
/

Adventures with
Deferred Texturing in
Horizon Forbidden
West

04/04/2022 JAMES MCLAREN

“The real voyage of discovery consists not in seeking new landscapes, but in having
new eyes.”
— Marcel Proust

In Horizon Forbidden West Aloy goes on a great adventure with many new landscapes
in a far off land, but in order to realize some of those we had to look at our rendering
pipeline anew, and that’s what I’ll talk about today.

1

Welcome

2

Hello, and thankyou for coming.
My name is James McLaren and I’m a Senior Principal Tech programmer at Guerrilla.

In this talk I’m going to be going through some of the details of the Deferred
Texturing system we made primarily to accelerate our foliage for Horizon Forbidden
West.

2

/
3

Talk Overview

Previous Foliage system.

What deferred texturing is.

Overview of our system.

Dive into some details

Detour into VRS.

Talk about performance

3

I’ll be starting out by talking about the problems of rendering foliage and reviewing
our previous system, after which I’ll move on to talk a little bit about what deferred
texturing actually is. I’ll then give a high level overview of our system, before diving
down into some of it’s details and talking a litte bit about our variable rate shading
implementation and finally we’ll finish off with some performance numbers.

3

/
4

Horizon Forbidden West

But before that, in case you don’t know anything about it, let me introduce Horizon
Forbidden West.
Horizon Forbidden West is an open world adventure game for the PS4 & PS5 that
launched in February this year as the
follow up to Horizon Zero Dawn.

In it you play Aloy, a Nora brave, who has to save the world, mostly by fighting lots
and lots of dangerous machines.

Here’s a trailer to bring everyone up to speed.

4

/
5

SECTION DOCUMENT TITLE

Horizon Forbidden West

Movie!

5

/

Foliage

Lush jungle environments.
Lots of animated alpha tested foliage.

 Massive overdraw.
 Needs motion vectors.

6

In the world of Horizon we have may diverse environments, including places like
forests and lush jungles.
These are typically a challenging to render efficiently. Most of our plants are made up
of alpha tested geometry, and there can be very large amount of overdraw.
The geometry is also animated, and we need to generate correct motion vectors for it
to feed into our TAA and motion blur so there’s no easy cuts we can make.

6

/
7

The Problem
More of everything

Sequel needed:

 Richer environments.

 Even more foliage density.

 More of everything!

Frame budget already full.

In Horizon Zero Dawn we already had a highly optimized foliage system,
but for Horizon Forbidden West, the art department wanted an even higher density
of assets, leading us to wonder how we were going to find the extra milliseconds this
would entail.
This was going to be a really tight squeeze with everything they wanted in the
project, especially as we still needed to target PS4.
In case you’re wondering how the art department looked to us when asking for more
of all the things.
Here’s a dramatic re-enactment in game.

7

/
8

So we were pretty motivated to see what could be done.

8

/
9

The Problem
Horizon Zero Dawn’s Foliage

Depth pre-pass.

 Simple shader reads alpha texture and discards.

Geometry-pass.

 Main shader run through geometry again with depth equal test.

Avoids outputting to the G-Buffer for a pixel more than once.

Rendering foliage can be expensive.
There is lots of overdraw and it tends to be alpha tested which can bring with it
added expense because it can disable some of the hardware’s early Z optimizations.

In Horizon Zero Dawn we worked around this by using a depth pre-pass to do the
alpha test, followed by rendering the foliage again in the geometry pass without the
alpha test, but using a depth equals test to ensure we only shaded the visible pixels.
This is a pretty good solution as it avoids us writing to a foliage pixel in the G-Buffer
more than once.

9

/
10

The Problem
Horizon Zero Dawn’s solution

But…

 Transforms all the geometry twice.

 Often difficult for the GPU to keep itself full.

 Suffers from major issues with quad overdraw.

However, there are some issues with this approach.
All the geometry must be transformed twice by the GPU.
Due to this it’s also often hard for the GPU to keep itself full when rendering
everything again, with lots of gaps where vertices are transformed but generate no
pixel work in the second pass.
Also, with the fine detail typical in foliage this approach can suffer from large
amounts of quad overdraw.

10

/
11

Pixel Quads

Pixel shader always shades 2x2 quads.

 Necessary to calculate derivatives via
finite differencing.

 Helper lanes must be generated if a
triangle doesn’t cover the whole quad.

 Also happens with the depth equal
test in geometry pass.

If you aren’t familiar with Quad overdraw, then let me give you a very quick overview.
The pixel shading hardware in a GPU needs to be able to automatically calculate
derivatives so that it can select the right mip-maps and correctly filter textures when
they are sampled.
To do this it always shades in 2x2 quads.
This way it can use finite differencing to subtract the UV coordinates in one lane from
another and calculate the derivatives it needs for texture sampling.

11

/

Quad Overdraw Visualization

12

Let’s take a moment to visualize this. Here is a triangle that we are going to pretend
we’re rasterizing.
The yellow pixels show the result of the rasterization.
Unfortunately, the HW doesn’t schedule pixels to be shaded it schedules quads

12

/

Quad Overdraw Visualization

13

So, we end up doing shading work for all the blue pixels here as well.

13

/

Quad Overdraw Visualization

14

And as you can see as we get down to small triangles, this problem gets worse.
The triangle on the right here is particularly sad. It outputs 4 pixels, but we had to do
the shading work for 16 pixels in order to calculate our derivatives.
This is what we’re referring to when we talk about quad overdraw.

With foliage we can sometimes get away with large triangles, but usually
accompanied by alpha testing, in order to mimic fine detail.
This then ran into exactly the same quad overdraw issues in our old system when
doing the depth equal test in the geometry pass.

14

/

The Adventure Begins

15

So with this knowledge in hand we are now ready to head out on our new adventure,
searching for a better solution.

15

/

/

Visibility Buffer Laydown
SECTIONDOCUMENT TITLE

16

This is Aloy ready to head out on her adventure.

16

Deferred Texturing

17

Render a Visibility Buffer containing Primitive IDs.

Analyze its contents.
Use the primitive IDs for pixels to fetch their vertex
and batch properties to shade them.

The great adventure that we decided to embark on was to try to implement Deferred
Texturing.
The basic idea here is that before rendering any opaque geometry we do a pre-pass
over the scene to generate a visibility buffer.
This is very similar to a depth pre-pass except that we also write Primitive IDs to an
additional render target.
Once done the Visibility Buffer will contain the Primitve ID of the topmost triangle for
each pixel.
We can then analyze this buffer and use the Primitive IDs to shade the pixels.

17

Deferred Texturing

18

Render a Visibility Buffer containing Primitive IDs.

Analyze its contents.
Use the primitive IDs for pixels to fetch their vertex
and batch properties to shade them.

Profit!
Based on The Visibility Buffer: A Cache-Friendly
Approach to Deferred Shading.

This idea was originally described in a paper from Intel: The Visibility Bufffer: A Cache-
Friendly Approach to Deferred Shading.

This can be applied to both forward and deferred renderers.
In HFW we have a deferred renderer, so the pass to shade the pixels will generate our
Gbuffers.

18

/

SECTION DOCUMENT TITLE

19

And this is a colour coded visualization of that same scene showing all the primitive
IDs that we will put in the visibility buffer.
As you can see for us, only some pixels actually have a valid primitive ID, the yellow
pixels here are pixels that are not included in our visibility buffer.

19

/

Deferred Texturing

Advantages
 No quads!

• So, we are (mostly)
freed from quad
overdraw issues.

 No overshading.
 No second pass through ALL

the geometry.
 Saves bandwidth.

Disadvantages
 No quads!

• We need to calculate
derivatives ourselves.

 Need to manage efficient
dispatch of work to shade
pixels.

20

So why would we do this?
Well, for one thing we can hope to only ever shade the visible pixels so there is no
overdraw.
In theory we can also free ourselves from any quad overdraw issues, depending on
how we process things.
Also, we don’t need to make a pass through transforming all our geometry again,
possibly just what’s on screen, or possibly none at all, depending on how we
implement things.
It also helps save bandwidth, at lest in comparison to a naïve deferred solution.
It’s not all sunshine and roses though.

20

/

Deferred Texturing

Advantages
 No quads!

• So, we are (mostly)
freed from quad
overdraw issues.

 No overshading.
 No second pass through ALL

the geometry.
 Saves bandwidth.

Disadvantages
 No quads!

• We need to calculate
derivatives ourselves.

 Need to manage efficient
dispatch of work to shade
pixels.

21

Because the hardware isn’t creating quads for us, we can no longer use finite
differencing to generate our derivatives and must calculate them ourselves.
Also, we now have a significant task ahead of us in figuring out how to efficiently
dispatch or draw all the pixels that are in the visibility buffer to resolve our materials.

Like any good technique, this has already started to come in various flavors.

21

/

Flavors of Visibility Buffer

Original Paper
 Write thin 32 bit visibility buffer

encoding triangle ID and instance ID,
 Build work list of material tiles.
 Dispatch compute shader tiles per

material.
 Transform vertices per pixel.
 Barycentrics and Ddx Ddy and tangent

frame calculated per pixel.
 Lit pixels directly output.

22

In the original paper they write out a simple visibility buffer with the triangle ID and
instance ID encoded in a single 32 bit uint.
They then do some analysis on this, and build a set of screen space tiles that contain
each unique material.
After which they then an use indirect dispatch to launch compute shaders to process
the set of tiles they’ve recorded for each material,
The primitive ID is read and used to read vertex information, barycentrics are
computed and any vertex transformation work is done along with the pixel work, and
is thus repeated for each pixel.
The derivatives for any attributes are also manually calculated in the compute shader
that process the tiles along with the tangent frame if required.
At the end the shaded and lit results are written out with no intermediate Gbuffer,
which makes it very low bandwidth.

22

/

Flavors of Visibility Buffer

Dawn Engine
 Fat visibility buffer (4 x 32 bit)

• UV, ddy/ddy, material ID,
tangent space.

 Material ID pass
• Material ID copied into 16-bit

depth buffer.
 Shade materials with pixel shaders via

creative abuse of depth test.

23

At the opposite end of the spectrum, we have something like the Dawn engine
Here they take a similar approach, but instead of calculating derivatives, barycentrics
and tangent frames in the back end, when they resolve the materials
,that work is instead front loaded, so UV, derivatives, material ID and tangent space
are packed into a very fat visibility buffer during laydown.
The visibility buffer is then analysed and material IDs are copied into a 16 bit depth
buffer.
They then shade each material by using what I like to refer to as “creative abuse of
the depth buffer”,
They then use a depth equals test per material ID to select the appropriate pixels and
shade them with a pixel shader
by drawing a screen space quad that bounds all the objects using that material and
setting the depth of the quad to be the same as the material ID.

23

/

Flavors of Visibility Buffer

Everything in between
 A deferred material rendering system

[h3r2tic]
• PrimitiveID + Barycentrics.

 Nanite [Karis]
• Static geometry + GBuffer

output.
 Activision’s Geom Pipeline [Drobot]

• 2 UINT’s export for implicit
geometry (Foliage).

24

And then there are some other variants that are somewhere between those two.
Tomasz Stachowiak’s deferred material system writes out barycentrics along with the
primitive ID and shades in compute shades by generating lists of pixels per material.
More recently we have Nanite and the geometry pipeline from Activision
Nanite works with compressed software rasterized geometry clusters and produces a
relatively thin visibility buffer with cluster and triangle information packed together
with depth in a 64 bit UINT. It then writes out a GBuffer via pixel shaders when
resolving it’s materials, using a variant of the creative depth buffer abuse trick.
Activision’s Geometry pipeline, also works with geometry clusters, and writes out a
thin visibility buffer for most geometry, but for foliage they write out 64 bits of
information across two render targets to encode Normal, texture LOD and UV which
keeps the work needed in the material resolve step to a minimum, by limiting the
material complexity.

* If you’re interested in reading around the subject I would also heartily recommend
checking out John Hable’s blog post Visibility Buffer Rendering With Material Graphs

24

/
25

Our Requirements

Handles animated geometry.

 Including motion vectors.

Efficiently handles a number of different materials.

Had to work on both PS4 & PS5.

Can’t use a lot of memory.

 10s of MB available on base PS4.

Fast visibility buffer laydown.

Output to G-Buffer.

Given the range of possibilities for setting up a deferred texturing system, we started
looking at what we needed it to do and tried to figure out what would fit our
requirements.
All our foliage is animated, so support for dynamic geometry was a must.
We also have several different materials for different types of foliage, so we would
need to efficiently support switching between them.
The approach was also going to have to work on both PS4 and PS5 as we were going
to launch on both.
Because we were going to be running on PS4 whatever we did was going to have to
be very light on memory. We could afford 10’s of Mb not 100s.
Also, foliage typically has lots of overdraw, so the laydown of the visibility buffer
would need to be very cheap, preferably just a single 32 bit export.
We were also going to want this to integrate nicely with other non-deferred textured
geometry and so we wanted it to output to our G-Buffer.

25

Let’s look at a
frame…

26

Now during our musings, we also started looking at our frame to see where all of this
work was going to fit.

My initial prototype had used pixel shaders.
I started this process by hand modifying some of our generated shaders, to figure out
what would need to happen to them if we were to use Deferred Texturing.
It was promising, but I wasn’t entirely convinced it was the right way to go.
Anyway, when I started looking at the frame what I saw was this…

26

/

Mind the gap!

27

So, you can see that we had a nice spot where the cascaded shadows are rendered
that was typically filled with a lot of vertex work and not a great deal of pixel work.
So, I started wondering if we could shade our foliage materials in this gap?
However, this meant that we would need to use the Async Compute pipes to do the
shading and use compute shaders to fill our G-Buffer.

27

/
28

Pixels with Compute
Possible approaches?

Identify 8x8 tiles containing particular
materials/batches.

 DispatchIndirect() call to shade the
tiles.

 Suffers from unfilled tiles.

 Like unfilled quads but worse!

So, with this in mind I started thinking about how we were going to do our pixel
shading with compute
This is not as simple as it first appears.
A simple naïve approach is to try to identify small tiles that at least partially cover the
same materials and do sets of dispatch indirects that shade lists of tiles.
This is what the original visibility buffer paper did
However, it’s quite obvious that without the HW to identify quads of the same
materials and pack them into waves for us that this is going to lead to large amounts
of lanes in each tile doing no work.
This is like the unfilled quads problem that pixel shaders can have with small
triangles, but actually much worse!

28

/
29

Pixels with Compute
Possible approaches?

Identify pixels contributing to particular
materials/batches and make lists of pixel
commands.

 DispatchIndirect() call to shade.

 Possible our list of commands bounces
around memory a lot. Bad for L2.

Both potentially need a dispatch per
batch – problem on Async.

 Can become CP bound.

The other simple option is to identify pixels of the same materials and form lists of
pixels to shade.
This is a much better option however there are still some issues with this approach.
Because we’re processing materials in an effectively random order we can bounce
around a lot in screen space.
This is not too much of a problem if we deal with large groups of pixels that have the
same material and batch, but for foliage it’s very easy to get a many batches
intermingled in the same screen space area.
This means that when we’ll potentially ending up pulling the same memory into and
out of L2 again and again as we shade.
The other problem is that if we have many batches each with their own combination
of shader, uniforms and textures they will each need a separate dispatch (unless of
course we want to allow divergence in our waves).
This can also become prohibitively expensive if we are using the compute pipes, as
each dispatch can take significantly longer for the CP to process than it would on the
GFX pipe so this can lead to us becoming quite CP bound.

29

/
30

30

/
31

Idea: Loose Tiling?

Sort pixels so that pixels within a tile with the same shader are processed together.

Use large 128x128 pixel tiles.

Sort the pixels in a tile into complete waves (64 threads each) of the same batch.

 Store a command for each wave denoting the batch.

So in the spirit of adventure…
We decided to try to combine both approaches.
We wanted the good spatial locality of tiles, and we wanted the packing flexibility of
lists of pixels.
What we came up with was what I’m calling a “loose tiling” approach.
The basic idea is to work with large tiles of 128x128 pixels.
Within a tile we identify pixels that use the same shader, but not necessarily the
same constants and textures.
This means that they can come from different batches.
We can then take these pixels and sort them into complete waves with the same
constants and textures.
In additions to commands for each pixel, for each wave we store a “wave command”
that tells us the tile we are processing, the batch we are processing and where the
pixel commands starts.

31

/
32

Idea: Loose Tiling?

Same shader can be used for many different batches. May have:

 Different per batch constants.

 Different textures.

 No divergence in the wave .

Single dispatchIndirect() can then process all the commands for a single shader for all the
tiles.

Good chance of L2 cache hits.

If we do this for all the tiles on the screen then for each shader we can end up with a
single dispatchIndirect() call that process many batches at once.
And because we ensure that we the pixel commands for each tile are stored together
they are likely to be processed in close temporal locality to each other which should
mean that when they do memory requests to fill in the Gbuffer there is a much better
chance that the memory is still in L2.
Also, because we are processing complete waves with the same constants and
textures, we don’t have to worry about divergence.
There is a slight caveat here in that we can end up with “unfilled waves” as we must
round the pixel commands to fit in a particular tile. However, in practice this tends to
be a very minor issue.

32

/

Waves

A

A

….

B

….

C

C

…

D

Loose Tiling
Waves

A

A

….

B

….

C

C

…

D

Batch Group

Here is a simplified example of the idea of this loose tiling in practice.
Let’s assume that this is a tile in a scene we’re rendering.
It’s only 16x16 rather than 128x128 but it will do the job.
All the coloured pixels use the same shader.
The different colours represent pixels from what we will call different batch groups.

A batch group for our purpose is a set of batches with the same shader, textures,
constants and geometry, but the batches in that group will have different sets of
instances.
……
For the sake of this example, lets assume that we’re on a GPU where the size of a
wave is just 8 threads.
What we’re going to do is to group together pixels that are from the same batch
group, into waves.

33

/

Pixel Commands

2 10

2 9

2 8

2 7

1 6

2 6

1 5

2 5

1 4

2 4

… ….

Loose Tiling

We will also build up a list of pixel commands, that describe what pixels to shade.

34

/

Pixel Commands

2 10

2 9

2 8

2 7

1 6

2 6

1 5

2 5

1 4

2 4

… ….

Loose Tiling
Wave
Commands

A 0

A 8

… …

B 38

… …

C 117

… …

And then produce a set of wave commands, that define what batch group a wave will
work on, and will also point to it’s set of pixel commands.

35

/

Batch Group Pixel
Command
Start

Num Pixel
Commands

Tile

A 8 8 0,0

A 16 8 0,0

….

B 38 8 0,0

…

C 117 5 0,0

…

A 237 7 1,0

…

Loose Tiling
Screen Tiles
128

128

Lets have a closer look at the wave commands
The wave commands will also record which tile they are in and the number of pixel
commands the wave should process.
So, once we have produced all the wave and pixel commands for a particular shader
on this tile, we can then start appending commands for the next tile.
This way for a single shader, we can build up a set of wave and pixel commands that
will shade many batches, while avoiding any divergence, and attempting to preserve
spatial locality for good L2 cache performance.

One nice thing about this scheme is that as we are working with 128x128 tiles, and so
our buffer to hold pixel commands only needs to be 16 bit.

Also, the 128x128 tile size is carefully chosen so that if we want to we can use 12 of
those 16 bits to encode pixel quads, and 4 bits to encode what pixels are set within
those quads, which will be important later when we talk about variable rate shading.

36

/
37

Vertices with Compute

What about transforming vertices?

Could do this as we shade pixels?

 Each pixel then needs to transform 3
vertices.

 Triangle sizes still relatively large on
PS4.

 Would cause lots of redundant vertex
transforms.

Global vertex cache

 Not big enough for all situations.

So now we know roughly how we can process pixels on compute. What about
vertices?
In theory we could transform as we shade pixels, as the original Intel paper does.
However especially on PS4 where we are still dealing with triangles that are relatively
large this would possibly lead to a large amount of redundant work as each pixel
would have to shade 3 vertices.

From Horizon Zero Dawn we had a caching system for object space vertex positions
that help us avoid a lot of the redundant transformation work in the depth equals
pass, and also allowed easy access to vertex positions from last frame for motion
vectors. We could have tried to build on this, however it was of limited size and could
overflow and we had to be able to gracefully handle situations where we would run
out of space in the cache.

37

/
38

Vertices with Compute

Transform vertices into a ring buffer on a
separate compute pipe.

 Break batches into passes.

 Transform vertices for a pass.

• Using vertex wave commands

 Consume vertices for previous passes
at the same time.

 Limit a pass to ½ the size of the ring
buffer for sanity.

12mb on PS4, 24mb on PS5.

So, what we do is we transform the vertices into a ring buffer on a separate compute
pipe, whilst still making use of the vertex cache.
In order to make this approach work we need to sort baches into passes that have
the same shader and transform vertices for the pass in one go.
In order to drive this and pass information about what vertices to shade, we’ll also
need to produce vertex wave commands, that tell us what chunks of vertices we
need to shade.
While we are doing this our pixels compute shaders can be consuming the vertices
for previous passes.
Because we always want to be able to have things overlapped in this way, we limit
the maximum number of vertices we process in a pass to ½ the size of the ring buffer.
This ring buffer will be 12mb on PS4 and 24mb on PS5.

38

/
39

The system in one slide

List of batches sort passes per material on CPU.

32 bit UINT Visibility Buffer.

GPU Classification of Visibility Buffer to feed:

 Loose Tiling to process pixels.

• 16 bits per pixel for pixel commands.

• 32 bits per wave for pixel wave commands.

 Vertices transformed on separate compute pipe into a ring buffer.

• 32 bit vertex wave commands.

Variable rate shading support.

So, lets just quickly run down how the system looks.
First off, we have some CPU work that’s needed to sort batches into passes per
material.
Then we’re going to fill a thin 32 bit visibility buffer to encode info about the triangles
we want to shade.
After which we’re going to analyze the visibility buffer and do some classification on
it, in order to produce pixel and pixel wave commands that will drive our shading on
the pixel side
,along with vertex wave commands to drive the transformation of vertices on a
separate compute pipe that will bounce off memory using a ring buffer before being
consumed by our pixel work.
Finally, we’ll add a little bit of variable rate shading magic, to try to squeeze even
more out of things.

39

CPU Setup

40

40

/

Decima Rendering 101

Batch:
 Single draw call.
 Many instances with the same shader, geometry, textures and batch constants.
 Varying constants per instance.
 Output from our culling system.
 Not guaranteed to be consistent across frames.

41

Before I go any further, I want to briefly describe the inputs we have from the Decima
engine.
In Decima, we query a highly optimized scene graph to determine what needs to be
drawn each frame.
The scene graph perform occlusion culling for the current frame and spits out a
visibility list that contains instances of visible objects packed into batches, with each
batch containing 1 or more instances.
A batch from the scene graph will typically be rendered as a single draw call, so all the
instances in it will share the same shaders, and geometry and textures, but some per
instance parameters may vary.
The batches are not necessarily consistent from frame to frame as we move around,
as we can end up with different instances being culled, and batches can also get
merged internal to the scene graph query.

This may seem like simple obvious stuff, but I think it’s worth me calling out here,
before I get into any more of the details of what we did to avoid confusion, as we’ll
come back to talking about batches a little later.

41

/
42

Pass Sorting

Sort batches into passes based on:

 Shader.

 Per batch data.

 Quantized Morton code of their
position.

BUT: Automatic foliage placement system
can create batches with hundreds of
instances.

 Can lead to individual batches that are
too big for the ring buffer!

So, before we begin rendering on the GPU, we sort batches on the CPU based on a
hash of their shader, per batch data and a quantized Morton code of their position
and split them into passes.

We did have some issues with this approach though.
The main one being that we have a procedural foliage placement system that places
most of the foliage in the world.
This can often create batches with 100s of instances.
If each of these instances uses a large number of vertices, then we are in trouble as
we many not be able to fit all the vertices in our ring buffer, let alone half of it!

42

/
43

Micro Batches

Limit ourselves to 16-bit indices.

Split batches into “micro batches”.

 Up to 64k triangles.

 Up to 192k vertices.

 From 1 to 64k instances.

Multiple micro batches in a pass.

A batch can be split over passes.

Make a table of micro batches to look up
info about them on the GPU.

To combat this, we first set some sane limit on the size of our geometry by making all
our individual bits of geometry use 16 bit indices and up to 64k primitives.
This stops individual bits of geometry needing too much ring buffer space.
Then we have to split up the batches we get from the placement system into
manageable pieces that we call micro batches.
Each micro batch has up to 64k triangles and contains from 1 to 64k instances.
We then make passes out of micro batches instead of batches.
So if a batch is contains too many vertices to fit then it will be broken down into
multiple micro batches.
This means that an original batch that we are given can end up being processed over
multiple passes.

43

/
44

Micro Batches

Limit ourselves to 16-bit indices.

Split batches into “micro batches”.

 Up to 64k triangles.

 Up to 192k vertices.

 From 1 to 64k instances.

Multiple micro batches in a pass.

A batch can be split over passes.

Make a table of micro batches to look up
info about them on the GPU.

For each micro batch that we produce we fill in an entry in what we call the
MicroBatchInfoTable Table.
This contains info about the micro batch such as how many verts it’s geometry uses,
which instance of the batch it starts on and which pass it belongs to.
This is placed in a GPU accessible buffer and can then be used during shading to
recover information about the micro batch we’re shading.

<Perhaps go take a look at Bonus slide 108 before continuing…>

44

/
45

Vertex/Batch Flow

Input Batches

Sort on shader and
location

Split into micro batches to
form passes

So here you can see the rough flow of the batches.
They get sorted on shader,
And then split into micro batches to form passes.

45

/
46

Vertex/Batch Flow

Micro batches Vertex Ring Buffer

Transformed
by vertex
compute
shader
dispatches

Consumed by
pixel compute
shader
dispatches

Pass 0

Pass 1

Pass 2

Wrap around

The micro batches will then be transformed by vertex compute shadier into a ring
buffer
And those transformed vertices will be consumed by pixel compute shader associated
with each pass.

46

Visibility Buffer

47

Ok, so now you hopefully have a high level view of our setup work on the CPU. Let
me dive into how we lay down our Visibility Buffer.

47

/
48

Visibility Buffer Laydown

DepthAndVisibility pass at the start of the
frame.

For each pixel in this pass, we write a
single 32 bit UINT encoding:

 Triangle.

 Instance.

 Batch.

Could use dedicated HW on PS4 Pro and
PS5 to accelerate

 No support on base

Decima already had a depth prepass, so we augmented this with an additional depth
and visibility pass that wrote to the Visibility Buffer as well as the Depth Buffer.
For each pixel this pass needs to write out information about the triangle, instance
and batch as a 32 bit primitive ID.
In theory we could use the dedicated hardware that’s in PS4 Pro and PS5 for this, but
unfortunately this would leave PS4 Base out in the cold, as it doesn’t have a proper
way to get a primitive Id without using a geometry shader.

48

/
49

PRIMITIVE ID WITH XOR

Initial plan was to encode primitive ID in provoking vertex index.

 Issues with HW rotating vertices.

Pass data to the PS with data extracted from 3 vertex indices.

Combine that data with XOR.

PrimitiveID = Data0 ^ Data1 ^ Data2

Same number of additional indices as provoking vertex.

Initial plan was to encode the primitive ID in the top 16 bits of our triangle indices
and just read the provoking vertex in the pixel shader to pass through the primitve ID
from the vertex shader, but early in development we had issues with the hardware
rotating the vertices.
I believe this there is now a workaround for this, however, we ended up using a
solution that avoided this issue entirely.
If we use XOR we can uniquely reconstruct a primitive ID from 3 values that we
encode in each of the 3 vertices.
With this scheme we don’t care about the order of the vertices, just the combination
of their payloads.

*This also requires us to introduce addition indices, but no more than we would have
had to with the provoking vertex scheme.
So now when we preprocess our mesh, we determine what data to store in the
provoking vertices index based on the primitive Id we want to encode and the data
we already have encoded in the other indices.
If all indices already have their data determined, then we must add a new one.

49

/

Visibility Buffer Format

Everything packed into 32 bits in a flexible format:
 Micro Batch : 16 bits
 PrimitiveID : Ceil(Log2(num primitives in

geometry)) bits
• Only support 64k prims per geo.

 InstanceID : remaining bits.
Running out of instance bits wraps to the next
Micro Batch.

50

In the pixel shader we can then combine the primitive Id we’ve reconstructed with
the Micro Batch ID and the Instance ID to produce our visibility buffer.
The top 16 bits encode the micro batch ID.
We use a variable number of bits to encode the Primitive ID depending how many
primitives are in the geometry we are rendering.
The remaining bits are used for the instance ID.

50

Classification

51

OK, so now we’ve managed to lay down our Visibility Buffer.
Next, we’re going to need to do some classification on that to figure out what
vertices and pixels we need to shade.

51

/
52

Building the Data for the Passes

Now we have a visibility buffer.

How can we use that to dispatch the
compute shaders for our passes?

Need to classify.

Split into three phases.

 Laydown finalization

 Mid classify

 Classify output

We split our classification into to 3 phases.
Laydown finalization, mid classify and classify output

52

/

Visibility Buffer Classification
Laydown finalization

Writes out masks of which batch groups
are used per tile per pass.

Not all geometry writes visibility.

Stencil encodes valid visibility.

53

Laydown
Finalize

Visibility Buffer

Tile Batch Group Used
Mask

First, we have what we call laydown finalization
This reads the visibility buffer and then writes out a mask of which batch groups are
used in each tile per pass
One thing to note here is that not everything writes into the Visibility Buffer.
We have a geometry pass that runs afterwards that fills our Gbuffers with regular
deferred geometry.
We don’t want to have to add another export to write the Visibility Buffer to all these
shaders.
So, we make use of a bit in the stencil buffer to indicate if the contents of the
Visibility Buffer are valid.
If we write this stencil bit when we are laying down the Visibility Buffer then it incurs
a none insignificant cost, due to the amount of overdraw.

So instead, we write this via a UAV when we run our laydown finalize shader.
Batches in the geometry pass then overwrite this stencil bit.
Once the geometry pass is done, only pixels with the stencil bit set contain valid
visibility buffer information.

53

/

Visibility Buffer Classification
Laydown finalization

Writes out masks of which batch groups
are used per tile per pass.

Not all geometry writes visibility.

Stencil encodes valid visibility.

Directly write the stencil buffer via a UAV
to indicate valid Visibility buffer pixels in
Laydown Finalization.

Geometry pass doesn’t write to the
Visibility Buffer, just the stencil.

54

Laydown
Finalize

Visibility Buffer

Tile Batch Group Used
Mask

Stencil
Buffer

So instead, we write this via a UAV when we run our laydown finalize shader.
Batches in the geometry pass then overwrite this stencil bit.
Once the geometry pass is done, only pixels with the stencil bit set contain valid
visibility buffer information.

54

/

Visibility Buffer Classification
Mid Classify

55

Laydown
Finalize

Batch
Group Bit

Sum

Visibility Buffer

Tile Batch Group Used
Mask

Stencil
Buffer

Tile Batch Group Counts
Prefix
sum

Tile Batch Group Counter
Offsets

<Note, it may be worth reading bonus slide 108 before this slide to understand the
limit of 32 batch groups per pass>
We then have the Mid classify phase.
This can run alongside the geometry pass.
We already have our batch group used mask and have filled the stencil buffer in the
laydown finalization.
Next we take the used mask and use popcount to sum the bits to get a count of how
many batch groups are used for each tile in each pass.
And we do a prefix sum on that to get the offsets of our counters.
This is all done so that we don’t have to have a full set of 32 batch group counters for
each tile for each pass, as to do so with 256 passes at 4K (which is the maximum we
currently support) would need us to have 16mb of space for our counters.
However, as most batch groups are not used in all tiles, we can get away with
considerably less than that by calculating the set of counters that will actually be used
and storing offsets to them in a global counter buffer.

55

/

Visibility Buffer Classification
Mid Classify

56

Laydown
Finalize

Batch
Group Bit

Sum

Visibility Buffer

Tile Batch Group Used
Mask

Batch
Group
Count

Stencil
Buffer

Tile Batch Group Counts
Prefix
sum

Tile Batch Group Counter
Offsets

Vertex Cull Buffer

Tile Batch Group Pixel
Counts

Prefix
sum

Tile Batch Group Pixel
Output Offsets

Geometry
pass

While all of this is happening the geometry pass is still running, and will be updating
the stencil buffer.
We then read the stencil buffer, the visibility buffer and the tile batch group counter
offsets and count up how many pixels we have in each batch group in each tile in
each pass.
At the same time we also use the primitive ID to decode which vertices are used and
record that in the vertex cull buffer.
We only currently do this at a granularity of 64 vertex chunks, to keep things simple
and to save space, as we can have 10’s of millions of verts in a scene in some
circumstances.
Then we take the tile batch group pixel counts, perform a prefix sum on them, and
spit out a set of offsets for where we will start recording our pixel command for each
batch group per tile per pass.

It’s important to remember that this can all be running while the geometry pass is
still in flight, so we can over estimate how many pixel commands each batch group
will need, but this isn’t a problem as we will only ever reduce the number of valid
visibility pixels the further into the geometry pass we get.

56

/

Visibility Buffer Classification
Mid Classify

57

Laydown
Finalize

Batch
Group Bit

Sum

Visibility Buffer

Tile Batch Group Used
Mask

Batch
Group
Count

Stencil
Buffer

Tile Batch Group Counts
Prefix
sum

Tile Batch Group Counter
Offsets

Vertex Cull Buffer

Tile Batch Group Pixel
Counts

Prefix
sum

Tile Batch Group Pixel
Output Offsets

Geometry
pass

It’s important to remember that this can all be running while the geometry pass is
still in flight, so we can over estimate how many pixel commands each batch group
will need, but this isn’t a problem as we will only ever reduce the number of valid
visibility pixels the further into the geometry pass we get.

57

/
58

Visibility Buffer Classification
Mid classify

Identifies visible Vertex Chunks.

 Groups of 64 verts in our ring buffer that we would need to transform.

 Output Vertex Wave commands (32 bits)

• Micro batch & vertex chunk.

Now during this mid classify step we also need to deal with producing vertex wave
commands that will tell us what vertex work we need to do in each pass.
The main input to this calculation is the vertex cull buffer that we previously
produced.
This has a byte set per vertex chunk to indicate if it is visible or not.
I’m not going to cover how the vertex commands are created in this presentation for
time reasons, but if you’re interested you can find some slides about it in the bonus
slides at the end of this presentation.

58

/
59

Visibility Buffer Classification
Classification output

Uses final Visibility Buffer after Geometry pass.

 Stencil buffer identifies valid pixels.

Outputs

 Pixel Wave Commands (64 bits)

• Tile Coords, Batch Group Id, Pixel command offset, Number of pixel commands.

 Pixel Commands (16 bits)

• Pixel X,Y in the tile.

So, with the mid classify done we have the classification output phase that runs on
the Visibility Buffer after the Geometry pass is finished.
The stencil buffer which gets updated in the geometry pass is used to tells us which
entries in the Visibility Buffer are actually valid.
We can then use this to write out our various commands.
These are the pixel commands that contain the Pixel X and Y within in the tile.
And also, we write the pixel wave commands, that encode the tile coordinates, the
batch group ID, and the offset to and number of the pixel commands.

59

/

Visibility Buffer Classification
Classification Output

60

Classification
Output

Round
Pixel

Waves

Pixel
Wave

Output

Visibility
Buffer

Pixel Wave
Commands

Stencil
Texture

Tile Batch Group
Pixel Output

Offsets

Pixel Commands

Tile Batch Group
Pixel Output Counts

Tile Batch Group
Wave Output Counts

Tile Batch Group
Wave Output Offsets

Prefix
sum

Pixel Pass
Dispatch Buffer

So lets take a look at this step in more detail.
So here you can see we take the visibility buffer, stencil buffer and the tile batch
group pixel output offsets we calculated previously and process each pixel with the
classification output shader.
This will output our pixel commands, along with a the final counts of how many pixels
are used in each batch group, for each tile for each pass.
We can then round these counts up to wave alignment and use them to calculate
then number of waves we will need for each batch group per tile per pass.
We can then perform a prefix sum to figure out where we need to output our pixel
wave commands.
Finally we can do a dispatch over all the passes and tiles and output both the wave
commands and the dispatch buffer to use for the pixel passes.

60

/

Classification
Timeline

61

Graphics Pipe

Depth Prime Depth +
Visibility Geometry Pass

Laydown
Finalize

Mid
Classify

Transform Verts

Cascaded Shadows

Classify
Output Shade Pixels

Compute Pipes

Custom DeferredWater
Cubemap?

Here’s a look at how this all fits in our GPU timeline.
As you can see, we start our laydown finalization right after the Depth and Visibility
pass.
If we’re lucky then this can run in parallel with rendering a face of our water cube
map.
After that the geometry pass starts and we can begin the mid classification steps.
These get us ready for the final classify output step, but also cull vertices and output
vertex wave commands.

61

/
62

Classification
Timeline

Graphics Pipe

Depth Prime Depth +
Visibility Geometry Pass

Laydown
Finalize

Mid
Classify

Transform Verts

Cascaded Shadows

Classify
Output Shade Pixels

Compute Pipes

Custom DeferredWater
Cubemap?

Because the mid classification happens while the geometry pass is running on the
graphics pipe, some of the results we get are conservative.
So we might end up transforming some vertices that may be occluded.
However as most of our major occluders are in the depth prime pass we generally
find that it is better to run this in parallel with the geometry pass than to wait for
accurate results after it.
It also allows us to start transforming vertices for our deferred texturing passes
before the geometry pass has finished.
Once the geometry pass is done, we do our final classification, output our pixel and
wave commands and start shading pixels while we render shadows.
We then finish up our Gbuffer laydown with our custom deferred pass, which is used
for decals and the like that can modify already written Gbuffer values.

62

/
63

Classification
Timeline

Graphics Pipe

Depth Prime Depth +
Visibility

Geometry
Pass

Laydown
Finalize

Mid
Classify

Transform Verts

Cascaded Shadows

Classify
Output Shade Pixels

Compute Pipes

Custom
Deferred

Water
Cubemap?

It’s also possible to run the system in an alternate mode where the mid classify is
moved to the end of the geometry pass.
This trades less work in parallel with the geometry pass against higher vertex culling
rates, and we’re experimenting with this on PS5 where the geometric density is that
much higher.

63

Vertices

64

So a few words about how the vertices in our ring buffer is encoded

64

/
65

Vertex Format

Member Format Optional

HPOS (xyw) Half2 + float No

UV 16:16 scaled down by 8 to allow wrapping Yes

Vertex Color RGBA8888 Yes

Normal 10:10:10:2 No

Tangent 10:10:10:2 No

Previous HPOS (xyw) Half3 No

Unused 16 bits (Available for additional interpolants) N/A

This is the format what we use. It’s 32 bytes long in total.
For HPOS we encode x & y as half floats but found that for accuracy reasons we
needed to keep w as a float, and z doesn’t need to be sent as it can be easily
recovered from w.
UVs we store as fixed point 16:16 but scaled down by 8 to allow support for some UV
wrapping.
We also have space for vertex color, normal, tangent, and the previous HPOS so that
we can construct motion vectors, and you’ll see we also have 16 bits unused.

65

/
66

Extra Interpolants

Some shaders need extra interpolants.

 Allow UV and Vertex Color to be read separately.

 Reuse their space + unused 16 bits.

 Can support up to 5 x 16-bit interpolant slots.

 Half or 2 channel sqrt 8 bit UNorm for colors.

So, this isn’t a fully fixed format, for some shaders we need extra interpolants,
especially if we want to try to move some pixel work to the vertex shader for
optimization purposes.
We don’t animate UV and vertex color, however it’s usually more efficient for them to
be read in the vertex program and placed in the vertex format to help reduce the
number of buffer reads per pixel.
To account for extra interpolants however, we allow the UV and vertex color to be
kicked out of the fix format and their data buffers to be read directly. We then reuse
their space for our additional interpolants.
Using this scheme, we can support up to 5x16 bit extra interpolant slots.
At the moment, a slot can be filled with either a half float, or a 2-channel square
rooted 8 bit unorm for color values, which you can think of as like a poor man’s sRGB.

OK, so, that’s all the information I’m going to present on the core of the system.
Hopefully you now have some inkling of how this all works,
I’m aware that I’ve gone through some of this pretty fast and introduced a bunch of
new concepts
so if you’re thinking man that was a lot, then trust me.

66

/
67

….. I know! I can’t keep it all in my head half the time either..

67

/
68

So, lets just chill out with Aloy the forest for a few seconds and appreciate what it’s all
for
…. Ok everyone got their breath?

68

Variable Rate
Shading

69

So now I’m going to talk a little bit about the variable rate shading support that we
added towards the end of the project to try to squeeze just a little bit more
performance out of the system.

69

/
70

Variable Rate Shading

Not all HW has native support for VRS.

We are doing manual pixel export.

Can do it ourselves!

Top 2 bits of the visibility buffer used for
shading rate.

Driven by the vertex shader in the
DepthAndVisibility pass.

1x1, 1x2, 2x1 and 2x2 rates supported.

Gains ~ 0.2 – 0.6ms on PS4 Base

What I’ve described so far can be pretty efficient, but we wanted to see if we could
get things even faster.
A lot of the foliage we render ends up being various shades of green, and so we don’t
always benefit from shading at full rate.
Because we are effectively managing pixel export ourselves rather than going via the
ROPs we were able to modify our scheme to
support variable rate shading even on hardware that doesn’t natively support it.
We steal the top 2 bits of the visibility buffer from the micro batch offset, and instead
use it to encode the shading rate.
In theory we could support driving this via a screen space shading rate texture, but
for the moment we have chosen to just drive this from the vertex shader.
We support all the Direct X Tier 1 VRS shading rates.
We only enable this on PS4 Base, and the gains are heavily scene dependent.

70

/
71

Here we can see a nice forest scene

71

/
72

And this is our standard setting for VRS when you are stationary, which blends
through 1x1 and 2x1 to 2x2 depending on distance.
On this scene when the deferred texturing is not overlapped this gets us about 0.2ms
back

72

/
73

However, we use the screen space speed of vertices in the vertex shader to drive the
shading rate
So, when we are moving at pace, everything blends towards using 2x2, which in this
scene gets us almost 0.5ms, and so is much more worth our time.

73

/
74

Variable Rate Shading
Classification

Classification Output reads this and uses QuadSwizzle() (yes quads !)

 Identifies pixels that can be shaded together.

Pixel commands modified so that 6 + 6 bits identify a quad (64x64)

 4 bits identify pixels within that quad to broadcast to.

Our classification output stage can read this shading rate info and use QuadSwizzle to
quickly determine pixels that can be shaded together.
As I alluded to earlier, we also change our pixel commands so that 12 bits identify a
particular quad to shade in a 128x128 tile.
The top 4 bits of the command are then used to identify which pixels in the quad we
need to broadcast to.

74

/
75

Variable Rate Shading
Output Broadcast

Calculated sample results must be broadcast.

 Output order is important.

 Single thread should not output adjacent pixels.

• Bad for bandwidth.

 Expand work within the wave into LDS.

 Loop over expanded work in the wave to output.

In the generated shader that does the output for a material, we will then need to
broadcast the results for any variable rate samples in a wave.
It’s possible to naively do this by just making each thread loop over the samples that
it should broadcast to, but this is not very memory friendly and gives less than stellar
performance.
What we need to do instead is some work expansion within each wave.
We take all the samples and build a list of expanded pixel commands in LDS.
This is done at the start of the shader, if any of the pixel commands in the wave need
to broadcast.
At the end of the shader for each UAV in our G-Buffer we will then use this expanded
list of work to do the broadcast.

75

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

76

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

76

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

77

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

77

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

78

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

78

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

79

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

79

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

80

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

80

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

81

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

81

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

82

thread_group_memory uint sIntermediateSpace[64]; // Space to store the pre converted output per lane
thread_group_memory unsigned char sIntermediatePixelX[64]; // X Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sIntermediatePixelY[64]; // Y Coord of the intermediate pixel within the tile
thread_group_memory unsigned char sPixelCommands[256]; // Packed lane and offset from original position

void BroadcastOutput0(uint inNumPixels, uint inGroupIndex, uint2 inScreenTileCoords, float4 inColor)
{

uint4 tlo = __get_tsharplo(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);
uint4 thi = __get_tsharphi(SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX);

sIntermediateSpace[inGroupIndex] = packUnorm4x8(inColor); // Cache manually converted results into LDS

uint num_active_lanes = gWaveActiveLaneCount();

for(int i=inGroupIndex; i< inNumPixels; i+=num_active_lanes) // Loop over the all the broadcast work
{

uint cmd = sPixelCommands[i]; // Read the work expanded command
uint pixel_lane = BitFieldExtract(cmd,0,6); // What lane calculated this result
uint pixel_offset_x = BitFieldExtract(cmd,6,1); // Where should it be offset from its original position
uint pixel_offset_y = BitFieldExtract(cmd,7,1);

uint col_out = sIntermediateSpace[pixel_lane]; // Read the manually converted result we stashed
uint2 out_pixel = uint2(sIntermediatePixelX[pixel_lane], sIntermediatePixelY[pixel_lane]) + // Get is its origin

uint2(pixel_offset_x, pixel_offset_y) + // Add the 1 bit offset in x&y
inScreenTileCoords; // Place in the right tile

__image_store_pck(col_out, uint4(out_pixel,0,0), tlo, thi, __kImage_texture2d); // Output!
}

}

The code to broadcast the output to a single UAV looks something like this.

You can see that we start <CLICK> by manually converting our shaded result into what
will be its final raw form in memory and caching the results in LDS.
<CLICK>We can then loop through the expanded set of commands, <CLICK>decode
them and <CLICK> grab the result we stashed in LDS related to each of them.
Finally, <CLICK>, each lane can then figure out exactly where it’s output should go and
<CLICK> output it via a packed image store intrinsic.

82

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

83

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

83

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

84

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

84

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

85

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

85

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

86

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

86

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

87

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

87

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

88

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

88

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

89

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

89

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

90

uint num_pixels_to_write = 0;
bool broadcast_divergent = pixels_to_shade > 1; // Does this thread need to export more than one pixel?
bool broadcast_conservative_and_uniform = !gWaveMaskIsEmpty(gWaveMaskActiveBallot(broadcast_divergent)); // Do any threads in the
wave need to export more than one pixel?

if(broadcast_conservative_and_uniform)
{

pixel = pixel &~0x1; // Take top left pixel in the quad
float pixels_right = popcnt(vrs_mask&0xa);
float pixels_bottom = popcnt(vrs_mask&0xc);
wpos_offset = float2(pixels_right, pixels_bottom); //figure out where to shade in the quad
// pixels_to_shade contains the total number of pixels this lane needs to write
uint command_pos = gWaveActiveLanePrefixCount(pixels_to_shade&0x1) + // Calculate where our command’s will go

(gWaveActiveLanePrefixCount(pixels_to_shade&0x2)<<1) + // using prefix count magic
(gWaveActiveLanePrefixCount(pixels_to_shade&0x4)<<2);

for(int i=0; i<4;++i)
{

if(vrs_mask&(1<<i))
sPixelCommands[command_pos++] = inGroupIndex | (i << 6); // Write a command for every broadcast pixel

}

sIntermediatePixelX[inGroupIndex] = pixel.x-screen_tile_coords.x; // Stash the tile local coords of the
sIntermediatePixelY[inGroupIndex] = pixel.y-screen_tile_coords.y; // pixel this lane will shade

num_pixels_to_write = gWaveActiveCountBits(pixels_to_shade&0x1) + // Count up how many pixels in total
(gWaveActiveCountBits(pixels_to_shade&0x2)<<1) + // this wave will write
(gWaveActiveCountBits(pixels_to_shade&0x4)<<2);

}

Here is a snipped of the code we need to insert near the top of our generated shader
In order to create this expanded list of pixel commands in LDS.

<CLICK> We need to generate these expanded command if any lane in our wave
needs to broadcast

For each lane <CLICK> we then figure out the top left pixel in the quad, and where
<CLICK> we should calculate our shaded sample.
After which we can figure out where <CLICK> the commands for this lane should start
in LDS, <CLICK> output them, <CLICK> and record the relative position of the quad in
the tile.
<CLICK>Finally we calculate how many pixels this wave needs to output in total.

90

/

SECTION DOCUMENT TITLE

Bonus Slides
Calculating derivatives

91

// Body of generated shader code

if(broadcast_conservative_and_uniform) // Determine if we need to broadcast
{

// Whole wave uses broadcast functions
BroadcastOutput0(num_pixels_to_write, inGroupIndex, screen_tile_coords, out_color0_srgb);
BroadcastOutput2(num_pixels_to_write, inGroupIndex, screen_tile_coords, o_outColor2);
BroadcastOutput3(num_pixels_to_write, inGroupIndex, screen_tile_coords, o_outColor3);
BroadcastOutput4(num_pixels_to_write, inGroupIndex, screen_tile_coords, o_outColor4);
BroadcastOutput5(num_pixels_to_write, inGroupIndex, screen_tile_coords, o_outColor5);

}
else
{

// Whole wave outputs directly to UAVs
SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR0TEX[pixel] = out_color0_srgb;
SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR2TEX[pixel] = o_outColor2;
SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR3TEX[pixel] = o_outColor3;
SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR4TEX[pixel] = o_outColor4;
SRT_DEFERREDTEXTURINGCOMPUTEPASSPARAMS_COLOR5TEX[pixel] = o_outColor5;

}
}

Then at the end of the shader we select between a fast path for normal output and
the broadcast output path.

91

Performance

92

OK, that’s all I have time for on the VRS. Let's go and have a little look at how the
whole system performs.

92

/

Perf analysis

93

Let’s take a look at our frame with the large shadow cap from the start of the
presentation.
As you can see, we now have what appears to be a fairly solid block of compute work
overlapping with the shadows.
This is in fact 10’s of passes transforming vertices into our ring buffer and then
consuming that to shade pixels on the screen.

93

/

Perf analysis

94

Let’s take a look at our frame with the large shadow cap from the start of the
presentation.
As you can see, we now have what appears to be a fairly solid block of compute work
overlapping with the shadows.
This is in fact 10’s of passes transforming vertices into our ring buffer and then
consuming that to shade pixels on the screen.

94

/

Perf analysis

95

If we don’t overlap with the shadows and run the pixel shading work on the graphics
pipe while still keeping the vertex shading on the compute pipe, you can see how
everything is nicely interleaved.
In this picture the green wavefronts are pixel work and the grey wavefronts are the
vertex work.

95

/

Perf analysis

96

Switching to a colouring based on the batches, you can see how all the different
batches on the same pipes also interleave nicely.

96

/

4098 3991
2897 3043

390 376

90 240

5886

2285 4382
1735

5750

6930

2724

3707

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

PS4 Base Depth Equals PS4 Base Deferred Textured PS5 4K Depth Equal PS5 4K Deferred Textured

m
ic

ro
se

cn
ds

Mode

GBuffer Laydown + Shadows

Depth Prime Laydown finalize Geometry Shadows

Forest

97

Forest

So, here are some numbers to give you an idea of how this performs on a couple of
scenes.
First off, we have a forest scene.
Here you can see that we get reasonable gains of about 1.4ms on PS5 at 4K, but the
real winner here is PS4.
On base PS4 due to overlapping with the shadows we get back almost 2.5 ms which is
pretty useful.

97

/

Forest

98

Platform/Mode Effective Geometry Pass Length

PS4 Base 29%

PS4 Neo 52%

PS5 4K 48%

PS5 1800p Checkerboard 41%

And if we isolate the work we used to have in the geometry pass for shading foliage
and look at how much time that work is now effectively taking in the frame now that
it’s resolved by deferred texturing and overlapped with the shadows, you can see that
we are getting some pretty healthy gains.

98

/

3684 3729
2644 2783

245 408

114 220

7104

3770
5124

2482

3164

4244

2237

3796

0

2000

4000

6000

8000

10000

12000

14000

16000

PS4 Base Depth Equals PS4 Base Deferred Textured PS5 4K Depth Equal PS5 4K Deferred Textured

m
ic

ro
se

cn
ds

Mode

Gbuffer Laydown + Shadows

Depth Prime Laydown finalize Geometry Shadows

Tall Grass

99

In this grassland scene, you can see that we’re also getting some good gains but not
quite as much as for the forest.
PS4 is still the big winner here, but PS5 is also benefitting.
This scene is slightly more challenging because there is so much vertex work, and the
culling is less effective.

99

/

Tall Grass

100

Platform/Mode Effective Geometry Pass Length

PS4 Base 38%

PS4 Neo 32%

PS5 4K 68%

PS5 1800p Checkerboard 67%

And again if you look at the effective length of the work that we are now doing in
deferred texturing that used to be done in the geometry pass, you can see that we’re
still making some good gains.

100

/

Pixel Work Reduction

101

Scene Pixel shading
waves with depth
equal

Pixel shading
waves with
deferred texturing

Ratio

Forest 4K PS5 276500 111180 40%

Tall Grass 4K PS5 330786 85528 25%

Finally, we can also see how much the system is managing to cut down on
overshading with pixel work

101

/

Vertex Work Reduction

102

Scene Vertices in the
scene

Vertices after
culling

Ratio

Forest 4K PS5 3867456 1241664 32%

Tall Grass 4K PS5 5077248 2774784 55%

And also how much work the vertex culling we’re doing is managing to cut out.

102

Thank you!

103

Also many thanks to all of the Guerrilla Tech Team,
especially Hugh Malan and Jonas Meyer for suffering
through code reviews of this system.
A big thanks too to Gilbert Sanders and Team Green
for being such great collaborators and making such
awesome foliage.
Thanks also to Maarten van der Gaag for assistance
and suggestions getting this working in our shader
graph!

And that brings me to the end of my talk.
I hope you’ve enjoyed journeying on this adventure we me. We’ve looked at our
foliage shading with new eyes, and though the pixels look almost exactly the same as
when we started, I hope you’ll agree that the grass is now looks a just a little bit
greener…. at least from a framerate perspective.

103

/

References

1. Sanders 2018 "Between Texh and Art: The Vegetation of Horizon Zero Dawn" https://youtu.be/wavnKZNSYqU

2. Burns and Hunt 2013, “The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading” http://jcgt.org/published/0002/02/04/

3 .Stachowiak 2015, "A Deferred Material Rendering System"
https://onedrive.live.com/view.aspx?resid=EBE7DEDA70D06DA0!115&app=PowerPoint&authkey=!AP-pDh4IMUug6vs

4. Doghramachi and Bucci 2017, “Deferred+: Next-Gen Culling and Rendering for Dawn Engine” http://gpuzen.blogspot.com/
https://www.eidosmontreal.com/news/deferred-next-gen-culling-and-rendering-for-dawn-engine/

5. Drobot 2021 "Geometry Rendering Pipeline Architecture" https://research.activision.com/publications/2021/09/geometry-rendering-
pipeline-architecture

6. Karis 2021 "A Deep Dive into Nanite Virtualized Geometry"
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

7. Hable 2021, “Visibility Buffer Rendering With Material Graphs” http://filmicworlds.com/blog/visibility-buffer-rendering-with-material-
graphs/

104

104

/
105

Questions?
04/04/2022

Twitter: @selfresonating

105

/

SECTION DOCUMENT TITLE

Bonus Slides

106

106

/

SECTION DOCUMENT TITLE

Visibility Buffer Classification
Mid Classify - Vertices

107

Prefix
sum

Vertex Cull Buffer

Sum 64
Vertex
Chunks

Uber Chunk
Mask

Uber Chunk
Sums

Build
Histogram
Pyramid

Uber Chunk
Histogram
Pyramid

Output
Wave

command
Deltas

Delta Wave
Micro

Batches

Vertex Pass
Dispatch

Buffer

Vertex Wave
Micro

Batches

Micro batch
order buffer

Finalize
Vertex
Waves

Vertex Wave
Commands

Micro Batch
Info table

<This is a brief explanation of how we generate the vertex wave commands>
So we take the vertex cull buffer,and sum up how many vertex chunks are visible in
what we call an uber chunk, which is a set of 64 chunks of 64 vertices.
We also spit out a 64 bit mask per uber chunk that tells us which chunks are set.
With the uber chunk sums we can then construct a histogram pyramid, that will allow
us to easily map from a linear index of a work item to an uber chunk and the sub
index of the child vertex chunk within it.
Using the 64 bit mask that we constructed per uber chunk, we can then easily
transform this child vertex chunk index back into the global index of a vertex chunk.

We do a dispatch over all the micro batches, read the microbatch info table and use
the mapping we just described to figure out how many vertex waves we will need for
each pass.
We read a micro batch order buffer that we setup on the CPU describing the order in
which micro batches will be processed.
This is used to atomically write a delta of the micro batch ID at each position where in
the vertex wave command stream where the micro batch ID will change.
A prefix sum is then used to transform from the deltas to the actual micro batch IDs.
Then we finish off by doing an indirect dispatch over all the vertex wave commands

107

we will need,
Reading the histogram pyramid and mask along with the microbatch info table to look
up which vertex chunk each wave command should be transforming and add this info
into the command along with the already recorded micro batch.

107

/
108

Batch Groups

Allow 32 Batch Groups per pass.

 A Batch Group is N batches with the
same shader and per batch data and
geometry.

 Batches within a batch group differ
only by their set of instances.

<This slide was (perhaps foolishly) cut, it used to live directly after slide 44, this limit
of 32 makes a sense of some of the mask/counter stuff in later diagrams>
For each pass we support up to 32 batch groups.
A batch group is a set of batches that have the same shader and per batch data, but
different instances.
Ideally, we’d like to not have this 32 limit, but it’s currently a consequence of how
some of our Visibility Buffer classification work is structured.

108

/
109

SECTION DOCUMENT TITLE

Load Balancing – CUT Maybe
mention in perf section

Record the time of Shadows and
Deferred Texturing with performance
counters.

Use this to the difference in time to drive
changes in compute wave limits.

SetComputeShaderControl() on PS4/5.

Target the Deferred Texturing work to
take ~90% of the shadow time.

Ensures optimal mix of work.

109

Our shading work is going to run in parallel with the shadows, and
Ideally, we want the time the compute work runs to roughly match the time the
shadows take.
This should hopefully ensure an optimal mixing of the two workloads.
Having either run significantly longer than the other would lead to inefficiency.
To achieve this ideal balance, we use performance counters to understand how long
each took in the last frame.
Then we us this to gradually tune the parameters for SetComputeShaderControl() so
that we can change the rate at which wavefronts of compute work are generated.
We target the compute work to take around 90% of the shadow time as there is
usually a depth decompression at the end of the shadow pass that tends to not
overlap very nicely.
Also, we want to avoid the situation where the compute work is tuned to not be
using all the wavefronts that it can but is running long. This is usually a much worse
situation than the shadows running longer.

109

/
110

SECTION DOCUMENT TITLE

Shader Graph Integration

Generates compute shader
pairs rather than Pixel and
Vertex shader pairs.

 Support for skinning etc.
just works out of the box.

Derivatives for Deferred
Texturing provided by a special
node.

 Worked for this project but
would like to invest in
automatic differentiation in
future.

110

110

