
Practical Automation：
A Guide to Random Game Content
Generation

Yiheng Zhou / Shuai Xu

When we generated contents and terrains for our
games, we encountered multiple problems. These
problems are likely to exist in many game design
processes.

e.g.

Players always complain that the map is unfair

Players always complain that the spawn points are unreasonable

Players always complain about insufficient resources

Contents
● Summarize the general problems

● Simulation story: two teams mine golds under snow mountains

● Unfair: 2 maps comparison

● Mathematical factor analysis: fairness & stability & algorithms

● Takeaway: Automatic Generation

General problems to solve

● Given two maps, how to compare which is better?

● Is it fair to the two teams?

● Is it still fair when the two teams have different numbers?

● Is it easy to get props at the beginning of the game?

● To be fair, how big a map is needed?

● Which random generator algorithm to choose?

● How many prop rewards are needed?

Dive into Practice

• To our knowledge, the degree of convenience from the spawn points to
props placement greatly affects the initial growth of the game player.

• While the growth of game players in the middle and late stages of the
game mainly depends on the player's own experience and skills.

• Therefore, in order to reduce irrelevant factors, the effectiveness and
fairness of the map should be compared at the early stage of the game.

• Comprehensive simulation is an effective way to test hypotheses.

• The controlled variable method is the key to the simulation experiment.

Simulation

• Two teams（red and blue）are mining gold mines on the edge of the
snow-capped mountains

• Gold mines and snow mountains are generated by algorithms

• The red team players are born from the west (randomly generated left half
area). While the blue are the east.

• Each team member uses the same pathfinding strategy

• Players cannot enter the snow mountains

• Settlement when teams first meet (the early stage) or when the gold
mine resources are exhausted

↑ mining gold mines under the snow-capped mountains

Why use the early stage（i.e. first meet）?

• Easy to implement

• Easy to interpret

• Quick results: Reduce the amount of computing power

• In line with mathematical principles

When two teams meet for the first time, they may fight or share the gold mine information. This
makes the game enter the middle and late stages.

Then?

• The difference between the gold gain of the two teams in a single game can reflect
the difference between the spawn points and the location of the resources, since
they use the same pathfinding algorithm.

• The variance of the difference caused by thousands game times can reflect the
stability of the map.

• The expectation of the score difference caused by thousands game times can reflect
the fairness of the map.

• The variances of different maps can compare the quality of the map.

• The variances of different random generator algorithms can compare the
effectiveness of algorithm.

• etc.

Model Definition

• red team player set

• Β blue team player set

• diff golds in one game

• diff golds set of games

• variance of games under some settings

• μ (） mean value of

• σ () standard deviation of

Example1: map1 vs map2

● map1: snow mountain piles and gold piles

● map2: only scattered

Can you directly tell which map is more gainful for the red team? （red left, blue right）
How to verify your conclusion?

Example: map1 vs map2

 density plot of δ of 3000 simulation times each map

Confirmed:
1. map2 is symmetric about 0 point.
2. map2 is more stable, since the curve is narrow and tall
3. map1 is asymmetry about 0, though it peaks at 0.
4. map1 has multiple peaks.
5. Obviously, map1 is more gainful for the blue team.

How to test the hypothesis that “map1 is more
gainful for the blue team”?

Example: map1 vs map2

Significance Test: map1 is more gainful for the blue team

(1) H0: blue team is not more gainful

(2) H1: blue team is more gainful

= 175.51 ， = 266.15

(4) SE = = 2.78

(5) z = （ ）/ SE = 32.60

Using Z-test theory, we can reject the H0 with a probability of 99.9+% , then accept H1.

Example: map1 vs map2

• Conclusion from Z-test: map1 is not fair

• Is it possible to turn the map1 into fair by increasing the player number of
the red team?

• Is there any other way?

Consider Influencing factors

• Map scale

• Team size

• Gold quantity

• Pathfinding algorithm

• Random generator algorithm / seed

• etc.

Map scale: bigger is better?

Does a bigger map means more stability?

Whether the map is bigger is less likely to be unfair?

• constant gold proportion = 3%

• constant snow proportion

• fixed random generator (with random seed)

• fixed team size

• fixed pathfinding algorithm

• Map scales: 100 x 50, 200 x 100, 300 x 150, 400 x 200, 500 x 250, 600 x 300

Map scale: bigger is better

 half-violin plot of map scales

1. From the drawing, map with bigger scale
leads to bigger σ （curve tends to be flat）,
means more instability.
2. Since we use random seed for generation,
We don't directly see apparent unfairness here.
However, we know that big σ may lead to big
uncertainty of fairness.

What we have overlooked so far?

Map scale: bigger is better?

Gaussian model params of map scales

It seems that there is a linear relationship
between the map scale and the standard
deviation σ.

At the moment we have overlooked a factor,

gold proportion ≠ gold amount 😲
e.g. 100x50x0.03 ≠ 600x300x0.03

σ ∝ map scale❓
σ ∝ #gold❓

Map scale: #gold

 Gaussian model #gold (with fixed map scale:
300x150, fixed #snow, etc…)

∝ #gold❓

Compute Pearson correlation coefficient:

p (, #gold) = 0.9820

It seems linearity.

Map scale: conclusion

According to preliminary analysis,

1. σ ∝ map scale , when constant gold proportion

∝ #gold, when other settings are fixed

3. If conditions permit, reducing the map scale and #gold can increase the stability of the map.

Noting that these conclusions may be different in different types of games.

Team size : more people is better?

Back to the previous question: “Is it possible to make the map1 fair
by increasing the player number of the red team?”

• use the generated map ‘map1’ (by Perlin generator, will be
introduced later)

• Try different team sizes (red x blue)： 1 x 1, 1 x 2 , 3 x 3, 6 x 2, etc…

To check whether different team sizes will change the fairness of
the game

Team size : more people is better?

Matrix of μ(Δ) with respect to team size

1.Row axis is for blue team members and column
axis is for red team members.

2. From the drawing, in most cases the blue
team has the advantage in this map.

3. Fortunately, increasing the number of red
teams may change fairness，which means to
increase the probability of the red team winning.

4. The team size 3 x 2 maybe a good choice for
fairness.

Team size : more people is better?
Matrix of σ (Δ) with respect to team size

1. The darker the color, the more stable.

2. The team size 6 x 4 reaches the
max stability, though it is quite
unfair. It’s interesting that the blue
team still has the upper hand in this
situation.

Pathfinding algorithm

The pathfinding algorithm will affect the simulation results:

e.g.

• Walking to a certain gold location more slowly may cause the gold to be
mined by others first.

• If you tend to go to the opposite side, you may meet someone from the
other team faster.

• If you always walk with your teammates, you might waste a person.

Pathfinding algorithm: principles

What to consider when designing a pathfinding algorithm for the simulation:

• AI is greedy for gold

• Does not always follow a fixed route, but there is a limit to randomness

• Every AI has the same pathfinding algorithm/ algorithms

• Have some intelligence and will not fall into the same trap for a long
time

• Try to imitate human behaviors

A feasible greedy pathfinding algorithm

For Each Step, For Each AI:

1. Choose the one with the closest European distance from the valid golds, Denoted
as T. Current location is C.

2. Initialize a Candidate List CL.

3. Get the next location by Dijkstra Shortest Path algorithm. Add the location as a
candidate to CL.

4. For each movable location L:

4.1 IF distance(C, T) < distance(L,T), then add L to CL.

4.2 ELSE, then add L to CL with probability p. (to escape the traps)

5. Randomly select a candidate from CL as the next location for this AI.

Generators

Generators are used to generate resources (gold mines) and obstacles
(snow mountains):

• Uniform Random Selection

• Perlin (Simplex) Noise

• Fractal Noise

• Fourier Series Noise

• etc.

Generator 1:Uniform Random Selection

● Produce a random value between 0.0-1.0 from uniform distribution for each
location on the grid

𝑓 𝑥 =

1

𝑏 − 𝑎
 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏,

 0 𝑓𝑜𝑟 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏

● Take the locations of the largest n values for generating items

● Spawn items in these locations

Generator 1: Uniform Random Selection

Generator 2: Perlin Noise

Ken Perlin developed Perlin Noise in 1983.

• It is statistically invariant to rotation.

• The energy is concentrated in a narrow band in the frequency
spectrum, that is: the image is continuous and the high frequency
components are limited.

• It is statistically invariant to transformation.

Generator 2: Perlin Noise

Steps （We will not discuss the details here）:

1. Defining a grid of random gradient vectors

noise2d(x, y) = z

2. Computing the dot product between the gradient vectors and their offsets

3. Do interpolation between these values

s(t) = 6t5 - 15t4 + 10t3 // smooth function

f(x) = 𝟎 𝟏 𝟎

4. Use the interpolated grid to generate terrain and items

Generator 2: Perlin Noise

Generator 3: Fractal Noise

• Based on Perlin Noise

• Introduce self similarity and other effects neccesary for noise to be fractal

• Closer to the natural world

𝒊

𝒊 // fractal function

Generator 3: Fractal Noise

Generators: how to use?

• Different random algorithms can be used for different resources and
items

• Even the same algorithm can use different random seeds for different
type of items

• Inappropriate settings of generators may make the map unfair or have
great instability

Equal seed vs Distinct seed

↑ Snows use seed1. Gold in the left grid uses equal seed. The other two use seed2 and seed3.

The equal seed can bring gold mines close to the snow mountains.

Generators

 Gaussian

1. In general Perlin/Fractal has bigger σ
than Uniform Random Selection, since the
value exceeds 100.

2. If use arbitrary seeds,
Perlin/Fractal/Uniform can reach
Expectation close to 0.

Generators

 Boxplot of δ with respect to generators

1. Uniform is the most stable. (small data
range ignoring the outliers)

2. Fractal is the most unstable for generating
snow mountains.

3. Perlin is the most unstable for generating
gold mines.

Generators

 Boxplot of δ with respect to
equal/distinct seed

We do not see much difference
between using equal seed and
distinct seed for generating snows
and golds. Though the maps look very
different visually.

Math analysis: Conclusion

What indicators need to be considered？
μ (Δ) Fairness； σ (Δ) Stability

What factors need to be considered?
Map scale; Gold quantity; Random generator algorithm / seed; etc.

How to analyze?
Violin plot; Linear fit; Matrix heatmap; Visualization; Pivot table; Boxplot;
etc.

Takeaway: Automatic Generation

1. Based on expert knowledge, design the map scale, the quantity of rewards, the quantity of
obstacles and the number of players, etc.

2. Set up indicators and acceptable limits: such as expectation |μ| < 10 and variance σ < 30

3. Define the “early stage” of the game

4. Choose a suitable and easy-to-implement generator

5. Generate several simplified maps (remove irrelevant items)

6. Randomly generate AIs, and perform several simulation experiments on the map through
appropriate pathfinding algorithms

7. Calculate the indicators of each map based on the results

8. Accept the maps with indicators that meet the limits

Thank You

