofunittesting.com/definition-of-a-unit-test

Why Test?
• Instant feedback

• Catch mistakes right away
• The best time to fix a bug is just after you wrote it
• That is also the safest time to fix it!

• It’s like the Easy button for bug finding!
• Know exactly where the bug is

• As opposed to getting it from QA, having to track it down
• Instant repro case

• As opposed to trying to make it happen in-game

Why Test?
• Document the code

• Step in and see what’s happening – fully instantiated!
• Get up to speed when you come back to a feature

• Or when you didn’t write the feature!

• Example: CSN Path Planner
• Works on CSN graph (rather than navmesh)
• Intended for use in missions
• Added to Kythera early
• Wasn’t hooked up in-game

for almost a year…
• I was on another project!!
• “Does it handle crosswalks?”

Why Test?
• Safety net when the code changes…

• … and this is game development – the code always
changes

• Example: Pedestrian Collision Avoidance
• At very high LOD, pedestrians avoid one another
• Requires a special avoidance component to be

added/removed as LOD changes
• Problem: When the player spawns in, the LOD

changes from low to high…
• First, spawn actors (creating an avoidance component)
• Second, set the LOD on all actors (also creating an avoidance component)
• Third, crash!

• Reversing the order makes sense… but does it create another bug?
• We have no tests for this… I don’t know!!

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work.

“Unit” Tests (According To Kevin)

A good unit test is:
• Fully automated
• Readable
• Maintainable
• Consistent
• Order-agnostic
• Fast
• Runs in memory
• Atomic

Critical!!

Yes, to a point
Who cares?

A “unit” test is an automated piece of code that invokes the system and tests it.

This is actually bad!!

Tips & Tricks: Test Injection
• The Problem:

• Tests use public interfaces
• Exposing things for the tests is a bad smell –

you’re testing the implementation details!
• But, not everything can be tested via the API

• Solution: Inject your tests into the code
• Asserts, Errors, Warnings make tests fail

• (if unexpected)
• Code checks that edge cases work correctly
• Tests make the edge cases happen

More Tips & Tricks
• Stress Tests:

• Load a large map, create lots of entities,
run lots of updates

• See if anything breaks (Test Injection)
• Vary the frame rate

• Slow Tests:
• Compiler directive to enable/disable
• Enabled in the nightly build & CI
• Can be enabled by a developer if needed

Why We Fail / Takeaways
• Too Big / Too Hard / Don’t Know Where to Begin

• Don’t angst about perfect coverage
• Start with your next line of code
• Better yet, your next bug

• Test Maintenance > Test Payoff
• Think about your level of granularity
• Think about building validation into the code

• Lack of Buy-In / Lack of Discipline
• There are times… but you have to circle back
• We don’t have time to not write tests!

Contact us
t: +44(0)131 2902621
e: contact@kythera.ai

Follow us
@KytheraAI
/company/kythera-ai

Visit us
www.kythera.ai/gdc21

Kevin Dill: kevind@kythera.ai

http://www.kythera.ai/gdc21

Click to Add Title
• Click to add text

• Second level
• Third level

• Fourth level
• Fifth level

Unit Tests (According to Conventional Wisdom)

A good unit test is:
• Fully automated
• Readable
• Maintainable
• Consistent
• Order-agnostic
• Fast
• Runs in memory
• Atomic

Source: www.artofunittesting.com/definition-of-a-unit-test

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work.

Your unit test library
• Is written alongside the code, in C++
• Covers as much code as possible
• Runs every time you build, every time

you push, and again every night

Other Kinds of Tests:
• Integration
• Functional
• End-To-End

http://www.artofunittesting.com/definition-of-a-unit-test

Notes & Disclaimers
• I am not “Uncle Bob” Martin or Michael Feathers
• What I am going to give you is not the stock software

engineering pitch…
• What has worked for me
• Actual payoff I’ve experienced
• I do give you one slide that’s by the book ;)

• Some of it will fly in the face of conventional wisdom
• As with anything, YMMV

References
• GDC 2006: Backwards is Forward: Making Better Games with Test-Driven Development

(Sean Houghton & Noel Llopis)
• GDC 2014: Practical Unit Tests (Andrew Fray)
• GDC 2021: Automated Testing Roundtable

Why Bother
• Change in mindset

• Code is not complete until it has been tested
• Loading a level and setting a few breakpoints is not good enough
• Testing your code is not QA’s job – it’s yours!!

Test Injection
• The Problem:

• Tests use public interface
• May be restricted to API

• Solutions:
• Asserts
• Errors & Warnings

• Unexpected: trigger failure
• Expected: confirm they occur

• #ifdef validation blocks
• Memory leaks

• “Unit testing doesn’t really work in games”
• “Some systems just aren’t easy to test”
• “It’s hard to write tests in C++”
• “Games are too complex” / “Games change too much”
• “We don’t have time to write tests”

• It can be done – I’m doing it
• It will improve your velocity – even if done imperfectly
• You don’t have time to not write tests

Time and Time Again…

Still More Tricks
• Performance Validation:

• Set up a dedicated machine
• For each test, track: elapsed time, memory usage, number of instructions, etc.
• Send an alert if those numbers increase too much

Why Bother
• Better code!

• Get your interfaces right
• Decoupled, well encapsulated, modular
• Maintain discipline

Still More Tricks
• Memory Leaks:

• Override new/delete
• Count allocations / deallocations (by object size)
• On exit, make sure that they match!

• Performance Validation (plays nice with Stress Tests):
• Set up a dedicated machine
• For each test, track: elapsed time, memory usage, number of instructions, etc.
• Send an alert if those numbers increase too much

Fixtures (Kythera / CSN)
• Automatically created/destroyed

for each test
• Contains:

• SetUp() / TearDown()
• Frequently used data
• Helper functions

Payoff
• Safety net when code is extended or modified

• This is game development
• The code always changes

• Example: CSN Level Of Detail (LOD)
• New feature: Pedestrian collision avoidance

• Only at high LOD
• Requires a special avoidance component

• Problem: When LOD changes from very low to
very high…
• First, spawn actors (creating an avoidance component)
• Second, set the LOD on all actors (also creating an

avoidance component
• Third, crash!

• Reversing the order makes sense… but is it safe?

Leverage Asserts (CSN)

Fixtures (Kythera / CSN)

Errors & Warnings (GAIA)

Mocks (GAIA)

Mocks (GAIA)

	Where The $@*&% Are Your Tests?!
	Background & Agenda
	Definitions
	Definitions
	Unit Tests (According to Conventional Wisdom)
	Why Test?
	Why Test?
	Why Test?
	“Unit” Tests (According To Kevin)
	Tips & Tricks: Test Injection
	More Tips & Tricks
	Why We Fail / Takeaways
	Slide Number 13
	Click to Add Title
	Unit Tests (According to Conventional Wisdom)
	Notes & Disclaimers
	References
	Why Bother
	Test Injection
	Time and Time Again…
	Still More Tricks
	Why Bother
	Still More Tricks
	Fixtures (Kythera / CSN)
	Payoff
	Leverage Asserts (CSN)
	Fixtures (Kythera / CSN)
	Errors & Warnings (GAIA)
	Mocks (GAIA)
	Mocks (GAIA)

