Where The $@*&% Are Your Tests?!

~ Kevin Dill
Senior Solutions Engineer
_\ kevind@kythera.ai

®

KYTHERA AI

* . GAM= DEVY=LOPERS CONrER=NCE | July 19-23, 2021 L . . ‘

Background & Agenda

* Al developer for 20+ years

e “Unit test curious” for ~15 years...

* But unit testing just didn’t seem to work °
well for games!

* Around 6 or 7 years ago, it finally
“clicked”

KYTHERA A

* This talk is about:
* Why you should test
* What I’'m doing differently
e Some tips and tricks that work for me
* A few takeaways

(

Definitions

GAIA: Game Al Architecture
* Modular Al architecture developed at Lockheed Martin

KYTHERA A

e Used for numerous different problems on numerous different simulations & game engines

* 2016 Al Summit talk Sniper — The “Take A Shot” Option

° Game Al Pro 3 art|cle <0ption.Type='.'Consider‘ationAndAction" Comment="Take A Shot">
Take A Shot <Con51d§r‘at10r-ls> ‘ .
_) <Consideration Type="ExecutionHistory">
Considerations <StoppedWeightFunction Type="FloatSequence">
» Execution History (Timer) <Entries>
 Pick <Entry Min="60" Max="120" Veto="true"/>
ICKEr)
</Entries>
(S_eleCt Target) <Default Veto="false"/>
* Picker </StoppedWeightFunction>
(Line of Retreat) </Consideration>
. - <Consideration Type="Global"” Name="PickTarget"/>
lnteger Variable <Consideration Type="Global" Name="CheckRetreat"/>
(Number of ShOtS) <Consideration Type="IntegerVariable" Variable="NumShots">
Actions (/éNeigEtFuzt}ti:n Type="BasicCurve"> ... </WeightFunction>
: onsideration
* Write Blackboard </Considerations>
(# Shots Fired) <Actions>
o FhfeatTarget <Action Type="UpdateIntegerVariable" Variable="NumShots"

UpdateType="Increment"”/>
<Action Type="Global"” Name="FireAtTarget">
</Actions>
</Option>

@ GOC GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Definitions

KYTHERA A

CSN: City Scale Navigation "
o 24 L ‘ L
 New feature under development at Kythera Al 3 §ia ‘ " 1
I 1 1 . U o sii: i . B B z —i i
* Fill large open worlds with ambient vehicles & PEPac S \C S -‘
pedestrians | </ i‘-} \
* Graph-based spatial representation WAV) ; |
A GIEE] 7] / : N N ! - —
-4 { 7o N\ H F ;"*) ; Py e 7
| HndL Sb IV P Nk ‘ o
r i ' § - 1 { !
| | Rt A B HH
| 2 " I R 14
- zZv|v o | At 2 AL JF
1 e & i 71 |8 i i Nt i
(0 50 41 i)

-

Unit Tests (According to Conventional Wisdom))

KYTHERA A

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work.

A good unit test is: Your unit test library
* Fully automated * |s written alongside the code, in C++
* Readable * Covers as much code as possible
* Maintainable * Runs every time you build, every time
e Consistent you push, and again every night
* Order-agnostic
* Fast
* Runs in memory
* Atomic

Source: www.artofunittesting.com/definition-of-a-unit-test

” @ GOC GAM= DEVZLOPERS CONFERENCE | July 19-23,2021 | #GDC21

http://www.artofunittesting.com/definition-of-a-unit-test

Why Test?

* Instant feedback
e Catch mistakes right away
* The best time to fix a bug is just after you wrote it
* That is also the safest time to fix it!

* It’s like the Easy button for bug finding!
* Know exactly where the bug is
* As opposed to getting it from QA, having to track it down

* Instant repro case
* As opposed to trying to make it happen in-game

KYTHERA A

Why Test?

e Document the code

 Step in and see what’s happening — fully instantiated!

* Get up to speed when you come back to a feature] | e
* Or when you didn’t write the feature! |

* Example: CSN Path Planner

* Works on CSN graph (rather than navmesh)

TEST F(CSNPathPlanTest, Pedestria

* Intended for use in missions
* Added to Kythera early

* Wasn’t hooked up in-game
for almost a year...

* | was on another project!!
e “Does it handle crosswalks?”

RS sy

start = pCSNMgr->CreateLanePo
: _ (start.Isvalid()); B8
dest = pCSNMgr->CreatelanePos

E(dest.IsValid());

pPath = pCSNMgr->GetPathGraph().PlanPedestrianPath(start,

PrintPath(start, dest, pPath);

expectedPath = { std::make_pair(11, 7), std::make_pair(11

std: :make pair(@e, 4), std::mak

std::make pair(12, 8), std::make pair
std: :make pair(15, 6), std::make pair
CheckPath(*pPath, expectedPath);

, 18), std::make pair(11, 8),

7), std::mak ir{ia, 9),

‘6, 2), std::make pair(15, 3),

Why Test?

e Safety net when the code changes...

e ... and this is game development — the code always
changes

* Example: Pedestrian Collision Avoidance
* At very high LOD, pedestrians avoid one another

* Requires a special avoidance component to be
added/removed as LOD changes

* Problem: When the player spawns in, the LOD
changes from low to high... -
* First, spawn actors (creating an avoidance component) R o\

* Second, set the LOD on all actors (also creating an avoidance component)
* Third, crash!

e Reversing the order makes sense... but does it create another bug?
* We have no tests for this... | don’t know!!

.

“Unit” Tests (According To Kevin)

KYTHERA A

A “unit” test is an automated piece of code that invokes the system and tests it.

A good unit test is:
* Fully automated
* Readable
* Maintainable - Critical!!
* Consistent
* Order-agnostic
* Fast — Yes, to a point
* Runs in memory — Who cares?
* Atomic = This is actually bad!!

3\

KYTHERA A

Tips & Tricks: Test Injection

* The Problem:

e Tests use public interfaces

* Exposing things for the tests is a bad smell —
you're testing the implementation details!

* But, not everything can be tested via the API

t(m_laneId.IsPres
t(m_segmentId.IsPresent());

L=

4

WeakPtr<CSNSegmentTypeKey> pSegment = GetSegment();
t(&pSegment->GetlLane(m laneId’ :

* Solution: Inject your tests into the code

e Asserts, Errors, Warnings make tests fail
e (if unexpected)

* Code checks that edge cases work correctly

LHI’lEﬂLF‘I"E‘I}-’ lanes »

GetPrevLanes(lanes);

unordered set<const CSNLaneBase*®> laneSet;
* Tests make the edge cases happen for (const CSNLaneBase* pPreviLane : lanes)

J
L

(pPrevLane = this);

laneSet.insert(pPreviLane);

More Tips & Tricks

e Stress Tests:

e Load a large map, create lots of entities,
run lots of updates

 See if anything breaks (Test Injection)
* Vary the frame rate

e Slow Tests:

* Compiler directive to enable/disable
* Enabled in the nightly build & ClI
e Can be enabled by a developer if needed

3\

KYTHERA A

(CSNSchedulerTest, (CityMapStressTest))

Import]SON(™CityMap.json™);

pCSNMgr->GetSpawningManager() .SpawnAgents("Vehicle™, 1000);
pCSNMgr->GetSpawningManager().SpawnAgents("Pedestrian”, 1000);

timeStep = 0.f;
j =0; j < 200; ++])

timeStep += 0.05f;
Update(timeStep);

RunSerializationTests();

)

KYTHERA A

Why We Fail / Takeaways

* Too Big / Too Hard / Don’t Know Where to Begin
* Don’t angst about perfect coverage
e Start with your next line of code
 Better yet, your next bug

* Test Maintenance > Test Payoff
* Think about your level of granularity
* Think about building validation into the code

 Lack of Buy-In / Lack of Discipline
* There are times... but you have to circle back
 We don’t have time to not write tests!

Y GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

GOC ==/

Contact us
t: +44(0)131 2902621

e: contact@kythera.ai
) Follow us

¥ @KytheraAl
in /company/kythera-ai

Visit us
www.kythera.ai/gdc21

KYTHERAAI

Kevin Dill: kevind@kythera.ai

* . GAM= DEVY=LOPERS CONrER=NCE | July 19-23, 2021 L . . ‘

http://www.kythera.ai/gdc21

Click to Add Title

e Click to add text

e Second level

* Third level

* Fourth level
* Fifth level

KYTHERA A

/& 3 GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

-

Unit Tests (According to Conventional Wisdom))

KYTHERA A

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work.

A good unit test is: Your unit test library
* Fully automated * |s written alongside the code, in C++
* Readable * Covers as much code as possible
* Maintainable * Runs every time you build, every time
e Consistent you push, and again every night
* Order-agnostic
e Fast Other Kinds of Tests:
* Runs in memory * Integration
* Atomic * Functional
* End-To-End

Source: www.artofunittesting.com/definition-of-a-unit-test

” @ GOC GAM= DEVZLOPERS CONFERENCE | July 19-23,2021 | #GDC21

http://www.artofunittesting.com/definition-of-a-unit-test

Notes & Disclaimers

| am not “Uncle Bob” Martin or Michael Feathers

* What | am going to give you is not the stock software

engineering pitch...

* What has worked for me

* Actual payoff I've experienced

* | do give you one slide that’s by the book ;)

* Some of it will fly in the face of conventional wisdom
* As with anything, YMMV

WORKING
EFFECTIVELY
WITH

LEGACY CODE

: | il'!.l

ll'l." |

Y GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23,2021 | #GDC21 S

N
D)

KYTHERA A

References

e GDC 2006: Backwards is Forward: Making Better Games with Test-Driven Development
(Sean Houghton & Noel Llopis)

e GDC 2014: Practical Unit Tests (Andrew Fray)
 GDC 2021: Automated Testing Roundtable

the art of

UNIT TEST

TEST-DRIVEN .8
D EVELOPMENT

WORKING
EFFECTIVELY
WITH

LEGACY CODE

Miches™ L.

9

Why Bother

* Change in mindset
* Code is not complete until it has been tested
* Loading a level and setting a few breakpoints is not good enough
» Testing your code is not QA’s job — it’s yours!!

KYTHERA A

/& 3 GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Test Injection

* The Problem:

e Tests use public interface
* May be restricted to API

e Solutions:
* Asserts

* Errors & Warnings

e Unexpected: trigger failure
* Expected: confirm they occur

e #1fdef validation blocks
* Memory leaks

t(m_laneId.IsPresent(),

t(m segmentId.IsPresent())

LHI’IEJ"—"J‘I"E‘I}-’ lanes »

GetPreviLanes(lanes);

unordered set<const CSNLaneBase®> laneSet;
for (const CSNLaneBase™® pPreviane : lane

J
L

—
S)

(pPrevLane = this);

laneSet.insert(pPreviLane);

3\

KYTHERA A

Time and Time Again...

KYTHERA A

* |t can be done —I'm doing it
* It will improve your velocity — even if done imperfectly

* You don’t have time to not write tests

V' @ GOC GAMz DEVZLOPERS CONFERENCE | July 19-23,2021 | #GDC21 R

Still More Tricks

* Performance Validation:
* Set up a dedicated machine
* For each test, track: elapsed time, memory usage, number of instructions, etc.
e Send an alert if those numbers increase too much

KYTHERA A

/& 3 GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Why Bother

* Better code!
e Get your interfaces right
* Decoupled, well encapsulated, modular
* Maintain discipline

KYTHERA A

/& 3 GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Still More Tricks

* Memory Leaks:
e Override new/delete
* Count allocations / deallocations (by object size)
* On exit, make sure that they match!

KYTHERA A

e Performance Validation (plays nice with Stress Tests):
e Set up a dedicated machine
* For each test, track: elapsed time, memory usage, number of instructions, etc.
* Send an alert if those numbers increase too much

/& 3 GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

’\
KytheraTest : ::testing: :Test ‘:>\

Fixtures (Kythera / CSN) §

* Automatically created/destroyed id Update(deltaTime)

f f] TearDown()
or each test CSNTest : KytheraTest

KYTHERA A

* Contains:

* SetUp() / TearDown() IAPI_CSNManager* pCSNMgr = .
unique ptr<IAPI CSNGenerator> pCSNGen =
* Frequently used data

* Helper functions

ImportJSON(
StartConstruction()
StreamHash SaveToCSNFile(* name)
L oadFromCSNF1le(* name, StreamHash hash = @)
ValidateloadSave()

CreateTestNetwork()

® GOC GAM= DEVZLOPERS CONFER=NCE | July 19-23,2021 | #GDC21

Payoft

e Safety net when code is extended or modified
* This is game development
* The code always changes

e Example: CSN Level Of Detail (LOD)

* New feature: Pedestrian collision avoidance
* Only at high LOD
* Requires a special avoidance component
* Problem: When LOD changes from very low to
very high...
* First, spawn actors (creating an avoidance component)

e Second, set the LOD on all actors (also creating an
avoidance component

* Third, crash!
* Reversing the order makes sense... but is it safe?

N
3)

KYTHERA A

Leverage Asserts (CSN)

{

#ifdef K

“*5¢+'i{m_laﬂeld.ishreaevt(j};
"~ assert(m _segmentId.IsPresent());

WeakPtr<CSNSegmentTypeKey> pSegment =
KYT assert(&pSegment->GetLane(m laneld

LaneArray lanes;
GetPrevianes(lanes);

unordered set<const CSNLaneBase®> laneSet;
for (const CSNLaneBase® pPreviane : lanes)

1
~assert(pPrevLane != this);
laneSet.insert(pPrevLane);

I assert(laneSet.size() == lanes.Size());

for (const CSNLaneBase® pPrevlLane : lanes)

1

LaneArray nextlanes;
pPreviane->GetNextLanes(nextlLanes);

~ assert(nextLanes.Contains(this));

¥

lanes.Resize(0);
laneSet.clear();

GetNextlLanes(lanes);

for (const CSNLaneBase* pNextlLane : lanes)

1
_assert(pNextLane != this);
laneSet.insert(pNextLane),

_assert(laneSet.size()

® GOC™ GAM= DEVZLOPERS CONFERENCE | July 19-23, 2021 | #GDC21

KYTHERA A

KYTHERA A

Fixtures (Kythera / CSN)

- KytheraTest

id validateLoadSave()

IAPI_CSNManager® pCSNMgr = nullptr; KytStreamBuffer buffer;

unique ptr<IAPI_ CSNGenerator> pCSNGen = nullptr; MemoryStreamWriter memWriter(buffer);
pCSNMgr->Save(memlWriter);

rold SetUp() override
/01d TearDown() overrid size t pathGraphSize = pCSNMgr->GetPathGraph().Size();
StreamHash hash = memWriter.GetHash();

/irtual bool ImportlSON(const char*® name) ASSERT _TRUE(hash != @8);

rtual void StartConstruction() pCSNMgr->Clear();
rtual vold EndConstruction()
MemoryStreamReader memReader(buffer);
StreamHash SaveToCSNFile(const char*® name) pCSNMgr->Load(memReader) ;

bool LoadFromCSNFile(const char® name, StreamHash hask
SERT _TRUE(hash 1= @);

/old ValidateloadSave() \SSERT_TRUE(hash == memReader.GetHash());

\SSERT TRUE(pCSNMgr->GetPathGraph().size() == pathGraphSize);

/01d CreateTestNetwork()

3\

KYTHERA A

Errors & Warnings (GAIA)

e(Output: : Type outputType,
~onst AIString& key,
nst AIString& subkey,
; * msg)

if (outputType == Output::
I
L
GAIATestBlackboard Global* pBlackboard = AIBlackboard Global::Get
_ (pBlackboard);
pBlackboard->TestFails(ksNoWarnings);

|
J
else 1f (outputType == Output::)
)

GAIATestBlackboard Global* pBlackboard = AIBlackboard Global: :Get(
(pBlackboard);

PﬂldlkhUde >TestFails(ksNoErrors);

return ATOutputHandler Basic::ProcessMessage(outputType, key, subkey, msg);

)

KYTHERA A

Mocks (GAIA)

GAIATestRandomManager : GAIA: :AIRandomManager

{ return 0; }

*’\
)

KYTHERA A

Mocks (GAIA)

GAIATestTimeManager : GAIA: :AITimeManager

GAIATestTimeManager() : m TickCount(e) {}

Tick() { ++m _TickCount; }
GAIA::AITime GetTime() { return GAIA::AITime((ym TickCount); }

	Where The $@*&% Are Your Tests?!
	Background & Agenda
	Definitions
	Definitions
	Unit Tests (According to Conventional Wisdom)
	Why Test?
	Why Test?
	Why Test?
	“Unit” Tests (According To Kevin)
	Tips & Tricks: Test Injection
	More Tips & Tricks
	Why We Fail / Takeaways
	Slide Number 13
	Click to Add Title
	Unit Tests (According to Conventional Wisdom)
	Notes & Disclaimers
	References
	Why Bother
	Test Injection
	Time and Time Again…
	Still More Tricks
	Why Bother
	Still More Tricks
	Fixtures (Kythera / CSN)
	Payoff
	Leverage Asserts (CSN)
	Fixtures (Kythera / CSN)
	Errors & Warnings (GAIA)
	Mocks (GAIA)
	Mocks (GAIA)

