
Knockout City’s

Parallel, Deterministic, 

Rewindable

Entity System



@confusionattack @velanstudios





What’s An Entity System?

Time

Player Input

Network Data

Rendering 
Commands

Audio 
Commands

Entity World

Entity

Component

Component
Entity

Component

Component



What’s An Entity System

● Knockout City’s typically has 4000+ active components

● Components written in proprietary scripting language



Range of Components

Size/Complexity

Point_light
• Adds a light to the scene
• ~100 lines
• 15 data fields

Transform
• Position, rotation, scale
• ~100 lines
• 10 data fields

Player_movement
• Character traversal
• ~6000 lines
• ~250 data fields

Throwable_ball
• Default ball behavior
• ~3000 lines
• ~100 data fields



So Why Entity+Component+Script Anyway?

● Why entities and components?

● Familiar pattern for game designers

● Benefits of composition

● Why script?

● Reduce cognitive load

● Making good gameplay is hard enough

● Also want parallelism + determinism + reversibility + replication

● Lever for global optimization (or where framerate goes to die?)

● Live-update / hot-reload is nice



Motivating Architecture



The Rest of This Talk

● Data structures

● Components as scripted jobs

● Cross-component reads and writes

● Entity spawn & destroy

● Optimizations

● Tools



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

Entity World

Entity

Component

Component
Entity

Component

Component



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

Entity World

Entity

Component

Component
Entity

Component

Component

Lies!



Let’s Talk About Data Structures



Let’s Talk About Data Structures

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data

Loaded Persistent Store



Let’s Talk About Data Structures

Loaded Persistent Store

C:\Game\Some.level

C:\Game\Foo.script

C:\Game\Bar.script

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Entity

Component

Component

Component

Component

Loaded Persistent Store Constant After Spawn

Entity

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Entity

Component

Component

Component

Component

Loaded Persistent Store Constant After Spawn

Entity

Contiguous block of memory
Not all entities live

Contiguous block of memory
Not all components live

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Entity Snapshot

Entity Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Loaded Persistent Store Constant After Spawn Mutable Over Lifetime

Entity

Component

Component

Component

Component

Entity

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Entity Snapshot

Entity Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Loaded Persistent Store Constant After Spawn Mutable Over Lifetime

Entity

Component

Component

Component

Component

Entity

Contiguous block
Shared indexing

Contiguous block
Shared indexing

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Mutable Properties

Mutable Properties

Mutable Properties
Mutable Properties

Loaded Persistent Store Constant After Spawn Mutable Over Lifetime

Entity Snapshot

Entity Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Entity

Component

Component

Component

Component

Entity

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Let’s Talk About Data Structures

Loaded Persistent Store Constant After Spawn Mutable Over Lifetime

Entity Snapshot

Entity Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Component Snapshot

Entity

Component

Component

Component

Component

Entity Contiguous block
All data is live

Mutable Properties

Mutable Properties

Mutable Properties
Mutable Properties

Entity Data

Component Data

Component Data

Script Image

Script Image

Entity Data

Component Data

Component Data



Rolling Forward

Every* simulation step memcpy snapshot to form basis of next step



Memory Traffic

● Entity snapshot = 16 bytes

● Component snapshot = 16 bytes

● Typical mutable properties size = 75 bytes

● Typical entity count = 1400

● Typical component count = 4000

● Total memcpy/step = 377 kilobytes



Let’s Build It!

● Entities are lists of components

● Components are function-specific data



Let’s Build It!

● Entities are lists of components

● Components are function-specific data
Entity/component memory 

layout is complicated.



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

Entity/component memory 
layout is complicated.



<tangent> Script



Script Converted to C



Script Converted to C



Script Converted to C



Script Converted to C



Script Converted to C



Script Converted to C



Script </tangent>



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

Entity/component memory 
layout is complicated.



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

● Typically handle an event on multiple components –
parallelize!

● Ticking the world runs tick handler on all components that 
have one

● Each component gets its own task or job

● Ensure the result is deterministic

Entity/component memory 
layout is complicated.



<tangent> Job System

● One job per component handling an event

● Job = { data blob, function pointer, completion token }

● Job system has 2 main operations:

● Run_async – Queue job for execution

● Returns completion token

● Wait – Wait for a job to finish execution

● Takes completion token



Running a Job

● Run_async pushes the job onto a queue

● Scheduler runs when current job finishes or waits

● Pop job off a queue

● Give the job a fiber, if needed

● Fiber = thread’s stack + registers

● Switches to the job’s fiber

● Loop until terminate



Waiting On A Job

● The scenario: While Job A is running, Job B waits on it

● What happens:

● Job B adds itself to Job A’s wait list

● Job B switches back to scheduler fiber

● When Job A completes

● Adds everyone in its wait list to the ready queue

● Scheduler pulls B off the ready queue

Job A

Job B Scheduler Job Z

Scheduler Job BThread 0

Thread 1



Job System </tangent>

● Christian Gyrling’s “Parallelizing the Naughty Dog Engine 
Using Fibers”

● Our starting point

● Added a few operations, one of which we will talk about later



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

● Typically handle an event on multiple components –
parallelize!

● Ticking the world runs tick handler on all components that 
have one

● Each component gets its own task or job

● Ensure the result is deterministic

Entity/component memory 
layout is complicated.



Ta Da!



Ta Da!



So… We’re Done?



Nope.



Let’s Look At That Example Script Again…



Let’s Look At That Example Script Again…



Cross-Component Reads + Writes

● Reading from transform

● What if transform has its own tick handler?

● Will our component see transform before or after it mutates 
state?

● Seems like we’ve got a race on our hands

● Writing to transform

● Same thing differently

● Will transform see its state before or after we mutate it?



Solving the Read Problem

● Good news: we have job wait and a scripting language!

● When reading transform, script compiler adds a job wait

● We don’t run until transform is done

● Determinism achieved, data race gone



That seems too easy.



Yep.



Cycles

● What’s stopping A from reading B, and B reading A, in 
the same event? Nothing.

● What happens if that happens? Deadlock.

A B

Reads

Reads



The Synchronize Operation

● Introduce the synchronize operation

● synchronize(A,B) means A “waits for” B

● Invoke this operation on every cross-component read

● Without considering cycles, synchronize = job_wait

● With cycles, synchronize must avoid deadlock



Synchronize Pseudocode



Job_Yield

● Recall job_wait

● If A waits on B, A puts self on B’s wait list

● A switches back to scheduler

● When B completes, it pushes all its waiters on ready queue

● Yield operation is similar-ish

● A flags self as yielding

● A switches back to scheduler

● Scheduler sees A is yielding and pushes A onto yield queue

● When scheduler exhausts other work, pull from yield queue



Job_Yield + Job_Wait?

● Job_yield spin cores on yield queue, but no deadlock

● Job_wait idle cores if there is no work, but can deadlock

● Can we combine the concepts and do better?



Introducing Job_Yield_Wait

● Job_yield_wait(A, B)

● A flags self as yield-waiting

● A switches back to scheduler

● Scheduler sees A is yield-waiting

● Wakes all yield-waiters on A

● Puts A in B’s yield-waiter list

● When B completes, push all its yield-waiters onto ready queue

● Only wake jobs when progress is made!



Now It’s Perfect



What’s Next?



What’s Next?



What’s Next?



What’s Next?



What’s Next?



Selecting What To Run From A Cycle

● Want determinism

● No other criteria? Just pick one already!

● Our system compares:

● Entity GUIDs, then

● Component index on entity



Synchronization Costs in Practice

● On a “typical” KO City simulation step with 4 job workers

● 280 synchronizes where we check for a cycle

● 75 cycles broken

● ~100 ns overhead per job switch on Xbox One X

● Time to pop job from queue, switch to job, back to scheduler

● More waiting/yielding jobs = more fibers

● 64kb / fiber for “normal” jobs

● For KOCity: 512 normal job fibers preallocated = 32 MB



Ok, Now We’re Done.



With Read.



What About Write?



Making Write Safe

● Defer cross-component writes

● A does not write to B immediately

● A queues write on B to happen at the end of the current event

● Now A writing to B does not race with B (or other readers of B)

● Good news: we have a scripting language!

● We can transparently defer writes



Are We There Yet?



Are We There Yet?



Snooping Your Write Queue

● When deferring a write to another component, record it

● Before we read another component, check pending writes

● Pending write list is component-job-local

● “Typical” frame average pending write list has ~1.2 items

● Just do a linear search

● Return the last pending write, if any



Summary of Read/Write Semantics



Summary of Read/Write Semantics

A waits for B



Summary of Read/Write Semantics

Immediate read/write



Summary of Read/Write Semantics

C defers write & snoops



Surely There’s More?



Yep. 



What Other Operations Do We Want?

● Spawn an entity

● Destroy an entity

● Queue an event (on entity/component/world)

● Set entity parent

● Get entity sibling

● Add/remove component on entity



What Other Operations Do We Want?

● Spawn an entity

● Destroy an entity

● Queue an event (on entity/component/world)

● Set entity parent

● Get entity sibling

● Add/remove component on entity

Kinda like a deferred write

Kinda like a deferred write

Kinda like a synchronized read

Not supported!



What Other Operations Do We Want?

● Spawn an entity

● Destroy an entity

● Queue an event (on entity/component/world)

● Set entity parent

● Get entity sibling

● Add/remove component on entity

Kinda like a deferred write

Kinda like a deferred write

Kinda like a synchronized read

Kinda involved. This is next.

Kinda involved. After spawn.



Spawning Entities

● Split spawn operation into 2 steps

● Allocate space + Initialize values

● Run created event

● Do alloc+init immediately

● Need address for new entity

● Defer the created event

● Handle created in parallel for all components in new entity

● Resolves create time ordering issues between components



Spawn In Action



Spawn In Action

But there’s a problem. Do you see it?



Entity Visibility

● If component A spawns entity E, when can B see E?

● If B sees E immediately -> nondeterministic

● For B, visibility to E must be deferred until after created

● But A needs to see E immediately to reference it



Entity Visibility Solution

● When allocating an entity, record the creating component

● All entity query API takes the calling component

● Query API is safe to return an entity/component if:

● Entity/component is fully created, OR,

● Caller is the creator

● Query API returns entities/components visible to caller



Spawn entity

Destroy entity



Destroying Entities

● You know the drill

● Can’t just destroy entities

● That would be racy and nondeterministic

● Defer the destroy

● Split the operation in two parts

● Queue destroyed event (to run in parallel)

● Deallocate the storage



There’s A Catch, Right?



Destroying Without Creating?

● Spawn entity in the normal way

● Created event queued for end of simulation step

● Then destroy entity, flagged to run after current event

● Do we get a destroyed event without a created?

● If resource management tied to created/destroyed -> bad

● Also, just not a cool thing to do



Destroyed Guarantees Created

● Before processing destroyed event, check if created

● If not, find created events in queue and run them

● Probably need to check the “other” queue

● Then run destroyed events



Spawn entity

Destroy entity



That’s It?

● We have a workable, parallel, deterministic system

● But it could be faster

● That’s next



Recall This



Enhance!



Observation

● Cross-component reads often have per-type relationship

● Example: move-5-units-per-second-in-X components 
read transform components

● To minimize yields, tick our component after transform



Formalizing Our Observation

● Let wait_order be an integer

● On each component type

● For each major event

● Top of each core event, sort types by wait_order

● Queue component jobs in sorted order

● When synchronize(A,B) and B is active

● Increment wait_order for typeof(A) and the current event

● Decrement wait_order for typeof(B) and the current event

● Clamp wait_order to a reasonable range



After Enabling Job Ordering



Another Observation

● Tracking read 
relationships between 
types is great

● But what about reads 
within a type?

● Pathological case: same 
type components that 
read up the entity tree

Entity

ui_box

Entity

ui_box

sprite

Entity

ui_box

Entity

ui_box

text

Reads

Reads



Handling Hierarchies of Reads

● Script specifies “self sort order” –> depth in hierarchy

● Sort components within a type by self sort order

● Components higher up the tree run earlier



A Third Observation

● Sometimes components of different types work as a unit

● Example: camera behavior components working as a unit 

● Synchronizing reads is slow

● Deferring writes leads to latency

● Introduce notion of component “control”

● Every component has a controller

● Default controller is self

● If A controls B:

● A receives events, B does not

● Reads and writes are immediate



A Fourth Observation

● Large quantities of simple components

● Might read another component, but not part of read cycles

● Do a single thing

● Example: component that plays a visual effect

● Queuing a job for each vfx component is wasteful

● Batch up multiple vfx components to run in a single job



A Fifth (and Final) Observation

● Do we have to snapshot world state each step?

● Maybe not:

● If we don’t use all snapshots

● If we know which snapshots we will likely use

● On Knockout City:

● If latency is relatively stable, we can make good guesses

● Only store snapshots we are likely to use:

● Remember that 377kb of snapshot state?

● Save memcpy time!



Build Entity System

Make It Run Faster



Debugging Tools

Some useful stuff to help validate and debug issues:

● Snapshot comparison

● Entity view

● Script memory view

● Tracing system

● Lots of unit tests



Snapshot Comparison

● Run every step 2x

● Run step

● Rollback

● Run step again

● Hash and record all mutable component state

● Assert hashes are equal at end of second run

● If not, report differing state between two runs



Determinism Fail



Snapshot Comparison Part 2

● Store entities and components in contiguous arrays

● State of entity/components matters

● Location in array does not matter

● Use XOR to combine order-independent hashes

● Floating point is hard

● No floating point determinism across machine architectures

● Allow certain scripts to opt out of snapshot comparison

● Care about determinism in moment-to-moment gameplay

● Many situations we do not care



Entity View Tool

● Primary script debugging tool (with debug.print_line)

● Quickly answer questions like:

● Is an entity spawned?

● What’s the mutable state of a component?

● Who is this entity’s parent entity?

● Which spawned entities have some component?

● Let a developer perform operations like:

● Kill an entity

● Override the state of a component



Entity View Tool



Entities

Script 
Constants

Script 
Mutables

Filtering

Entity View Tool



Script Memory View

● Mutable script state gets copied forward each step

● Script memory view answers questions like:

● How many components of some type are currently spawned?

● How much mutable state is on some type?

● What is the total amount of mutable state in the world now?



Script Memory View



Tracing System

● Track performance

● Track deferred actions

● Track read sync count

● Stream out CSV

● Dump Chrome trace file

● Connect to CI system to 
record performance each 
build



Unit Tests

● Anticipate bugs: Write unit tests for interesting cases

● React to bugs: Whenever there is a bug, write a unit test 
to expose it

● We have several hundred small unit tests



Unit Test Example



Zooming Out

● Started from zero

● Four years later:

● Built this (and the rest of an engine/toolchain)

● Shipped Mario Kart Live and Knockout City

● ~1 programmer working on entities / script for the entire time

● Code written:

● Job System = ~2 kLOC

● Script Compiler/Runtime = ~28 kLOC

● Entity System = ~10 kLOC



High Level Performance Data

On a typical client…

● Steps the simulation ~6 times per frame

● ~4000 spawned components

● ~250 deferred actions per step

● ~250 synchronizes that do work per step

● ~1500 job switches per step

● ~150us job overhead per step on Xbox One X



Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable



Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable

● Synchronizing components is a nice tool to have



Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable

● Synchronizing components is a nice tool to have

● Support for determinism & rewind goes beyond entities



Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable

● Synchronizing components is a nice tool to have

● Support for determinism & rewind goes beyond entities

● Language has a big impact; choosing to create a new 
language is big



If I Had To Do It Over Again…

● Support cross-component reads of last step’s data

● Probably good enough much of the time?

● Avoid synchronization

● Stronger performance focus earlier

● Parallelism is nice but if my data access patterns suck…

● More flexibility around when we snapshot state

● More flexibility around when a component ticks



Future Work

● Better support for components not ticking every frame

● Implement more engine systems in terms of components

● Writing a script debugger



Thanks

● Cory and Joe for foundational work.

● Anton and Patrick for ongoing support and optimization.

● Matt and Neil from Alphablit for their assistance.

● Everyone at Velan for putting up with growing pains.

● Andreas for the feedback.

● Eli and Jenica for everything.



I Hope We Have Time For Questions

● Velan Studios is hiring!

● https://www.velanstudios.com/careers/

https://www.velanstudios.com/careers/


Bonus Content



Bonus Content

● Scripting notes

● Faster event dispatch

● Types of entities



Scripting Notes

● Tour of a simple script

● Interpreted script

● Resource management in script



Tour of a Simple Script

A simple script for managing 
the health of an entity.



Tour of a Simple Script

“Constants” set at editor time and read-
only a runtime.
Component properties that you see in 
the level editor.



Tour of a Simple Script

“Mutables” are read/write at runtime.
This is the data that forms the 
component snapshot.
If network-replicated, this is what goes 
on the wire.



Tour of a Simple Script

An event handler for the created event.



Tour of a Simple Script

An event handler for get_hit event.
Presumably sent from some other 
component.



Tour of a Simple Script

Script can be broken up into functions.



Interpreted Script

● Stack-based virtual machine with only 14 operations

● Most commonly the VM does this:

● Push 1 or more values onto stack

● Call a function defined in C exposed to script

● Pops values off the stack

● Does some work (in C)

● Pushes a new value onto the stack

● Maybe do an (un)conditional jump

● VM at least 5x slower than script compiled to C

● Useful in development (hot reload)

● Useful in a live environment (small hotfixes)



Resource Management in Script

● Goal:

● Avoid lifetime management of external resources in script

● Why:

● Easy to cause resource leaks

● Difficult to do in a system that can rewind

● Solution:

● Expose immediate mode APIs to script for interacting with 
external resources



Resource Management in Script

● Physics Box Example

● Avoid create, update, destroy

● On first frame we see this 
component declare the box, 
create it

● On later frames, update the box

● When the component stops 
ticking, destroy the box

● Implementation

● Requires caching behind the 
scenes

● Script authoring is easier

● Exposing resources to script is 
harder



Faster Event Dispatch

● Not all component types handle all events

● Efficiently know which components handle which events

● Usually* queue event handling jobs in wait_order order

● Wait_order is a property of the component type

● Solution

● Maintain a list of component indices for each component type

● For core events, maintain a wait_order sorted list of 
component index lists



Faster Event Dispatch



Faster Event Dispatch

● Whenever components are spawned or destroyed, mark 
the associated component type lists as pending update

● Flush pending updates before processing the next event

● Spawn/destroy are “relatively” rare, maintaining lists is 
worth the cost



Types of Entities

● Spent a lot of time talking about types of components

● Are their types of entities? Sort of.

● Motivated by a desire to run faster…



Types of Entities

● Logic entities

● Have snapshotted component state that can rewind

● Example: gameplay entities

● Draw-only entities

● Portions of component state are not snapshotted, no rewind

● Only handles core engine events (e.g. tick) on the leading edge

● Example: special effects entities

● Static entities

● Not really entities at all

● At spawn time get baked into faster data structures

● Component script does not run on static entities

● Example: map geometry



Types of Entities

● Logic and draw-only entities can interact in defined ways

● Determinism preserving (for logic entities)

● Information generally flows one-way; logic -> draw-only

● Components of logic entities can write to draw-only entities

● Components of draw-only entities can read from logic entities


