GDC

March 21-25, 2022 San Francisco, CA

Real-time anomaly monitoring in multiplayer online games

Lei Xia ThunderFire UX Senior Data Mining Engineer

#GDC22

ThunderFire UX

•ThunderFire UX User Experience Center (ThunderFire UX) aims at becoming the first-class user experience insight department in the video game industry. We are committed to deepening player understanding and getting actionable findings from our players to help various games of NetEase and ThunderFire achieve the best user experience.

Outline

Backgroud

Practice in ThunderFire UX

Takeaway

March 21-25, 2022 | San Francisco, CA #GDC22

Part.1

Background

March 21-25, 2022 | San Francisco, CA #GDC22

The Steam Refund Story

 In September, our game "NARAKA: BLADEPOINT" saw a significant increase in the number of in-game refunds (The values in the chart are fake data, just for illustration).

The Steam Refund Story

 By comparing the trends of active and refund number, we can determine that there are abnormal events in our game, possibly game cheating.

The Steam Refund Story

•When we found this problem, it has been some time since malicious refund. Is there any way to troubleshoot the problem in time?

What is Anomaly

 Anomaly, also reffered to as outlier, is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behaviour.

Normal Does Not Means Constant

•For example, the number of online players during the shutdown maintenance of a game is zero. If the number is not 0 at this time, it is an anomaly.

11:05:00

Anomaly Detection for Time Series Data

•Time series data is composed of a sequence of values over time.Time series data anomaly detection first create a baseline for normal behavior. With that baseline, time series data anomaly detection systems can track seasonality.

Know What vs Know Why

Anomaly Detection

V S Anomaly Attribution

March 21-25, 2022 | San Francisco, CA #GDC22

n

What's Next?

•We will discuss all kinds of online player number anomalies, because the online player number curve is clear and easy to understand.

•We will analyze the infrastructure anomalies behind these cases, because the whole pipeline of infra is relatively clear.

A Real-Time Anomaly Case

 When we see abnormal fluctuations in real-time data statistics, can we know what happened right now?

Real-time Data Pipeline

Message Queue

Data Processing

March 21-25, 2022 | San Francisco, CA **#GDC22**

Dashboard

Three Sources of Anomalies

Game Server Crashes

Data Collection & Transmission Failure

Errors in Data Processing

March 21-25, 2022 | San Francisco, CA #GDC22

Common Anomalies in Dashboard

Delay

•Jitter

•Fall to Zero

March 21-25, 2022 | San Francisco, CA #GDC22

Delay

Current Time is 11 o'clock

Jitter

Fall to Zero

When you see the various abnormal dashboards mentioned above, how can you find out at which stage the problem occurred in the real-time data pipeline?

Part.2 Practice in ThunderFire UX

March 21-25, 2022 | San Francisco, CA #GDC22

Troubleshooting the Anomalies

March 21-25, 2022 | San Francisco, CA #GDC22

Dashboard

Monitoring the Message Queue Connecting upstream data production and downstream

data consumption

Message Queue (e.g. Kafka)

Producer

Four Quadrants of Production and Consumption

Normal production & normal consumption

- Normal production & abnormal consumption
- Abnormal production & normal consumption

Abnormal production & abnormal consumption

Key Monitoring Indicators

Topic Lag

Consumer Rate

Producer Rate

March 21-25, 2022 | San Francisco, CA **#GDC22**

Topic Lag

•*Lag* is simply the delta between the last produced message and the last consumer's committed offset.

Consumer Rate and Producer Rate

The rate of records consumed per second
The rate of records produced per second

Ind Ind

Cases in Practice

stop producing messages (normal consumption)

March 21-25, 2022 | San Francisco, CA #GDC22

Case1——Stop Producing Messages

•No Topic Lag

March 21-25, 2022 | San Francisco, CA #GDC22

•Fall to Zero Dashboard

Case2—Delayed Messages Production

Similar Trends of Consumer and Producer

network latency

March 21-25, 2022 | San Francisco, CA #GDC22

Case2—Delayed Messages Production

No Topic Lag

March 21-25, 2022 | San Francisco, CA #GDC22

Case2—Delayed Messages Production

Delayed Pattern Dashboard

No Latest Data

No Complete Data

Dive Deeper into Producer Side Anomaly

•Can we find out whether the anomaly occurs in game service or data system?

Data System

le Anomaly ccurs in game

Anomaly in Game Service or Data System

•When monitoring message queue, it is impossible to distinguish 2 kinds of anomalies and will get the same hints.

Anomaly in Game Service or Data System

Process of Anomaly Detection

March 21-25, 2022 | San Francisco, CA #GDC22

22

Anomaly in Game Service or Data System

Evidence of Game Crash

Analyze crash related words

Case3——Abnormal Messages Consumption

Different Trends of Consumer and Producer

Abnormal

March 21-25, 2022 | San Francisco, CA #GDC22

Normal

Case3—Abnormal Messages Consumption

Topic Lag

March 21-25, 2022 | San Francisco, CA #GDC22

Case3—Abnormal Messages Consumption

Dashboard—No Latest Data

Summary for 3 Cases

By monitoring the message queue, we can find out whether the anomaly comes from the consumer side or the producer side, that is, upstream or downstream.

Special Case——Normal Production & Consumption

Two obvious jitters in the dashboard

Special Case——Normal Production & Consumption

But Everything Seems Okay? Normal

March 21-25, 2022 | San Francisco, CA #GDC22

Normal

Detailed Analysis of Real-time Data

•The data pipeline needs to be updated. The data should be persistent in OLAP DB (we use Apache Kudu here) and can be queried quickly (Apache Impala used)

Special Case——Normal Production & Consumption

Analyze every server in the online role num

Special Case——Normal Production & Consumption

Is it true that a large number of players have logged in during this period? NO!

Only less than 100 new login players in server 166

Review the Special Case

March 21-25, 2022 | San Francisco, CA #GDC22

Summary for Special Case

- Data record itself may go wrong
- Errors in data record cannot be detected by rough message queue monitoring
- Subtle data anomalies require a real-time data analysis architecture

Two More Cases of Real-time Data Analysis Architecture

Evaluate the Retention Rate of Different Games

Monitor FPS of Different Versions of Game Clients

Evaluate the Real-time Retention Rate of Different Games

Monitor FPS of Different Versions of Game Clients

Takeaway

Understand common data anomaly characterization

 Learn how to use message queue to discover upstream and downstream anomalies

 Understand the value of real-time analysis architecture in detailed monitoring

Thanks for your attention!

March 21-25, 2022 | San Francisco, CA #GDC22

