
Age of Empires IV: Machine 

Learning Trials and Tribulations



Andrea Schiel – anschiel@microsoft.com Lead AI Architect (Worlds Edge Studio) She/Her
Peter Chan – peter.chan@relic.com Senior AI Developer (Relic) He/Him
Guy Leroy - t-gleroy@microsoft.com Associate ML Researcher (MSR) He/Him
Sam Devlin – sam.devlin@microsoft.com Principal ML Researcher (MSR) He/Him

mailto:anschiel@microsoft.com
mailto:peter.chan@relic.com
mailto:t-gleroy@microsoft.com
mailto:sam.devlin@microsoft.com


Phil Wardlaw – Senior AI Developer – Combat Fitness
Matt Burgi – Automation Engineer – Combat Fitness
Jaroslaw Rzepecki – Senior Research Engineer - MSR
Dave Bignell – Research Engineer – MSR

Phil Wardlaw

Dave Bignell Jaroslaw RzepeckiMatt Burgi



Age of Empires IV AI Team

Darren Ward – lead
Jasbir Roopra – producer
Byron Chow – designer
Wayne Chen
Liz Gordon
Puya Dadgar 
Andrea Schiel 
Also:
Diccon Yamanaka
Peter Chan
Phil Wardlaw
Warren Johnson

Wayne C Andrea S



Problem Space

• 8 civilizations​

• 380+ units and 

structures​

• 130+ upgrades



Problem Space

• castles & walls

• siege mechanics

• 2 wonders per age

• 4 ages

• 3 victory types



Problem Space

• naval combat

• 2 terrain types

• 4 key resources



Machine Learning

2 examples of DNNs (deep neural networks)

Different forms of supervised training:
- combat fitness uses labelled data
- navigation & combat uses RL 
(reinforcement learning)



● Modular/targeted approach – training to be 
done on a few machines, small compute

● Goal 1: determine what makes a good 
DNN/DRL problem

● Goal 2: determine how to train a model or 
policy during live game development

● Goal 3: performant at runtime (inference)

● Goal 4: fun not superhuman behavior

Goals for DNN



Using Supervised Learning for 
Combat Fitness



Combat Fitness Agenda

● Problem Space

● Why Supervised Learning?

● Prototype

● Observations and Improvements

● Results and Takeaways



Combat Fitness Definition

● Given two armies, should we fight or flight?

● Heuristic for many decisions

● Usually require supplements

float ComputeCF(const Army& teamA, const Army& teamB);

1.0 = dominate
0.5 = even
0.0 = total lost



Combat Fitness Usage Examples

● Whether units should engage in combat
● Should we initiate a fight?

● When to fallback or retreat?

● How much reinforcement to bring in?

● Utility calculation for unit production

● What upgrades to purchase



Combat Fitness Classic Approach

● Explicit formula to simulate damage model

● Requires data introspection

● Things to consider:
● Unit health & Army size

● Weapon attributes (range, AoE, etc)

● Armor types

● Upgrades

● RNG…



Combat Fitness Challenges

● Called a lot so it needs to be fast

● Hard to test, hard to maintain

● May require introspecting a lot of data during runtime

● Effectiveness of a unit may not be obvious from data

● Combinatorial explosion
● 8 civilizations
● 380+ units and structures
● 130+ upgrades



Why Supervised Learning?

● We have a teacher (the game!)

● No need to handle any complexity during combat

● DNN model trained offline and can be automated

● Runtime inference is cheap

● It’s been done before

Using Neural Networks to Control 
Agent Threat Response
By Michael Robbins



Prototype

● Setup a test scenario to generate fight data
● Randomize unit type and count

● Record initial and final health

● Experimented with different input features

● How well does it generalize?



• Unit count
• Initial health
• Average move speed
• Total weapon damage
• Penetration
• Armor
• Firerate
• Etc

● Extract values summarizing English infantry units

● Dataset took a couple hours to generate

Initial Model



● Model gave reasonable results

● Accuracy improves with more fight data

Initial Model – Not bad

rm
s
e

fights



● More work is required to consider other unit types

● Feature selection is tricky

Initial Model – Limitations



● Much simpler, can characterize all combat types

Raw Unit Combinations

• Number of units
• Initial health
• # unit type A
• # unit type B
• # unit type C
• ...



● Requires a lot more training data to improve accuracy

● Took days to generate the fight data

Raw Unit Combinations

rm
s
e

fights



What does it mean?

● Needs to train with all civs and combat types

● Potentially an infeasibly large problem space to 

generate training data



Reduction of Features

● Can we reduce the feature dimension?
● Faster training time

● Faster prediction queries at runtime

Yes we can!



Using Archetypes - Idea

● Group units with same combat mechanics

● Use the weakest unit in the group as the base unit 

with a score of 1

● Determine the relative strength ratio for each member 

to the base unit



Using Archetypes - Example

● 10 Imperial Age spearmen

● 27 Dark Age spearmen

● Imperial Age spearman score = 27 / 10 = 2.7

Ages
• Dark Age

• Feudal Age

• Castle Age

• Imperial Age



Archetype Training

● The process is automated



Using Member Scores
unit_spearman_1_eng unit_spearman_2_eng unit_spearman_3_eng

1 5 3

spearman

14.7
(1 x 1) + (5 x 1.45) + (3 x 2.15) = 14.7

old 

model

new

model

‘Archetypes’ = {
‘spearman’:
{

‘unit_spearman_1_eng’: 1.0,
‘unit_spearman_2_eng’: 1.45,
‘unit_spearman_3_eng’: 2.15,
‘unit_spearman_4_eng’: 2.7,

},
…

}



Combat Fitness Model

● Archetypes for infantry, siege units, naval

● Also have combat buildings and healers

• Archetype score
• Health percent
• Unit count

(x41 Archetypes)



Layering in Upgrades

● How do upgrades affect combat?

● Add new input columns for each upgrade (0 or 1)

● Update fight data generation script to randomly add upgrades



Upgrades - Problem

● Some upgrades improve units so subtly that random variations in 

combat overshadow their effectiveness

● With a fully connected layer, the model can associate 

improvements due to the presence of an upgrade to unrelated 

units



Upgrades - Solution

● Supply our own custom layer based on prior knowledge

● We know from game data what units each upgrade can affect

● Train a separate model to learn the effectiveness of an upgrade 

on certain units, ignoring unrelated ones



Upgrades - Solution



We have a winner

● We now have a solution for combat fitness

● How do we bring it to production?



Automation Goals

● On-going development and design changes and balancing 

require model update

● Two parts:
● Archetype training automation

● Combat data generation

● However, model training is still manual



Archetype Automation Settings

● Run archetype training in parallel

● Split up large archetypes into subgroups

● Take a couple hours to complete



Combat Automation Settings

● Unit count from 1v1 up to 40v40

● Can be single unit type or mixed

● Land, naval, structures

● With and without upgrades

● ~200000 fights in 8 hours



Troubleshooting Problems

● Single black box

● What happens when model is inaccurate?

● Model training is still manual
● Spot check scenarios, can patch data and experiment

● Data distribution (individual units vs archetypes)

● Blind spots

● Lots of tests in place



Implementation Notes

● Used TensorFlow and Python/Jupyter Notebook

● Some hyperparameter tuning

● SavedModel converted to .tflite format

● Used TensorFlow Lite for the runtime (x4 speed improvements)



Results and Takeaways

● Successfully used SL for combat fitness
● Improved runtime
● Adaptive to ongoing changes

● Not quite fully automated
● Problems need to be investigated manually

● Monitor everything
● Data generation
● Model accuracy

● Just a heuristic
● Not always accurate
● Requires supplements or safeguards



RL exploratory projects: Agenda 

● Tribulation: Optimizing farm building

● Trial: Plausible naval battles

● Integration and engineering efforts



Core Reinforcement Learning Loop

Agent
Environment

Action

Reward 

Observation 

Policy 



What layer to override

Human actions
Engine-level 

actions

High-level 

strategy & 

playstyle

Macro 

strategy

Unit 

micro



Tribulation: Optimizing farm building



Prototype 

environment

RL ships

Scripted ships



Early training setup

● Start simple
● Fully connected network

● Proximal Policy Optimization with RLlib

● Training on local machine

https://docs.ray.io/en/latest/rllib-algorithms.html#ppo



Model architecture for navigation

TANH activation

https://docs.ray.io/en/latest/rllib-models.html#default-model-config-settings

Inputs:

Ray casts

For each ship:

Distance to ship

Angle to ship

Relative rotation

FC 

256

FC 

256

Value 
function

Action policy:

Move forward

Turn left/right



Trial: Human-like ship pathfinding

Built-in AI



Trial: Human-like ship pathfinding

RL ships



How to train faster & cheaper?

● Targeted model for narrow application with high 

impact

● Potential bottlenecks
● Neural network training 

● Game samples collection



Speed up game sample collection

● Scale set of VMs to run the game (spot instances)

● Speed game up
● Headless mode

● Speed up task resets



Model architecture for combat

TANH activation

https://docs.ray.io/en/latest/rllib-models.html#default-model-config-settings

Inputs:

Ray casts

For each ship:

Distance to ship

Angle to ship

Relative rotation

Time since last 

attack

Health points

FC 

256

FC 

256

Value 
function

Action policy:

Move forward

Turn left/right

Attack left/right



Trial: Ship to ship combat

RL ship

Built-in AI ship



Multi-unit training paradigms

Single agent with 
joint action space

Multi-agent



Multi-unit training paradigms

Single agent with 
joint action space

Multi-agent



Multi-unit training paradigms

Multi-agent with 

separate weights
Multi-agent with 

shared weights



Multi-unit training paradigms

Multi-agent with 

separate weights
Multi-agent with 

shared weights



Multi-unit training paradigms

Weight freezing



Multi-unit training paradigms

Weight freezing



Multi-unit training paradigms

Weight freezing



Trial: 4v4 plausible naval battle

RL ships

Built-in AI ships



Near-constant scaling

Inference not optimized, could 

expect from 5x to 80x speedup1

Single Intel Core i7-8650U CPU

Policy inference time for 

all ships

5.26
5.74 5.65

6.18
5.7

0

2

4

6

8

10

1 4 8 16 32

T
im

e
 (

m
s
)

Number of ships

[1]https://software.intel.com/content/www/us/en/develop/articles/tens

orflow-optimizations-on-modern-intel-architecture.html



Designing A Modular AI

Supervised 

Learning

Utility 

System

Farm 

Optimization

Combat 

Fitness

Reinforcement 

Learning

Multi-Unit

Navigation + Combat



What makes a good

supervised learning 

problem?

Max Gruber / Better Images of AI / 
Banana / Plant / Flask / CC-BY 4.0



What makes a good

supervised learning 

problem?



What makes a good RL problem?

Breakout Montezuma’s Revenge



Designing A Modular AI

Utility 

System
Supervised 

Learning

Reinforcement 

Learning

Farm 

Optimization

Combat 

Fitness

Multi-Unit

Navigation + Combat



Pathing in 'Age of Empires IV': Flow Fields and 
Steering Behaviors
Frank Cheng -Location: Room 2010, West Hall
Date: Wednesday, March 23
Time: 10:30 am - 11:00 am

The MAW: Safely Multithreading the 
Deterministic Gameplay of 'Age of Empires IV'
Joel Pritchett -Location: Room 2006, West Hall
Date: Thursday, March 24
Time: 2:00 pm - 2:30 pm

Give Your Players a Seat at the Table: Feedback 
Fundamentals
Emma Bridle & Savannah Harrison
Location: Room 2010, West Hall
Date: Wednesday, March 23
Time: 10:30 am - 11:00 am



Age of Empires IV: Machine 

Learning Trials and Tribulations


