
From ‘Clash of Clans’ to ‘Everdale’
Scaling from solo to social

Tristan Williams



Tristan Williams
Senior Programmer

Supercell 2014-
Remedy 2008-2014
Splash Damage 2005-2008
Ratbag 2004-2005

Presenter Notes
Presentation Notes
Clash of Clans
Alan Wake, Quantum Break
Enemy Territory Quake Wars�



Topics

Introduction
Design

Tech
Takeaways

Presenter Notes
Presentation Notes
Introduce the games�Divide into two main parts
Design
Tech




Introduction

Released 2012 Soft launched 2021

Presenter Notes
Presentation Notes
Probably all heard of Clash
Top 50
Everdale new




Presenter Notes
Presentation Notes
Village builder
Gather resources 
Build defenses & armies




Presenter Notes
Presentation Notes
Attack other villages
Inverse tower defense
Steal resources
Use stolen resources to upgrade
Gain trophies




Clash of Clans
● One village on screen at a time
● Core gameplay is solo



Clash of Clans
Clans
● Opt-in social layer on top of the solo core game
● Clan Wars – another source of resources
● Your progress is still entirely your own!



Everdale

Presenter Notes
Presentation Notes
Inspired by classics
Settlers village building gameplay
Sims and Fallout attachment to characters
Civ for scale




Presenter Notes
Presentation Notes
Village builder
Build houses to attract new villagers




Presenter Notes
Presentation Notes
Assign villagers jobs to do�



Presenter Notes
Presentation Notes
Research & advance tech to unlock more stuff




Presenter Notes
Presentation Notes
From very early, players placed in a valley together
Seamless
No Transitions
Create many products
Upgrade villager skills
Persistent tech tree
Valley buildings require research, construction
Trade




Everdale
● Valley is deeply linked to your village gameplay
● Village supports the valley and valley supports the 

village
● Shared progress
● Deep collaboration



Team
● Small, independent teams
● Started ~2016
● <6 people
● Grew to 10-20 for launch
● 4 client programmers & 2 server programmers



The Dream



Do game devs dream of simulated sheep?

● Everything starts with some kind of dream
● Dreams come in all shapes and sizes



Dream “small”
● A cool mechanic
● A unique gameplay idea
● An art style
● Some interesting tech

Presenter Notes
Presentation Notes
Mechanic like Hay Day swipe to harvest�Unique gameplay: Portal guns�Art style: Limbo�Tech: Light and shadow in Alan Wake



Dream “small”
● Often clear 

reference exists
● But: Differentiation?

Presenter Notes
Presentation Notes
From a small seed idea, an amazing game can grow
Very solid way to build a game




Dream “big”
● Lofty goals
● User experience/emotion driven
● “How does the game make me feel?”
● Start from the high fantasy

Presenter Notes
Presentation Notes
What are we selling the player



Dream “big”

Presenter Notes
Presentation Notes
Growing from the tree canopy down
From an amazing premise, building a functional game




Dream “big”
Daunting!

● Mechanics may not be understood yet
● Lack of reference
● The tech may not exist yet

Sounds easy, right?

Presenter Notes
Presentation Notes
Risky



Everdale dreams
In the beginning
● Broader audience
● Not about combat
● More collaborative than anything we’ve made 

before
● More immersive

Presenter Notes
Presentation Notes
Anecdotes about wife here



Everdale dreams
“Small” dreams
● Village builder
● Peaceful
● Relaxing

Presenter Notes
Presentation Notes
Look through the lens of the dream terms



Everdale dreams
“Big” dreams
● Game with collaboration 

built in at the core
● Real, meaningful 

cooperation
● Seamless world
● Multiple villages



The dream
● Every game starts with some sort of dream
● Helps to identify these early
● These will drive tech choices



Collaboration



Presenter Notes
Presentation Notes
Basics of collaboration
Group up with other players 
Menu where you can see other player names




Presenter Notes
Presentation Notes
Chat
Visit other players’ game states 




Presenter Notes
Presentation Notes
More advanced collaboration
Solo battles, combined scoring
“Clan Wars”: arranged sets of battles against another clan
Earn stars
Get resources for performance
Still solo
Core loop



Collaboration++
● Seamless world
● Watch other people play in real time
● Real gameplay interaction in the world – not just in 

menus
● Teamwork really means something
● Shared goals

Exciting!



Collaboration++?
.. Except ..
● Big world, expensive to simulate & render
● Complex to design
● Complex to test



Tech



Tech background
Forked Clash of Clans
● In-house engine
● Single village on screen at a time
● Collaboration only in menus
● 2D, sprite atlas based



Tech background
● Client/server architecture
● Server authoritative, asserts clients in sync
● “Logic” code runs on both client and server
● Logic state persistent

Presenter Notes
Presentation Notes
Shared logic ensures determinism



Tech background
● Client & logic code relied heavily on singletons
● Convenient and easy to code
● Could only have one village running at a time

Presenter Notes
Presentation Notes
GameObjectManager�ShopOfferManager
Village




Multiple villages
● Broke this up into the concept of “contexts” 
● Context bundles all the subsystems of village state

Presenter Notes
Presentation Notes
Every object needs to know what context it is in



Multiple villages
Benefits
● Run background, headless, copies of the village
● Debug logic verification
● Prediction into the future

Design goal ended up giving us nice technical 
benefits!



Seamless world
● One “render world” per village

● Own coordinate system
● One render world for the valley
● View composed by stitching together worlds

● Render each village with an offset

Presenter Notes
Presentation Notes
Great! Now we can see everything



Going 3D
“Small dream” - village builder
● Diverse villagers
● Performing lots of different tasks
● Possibility to customize villagers

That’s a lot of permutations of content!

Presenter Notes
Presentation Notes
Tools�Clothes�DIVERSITY



Going 3D
Made the choice to go 3D
● BUT: no true 3D engine yet!
● Some 3D rendering capabilities eg characters in 

Brawl Stars



Going 3D
● Built a simple 3D engine
● Usage as close as possible to our 2D engine
● Camera controls built to replicate Clash of Clans 

camera

Engine made it’s way back to Brawl Stars

Presenter Notes
Presentation Notes
Pixel perfect�Benefit the company



Collaboration Tech



Collaboration Tech
● Multiple players in one seamless world
● Player actions sent to other clients
● In your own village, validation is relatively simple



Collaboration Tech
What about influencing shared state?
● Previous games:

● Manually persisted shared state
● Manual message handling
● Manual error resolution for every feature
● Every feature needed both client & server expertise

● We wanted to have far more elaborate features
● Tedious, prohibitive development time



First pass
● Added shared logic state for Valley

● Shared logic code & context, too
● Well-defined “action” object encapsulating:

● Player’s action and parameters
● All validation checks
● Handling of validation failures
● Rollbacks

Presenter Notes
Presentation Notes
Object represented as a class



First pass
● Validate on client, if OK, send to server
● Server validate against authoritative village state

● Fail: respond to client with fail, client runs action failure 
code

● OK: validate against authoritative valley state
● Fail: back to server village & client, run failure code
● OK: apply, distribute to other clients



First pass
Pros
● Neater and easier to see all of the handling in one 

place
● Can share a lot of logic code with village
● One game programmer can build a complete 

transaction without help from a server programmer

Presenter Notes
Presentation Notes
Run game object code from village in the valley, too



First pass
Cons
● Onus is on the programmer to foresee all potential failure 

cases
● Implement appropriate rollback code for all cases

● Still tedious, laborious, error prone code!
● Similar to the “old way” in many respects

● Client/UI code needs to be written so that all edge cases are 
handled with various “bail out” scenarios
● Often non-trivial!



Improvements
● Adopt resimulation-based approach
● Server runs all villages in each valley 

synchronously
● Clients run slightly ahead of server
● Clients able to rewind to last known good state and 

re-simulate the game if things change
● Server validates & applies actions against the 

village & the valley at the same time



Improvements
Pros
● No error resolution/rollback required. Only 

validation & execution needed to define action.
● Very robust
● Server state very well defined at any point in time
● Error resolution (misprediction) can be handled 

universally in most cases



Improvements
Cons
● CPU & memory requirements on client & server
● Some client/UI scenarios still need careful handling

● State may change dramatically based on misprediction
● Avoid direct callbacks from logic code to client code

● eg sounds or effects may be re-triggered many times 
during resim

Presenter Notes
Presentation Notes
Change to polling makes many situations trivial



Improvements
● Great success!
● Develop complicated collaboration-based game 

systems much more rapidly
● Weeks instead of months
● Single programmer per feature

Iteration time is key!

Presenter Notes
Presentation Notes
SMALL TEAM




Performance



Problem
● ~10 villages
● 100s/1000s of objects per village
● Complex flow-based logic
● Performance definitely an issue!



Rendering
● Render villages to texture imposters
● Stagger imposter updates
● Near-seamlessly transition to/from impostor



Presenter Notes
Presentation Notes
Video of transitions



Logic
● Relatively slow gameplay
● Reduced logic tick rate to 5Hz
● Client interpolates logical state as necessary



Logic
Deterministic variable-length logic update():
● Allow objects/systems to declare how many ticks 

they can update()
● Many objects can skip updates for multiple 

seconds at a time
● Client steps tick-by-tick, server can fast forward



Logic
● Reduced server load by 80-90%!
● Throttle/stagger logic updates for off-screen 

villages on client



Determinism
Guaranteeing determinism
● Debug clients run background verification

● Background thread running fast forward mode to 
compare

● Save traces when errors detected
● Server also saving traces when out of sync 

situations detected

Presenter Notes
Presentation Notes
On-going task



Testing
With guaranteed determinism & decoupled logic 
execution:
● Stored gameplay “replay” traces for bug testing
● Regression testing for changes

● Can simulate all accounts before/after changes and 
assert same results



Testing
● Many systems can be validated in background 

threads while playing



Testing
● Built AI logic that can 

play the game
● Connect to load test 

servers and play
● Run thousands of bots
● Gather balance & 

stability data
● Isolate rare bugs

Presenter Notes
Presentation Notes
Complex game�Many systems




Result
● Achieved our dreams!
● Game is now in soft launch

Presenter Notes
Presentation Notes
We’ll see what the future holds�Even if it doesn’t make it to global�Tech lives on



Takeaways

Dream big - but go in with eyes open!

Game design and technology affect each other 
deeply, and can yield exciting results.

Presenter Notes
Presentation Notes
Not easy!
Big dream drove many technical improvements
Better tools available for future games
Investment in new tech pays off
Risk, reward

Hopefully inspired to tackle your own lofty game design goals



Thanks for coming!

Give feedback!

We’re hiring! 
https://supercell.com/careers

https://supercell.com/careers/

	From ‘Clash of Clans’ to ‘Everdale’�Scaling from solo to social
	Slide Number 2
	Topics
	Introduction
	Slide Number 5
	Slide Number 6
	Clash of Clans
	Clash of Clans
	Everdale
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Everdale
	Team
	Slide Number 16
	Do game devs dream of simulated sheep?
	Dream “small”
	Dream “small”
	Dream “big”
	Dream “big”
	Dream “big”
	Everdale dreams
	Everdale dreams
	Everdale dreams
	The dream
	Collaboration
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Collaboration++
	Collaboration++?
	Tech
	Tech background
	Tech background
	Tech background
	Multiple villages
	Multiple villages
	Seamless world
	Going 3D
	Going 3D
	Going 3D
	Collaboration Tech
	Collaboration Tech
	Collaboration Tech
	First pass
	First pass
	First pass
	First pass
	Improvements
	Improvements
	Improvements
	Improvements
	Performance
	Problem
	Rendering
	Slide Number 57
	Logic
	Logic
	Logic
	Determinism
	Testing
	Testing
	Testing
	Result
	Takeaways
	Slide Number 67

