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What’s An Entity System

● Knockout City’s typically has 4000+ active components

● Components written in proprietary scripting language



Range of Components

Size/Complexity

Point_light
• Adds a light to the scene
• ~100 lines
• 15 data fields

Transform
• Position, rotation, scale
• ~100 lines
• 10 data fields

Player_movement
• Character traversal
• ~6000 lines
• ~250 data fields

Throwable_ball
• Default ball behavior
• ~3000 lines
• ~100 data fields



So Why Entity+Component+Script Anyway?

● Why entities and components?

● Familiar pattern for game designers

● Benefits of composition

● Why script?

● Reduce cognitive load

● Making good gameplay is hard enough

● Also want parallelism + determinism + reversibility + replication

● Lever for global optimization (or where framerate goes to die?)

● Live-update / hot-reload is nice



Motivating Architecture



The Rest of This Talk

● Data structures

● Components as scripted jobs

● Cross-component reads and writes

● Entity spawn & destroy

● Optimizations

● Tools



Let’s Build It!

● Entities are lists of components

● Components are function-specific data
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Let’s Build It!
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures
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Let’s Talk About Data Structures

Loaded Persistent Store Constant After Spawn Mutable Over Lifetime
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Rolling Forward

Every* simulation step memcpy snapshot to form basis of next step



Memory Traffic

● Entity snapshot = 16 bytes

● Component snapshot = 16 bytes

● Typical mutable properties size = 75 bytes

● Typical entity count = 1400

● Typical component count = 4000

● Total memcpy/step = 377 kilobytes
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Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

Entity/component memory 
layout is complicated.



<tangent> Script



Script Converted to C
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Script Converted to C



Script </tangent>



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

Entity/component memory 
layout is complicated.



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

● Typically handle an event on multiple components –
parallelize!

● Ticking the world runs tick handler on all components that 
have one

● Each component gets its own task or job

● Ensure the result is deterministic

Entity/component memory 
layout is complicated.



<tangent> Job System

● One job per component handling an event

● Job = { data blob, function pointer, completion token }

● Job system has 2 main operations:

● Run_async – Queue job for execution

● Returns completion token

● Wait – Wait for a job to finish execution

● Takes completion token



Running a Job

● Run_async pushes the job onto a queue

● Scheduler runs when current job finishes or waits

● Pop job off a queue

● Give the job a fiber, if needed

● Fiber = thread’s stack + registers

● Switches to the job’s fiber

● Loop until terminate



Waiting On A Job

● The scenario: While Job A is running, Job B waits on it

● What happens:

● Job B adds itself to Job A’s wait list

● Job B switches back to scheduler fiber

● When Job A completes

● Adds everyone in its wait list to the ready queue

● Scheduler pulls B off the ready queue

Job A

Job B Scheduler Job Z

Scheduler Job BThread 0

Thread 1



Job System </tangent>

● Christian Gyrling’s “Parallelizing the Naughty Dog Engine 
Using Fibers”

● Our starting point

● Added a few operations, one of which we will talk about later



Let’s Build It!

● Entities are lists of components

● Components are function-specific data

● Events trigger component script code to execute

● Typically handle an event on multiple components –
parallelize!

● Ticking the world runs tick handler on all components that 
have one

● Each component gets its own task or job

● Ensure the result is deterministic

Entity/component memory 
layout is complicated.



Ta Da!



Ta Da!



So… We’re Done?



Nope.



Let’s Look At That Example Script Again…



Let’s Look At That Example Script Again…



Cross-Component Reads + Writes

● Reading from transform

● What if transform has its own tick handler?

● Will our component see transform before or after it mutates 
state?

● Seems like we’ve got a race on our hands

● Writing to transform

● Same thing differently

● Will transform see its state before or after we mutate it?



Solving the Read Problem

● Good news: we have job wait and a scripting language!

● When reading transform, script compiler adds a job wait

● We don’t run until transform is done

● Determinism achieved, data race gone



That seems too easy.



Yep.



Cycles

● What’s stopping A from reading B, and B reading A, in 
the same event? Nothing.

● What happens if that happens? Deadlock.

A B

Reads

Reads



The Synchronize Operation

● Introduce the synchronize operation

● synchronize(A,B) means A “waits for” B

● Invoke this operation on every cross-component read

● Without considering cycles, synchronize = job_wait

● With cycles, synchronize must avoid deadlock



Synchronize Pseudocode



Job_Yield

● Recall job_wait

● If A waits on B, A puts self on B’s wait list

● A switches back to scheduler

● When B completes, it pushes all its waiters on ready queue

● Yield operation is similar-ish

● A flags self as yielding

● A switches back to scheduler

● Scheduler sees A is yielding and pushes A onto yield queue

● When scheduler exhausts other work, pull from yield queue



Job_Yield + Job_Wait?

● Job_yield spin cores on yield queue, but no deadlock

● Job_wait idle cores if there is no work, but can deadlock

● Can we combine the concepts and do better?



Introducing Job_Yield_Wait

● Job_yield_wait(A, B)

● A flags self as yield-waiting

● A switches back to scheduler

● Scheduler sees A is yield-waiting

● Wakes all yield-waiters on A

● Puts A in B’s yield-waiter list

● When B completes, push all its yield-waiters onto ready queue

● Only wake jobs when progress is made!



Now It’s Perfect



What’s Next?
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What’s Next?



Selecting What To Run From A Cycle

● Want determinism

● No other criteria? Just pick one already!

● Our system compares:

● Entity GUIDs, then

● Component index on entity



Synchronization Costs in Practice

● On a “typical” KO City simulation step with 4 job workers

● 280 synchronizes where we check for a cycle

● 75 cycles broken

● ~100 ns overhead per job switch on Xbox One X

● Time to pop job from queue, switch to job, back to scheduler

● More waiting/yielding jobs = more fibers

● 64kb / fiber for “normal” jobs

● For KOCity: 512 normal job fibers preallocated = 32 MB



Ok, Now We’re Done.



With Read.



What About Write?



Making Write Safe

● Defer cross-component writes

● A does not write to B immediately

● A queues write on B to happen at the end of the current event

● Now A writing to B does not race with B (or other readers of B)

● Good news: we have a scripting language!

● We can transparently defer writes



Are We There Yet?



Are We There Yet?



Snooping Your Write Queue

● When deferring a write to another component, record it

● Before we read another component, check pending writes

● Pending write list is component-job-local

● “Typical” frame average pending write list has ~1.2 items

● Just do a linear search

● Return the last pending write, if any



Summary of Read/Write Semantics



Summary of Read/Write Semantics

A waits for B



Summary of Read/Write Semantics

Immediate read/write



Summary of Read/Write Semantics

C defers write & snoops



Surely There’s More?



Yep. 



What Other Operations Do We Want?

● Spawn an entity

● Destroy an entity

● Queue an event (on entity/component/world)

● Set entity parent

● Get entity sibling

● Add/remove component on entity
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What Other Operations Do We Want?

● Spawn an entity

● Destroy an entity

● Queue an event (on entity/component/world)

● Set entity parent

● Get entity sibling

● Add/remove component on entity

Kinda like a deferred write

Kinda like a deferred write

Kinda like a synchronized read

Kinda involved. This is next.

Kinda involved. After spawn.



Spawning Entities

● Split spawn operation into 2 steps

● Allocate space + Initialize values

● Run created event

● Do alloc+init immediately

● Need address for new entity

● Defer the created event

● Handle created in parallel for all components in new entity

● Resolves create time ordering issues between components



Spawn In Action



Spawn In Action

But there’s a problem. Do you see it?



Entity Visibility

● If component A spawns entity E, when can B see E?

● If B sees E immediately -> nondeterministic

● For B, visibility to E must be deferred until after created

● But A needs to see E immediately to reference it



Entity Visibility Solution

● When allocating an entity, record the creating component

● All entity query API takes the calling component

● Query API is safe to return an entity/component if:

● Entity/component is fully created, OR,

● Caller is the creator

● Query API returns entities/components visible to caller



Spawn entity

Destroy entity



Destroying Entities

● You know the drill

● Can’t just destroy entities

● That would be racy and nondeterministic

● Defer the destroy

● Split the operation in two parts

● Queue destroyed event (to run in parallel)

● Deallocate the storage



There’s A Catch, Right?



Destroying Without Creating?

● Spawn entity in the normal way

● Created event queued for end of simulation step

● Then destroy entity, flagged to run after current event

● Do we get a destroyed event without a created?

● If resource management tied to created/destroyed -> bad

● Also, just not a cool thing to do



Destroyed Guarantees Created

● Before processing destroyed event, check if created

● If not, find created events in queue and run them

● Probably need to check the “other” queue

● Then run destroyed events



Spawn entity

Destroy entity



That’s It?

● We have a workable, parallel, deterministic system

● But it could be faster

● That’s next



Recall This



Enhance!



Observation

● Cross-component reads often have per-type relationship

● Example: move-5-units-per-second-in-X components 
read transform components

● To minimize yields, tick our component after transform



Formalizing Our Observation

● Let wait_order be an integer

● On each component type

● For each major event

● Top of each core event, sort types by wait_order

● Queue component jobs in sorted order

● When synchronize(A,B) and B is active

● Increment wait_order for typeof(A) and the current event

● Decrement wait_order for typeof(B) and the current event

● Clamp wait_order to a reasonable range



After Enabling Job Ordering



Another Observation

● Tracking read 
relationships between 
types is great

● But what about reads 
within a type?

● Pathological case: same 
type components that 
read up the entity tree

Entity

ui_box
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Entity
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Entity

ui_box

text

Reads

Reads



Handling Hierarchies of Reads

● Script specifies “self sort order” –> depth in hierarchy

● Sort components within a type by self sort order

● Components higher up the tree run earlier



A Third Observation

● Sometimes components of different types work as a unit

● Example: camera behavior components working as a unit 

● Synchronizing reads is slow

● Deferring writes leads to latency

● Introduce notion of component “control”

● Every component has a controller

● Default controller is self

● If A controls B:

● A receives events, B does not

● Reads and writes are immediate



A Fourth Observation

● Large quantities of simple components

● Might read another component, but not part of read cycles

● Do a single thing

● Example: component that plays a visual effect

● Queuing a job for each vfx component is wasteful

● Batch up multiple vfx components to run in a single job



A Fifth (and Final) Observation

● Do we have to snapshot world state each step?

● Maybe not:

● If we don’t use all snapshots

● If we know which snapshots we will likely use

● On Knockout City:

● If latency is relatively stable, we can make good guesses

● Only store snapshots we are likely to use:

● Remember that 377kb of snapshot state?

● Save memcpy time!



Build Entity System

Make It Run Faster



Debugging Tools

Some useful stuff to help validate and debug issues:

● Snapshot comparison

● Entity view

● Script memory view

● Tracing system

● Lots of unit tests



Snapshot Comparison

● Run every step 2x

● Run step

● Rollback

● Run step again

● Hash and record all mutable component state

● Assert hashes are equal at end of second run

● If not, report differing state between two runs



Determinism Fail



Snapshot Comparison Part 2

● Store entities and components in contiguous arrays

● State of entity/components matters

● Location in array does not matter

● Use XOR to combine order-independent hashes

● Floating point is hard

● No floating point determinism across machine architectures

● Allow certain scripts to opt out of snapshot comparison

● Care about determinism in moment-to-moment gameplay

● Many situations we do not care



Entity View Tool

● Primary script debugging tool (with debug.print_line)

● Quickly answer questions like:

● Is an entity spawned?

● What’s the mutable state of a component?

● Who is this entity’s parent entity?

● Which spawned entities have some component?

● Let a developer perform operations like:

● Kill an entity

● Override the state of a component



Entity View Tool



Entities

Script 
Constants

Script 
Mutables

Filtering

Entity View Tool



Script Memory View

● Mutable script state gets copied forward each step

● Script memory view answers questions like:

● How many components of some type are currently spawned?

● How much mutable state is on some type?

● What is the total amount of mutable state in the world now?



Script Memory View



Tracing System

● Track performance

● Track deferred actions

● Track read sync count

● Stream out CSV

● Dump Chrome trace file

● Connect to CI system to 
record performance each 
build



Unit Tests

● Anticipate bugs: Write unit tests for interesting cases

● React to bugs: Whenever there is a bug, write a unit test 
to expose it

● We have several hundred small unit tests



Unit Test Example



Zooming Out

● Started from zero

● Four years later:

● Built this (and the rest of an engine/toolchain)

● Shipped Mario Kart Live and Knockout City

● ~1 programmer working on entities / script for the entire time

● Code written:

● Job System = ~2 kLOC

● Script Compiler/Runtime = ~28 kLOC

● Entity System = ~10 kLOC



High Level Performance Data

On a typical client…

● Steps the simulation ~6 times per frame

● ~4000 spawned components

● ~250 deferred actions per step

● ~250 synchronizes that do work per step

● ~1500 job switches per step

● ~150us job overhead per step on Xbox One X



Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable
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Some Closing Thoughts

● The thing we set out to do is possible

✓ Parallel

✓ Deterministic

✓ Rewindable

● Synchronizing components is a nice tool to have

● Support for determinism & rewind goes beyond entities

● Language has a big impact; choosing to create a new 
language is big



If I Had To Do It Over Again…

● Support cross-component reads of last step’s data

● Probably good enough much of the time?

● Avoid synchronization

● Stronger performance focus earlier

● Parallelism is nice but if my data access patterns suck…

● More flexibility around when we snapshot state

● More flexibility around when a component ticks



Future Work

● Better support for components not ticking every frame

● Implement more engine systems in terms of components

● Writing a script debugger



Thanks

● Cory and Joe for foundational work.

● Anton and Patrick for ongoing support and optimization.

● Matt and Neil from Alphablit for their assistance.

● Everyone at Velan for putting up with growing pains.

● Andreas for the feedback.

● Eli and Jenica for everything.



I Hope We Have Time For Questions

● Velan Studios is hiring!

● https://www.velanstudios.com/careers/

https://www.velanstudios.com/careers/


Bonus Content



Bonus Content

● Scripting notes

● Faster event dispatch

● Types of entities



Scripting Notes

● Tour of a simple script

● Interpreted script

● Resource management in script



Tour of a Simple Script

A simple script for managing 
the health of an entity.



Tour of a Simple Script

“Constants” set at editor time and read-
only a runtime.
Component properties that you see in 
the level editor.



Tour of a Simple Script

“Mutables” are read/write at runtime.
This is the data that forms the 
component snapshot.
If network-replicated, this is what goes 
on the wire.



Tour of a Simple Script

An event handler for the created event.



Tour of a Simple Script

An event handler for get_hit event.
Presumably sent from some other 
component.



Tour of a Simple Script

Script can be broken up into functions.



Interpreted Script

● Stack-based virtual machine with only 14 operations

● Most commonly the VM does this:

● Push 1 or more values onto stack

● Call a function defined in C exposed to script

● Pops values off the stack

● Does some work (in C)

● Pushes a new value onto the stack

● Maybe do an (un)conditional jump

● VM at least 5x slower than script compiled to C

● Useful in development (hot reload)

● Useful in a live environment (small hotfixes)



Resource Management in Script

● Goal:

● Avoid lifetime management of external resources in script

● Why:

● Easy to cause resource leaks

● Difficult to do in a system that can rewind

● Solution:

● Expose immediate mode APIs to script for interacting with 
external resources



Resource Management in Script

● Physics Box Example

● Avoid create, update, destroy

● On first frame we see this 
component declare the box, 
create it

● On later frames, update the box

● When the component stops 
ticking, destroy the box

● Implementation

● Requires caching behind the 
scenes

● Script authoring is easier

● Exposing resources to script is 
harder



Faster Event Dispatch

● Not all component types handle all events

● Efficiently know which components handle which events

● Usually* queue event handling jobs in wait_order order

● Wait_order is a property of the component type

● Solution

● Maintain a list of component indices for each component type

● For core events, maintain a wait_order sorted list of 
component index lists



Faster Event Dispatch



Faster Event Dispatch

● Whenever components are spawned or destroyed, mark 
the associated component type lists as pending update

● Flush pending updates before processing the next event

● Spawn/destroy are “relatively” rare, maintaining lists is 
worth the cost



Types of Entities

● Spent a lot of time talking about types of components

● Are their types of entities? Sort of.

● Motivated by a desire to run faster…



Types of Entities

● Logic entities

● Have snapshotted component state that can rewind

● Example: gameplay entities

● Draw-only entities

● Portions of component state are not snapshotted, no rewind

● Only handles core engine events (e.g. tick) on the leading edge

● Example: special effects entities

● Static entities

● Not really entities at all

● At spawn time get baked into faster data structures

● Component script does not run on static entities

● Example: map geometry



Types of Entities

● Logic and draw-only entities can interact in defined ways

● Determinism preserving (for logic entities)

● Information generally flows one-way; logic -> draw-only

● Components of logic entities can write to draw-only entities

● Components of draw-only entities can read from logic entities


